首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.  相似文献   

2.
The kinetic behavior of a system of multiple enzyme in solution has been studied in a variable volume batch reactor at pH 5, controlled dissolved oxygen concentration, and T = 30°C. The enzymes used were glucoamylase (R. delemar), glucose oxidase (A. niger), and gluconolactonase (A. niger), all of which are important commercial biocatalysts, and a disaccharide was employed as the starting substrate. This study includes the basic kinetic properties of individual enzymes and interactions between components of the reaction mixture. Classical Michaelis–Menten single substrate or two substrate kinetic with parameters based on initial rate data predict correctly the batch time course of the sequential reaction network.  相似文献   

3.
Bioconversion of lignocellulosic biomass to fuel requires a hydrolysis step to obtain fermentable sugars, generally accomplished by fungal enzymes. Large-scale screening of different microbial strains would provide optimal enzyme cocktails for any target feedstock. The aim of this study was to screen a large collection of Trichoderma sp. strains for the hydrolytic potential towards switchgrass (Panicum virgatum L.). Strains were cultivated in a small-scale system and assayed in micro-plates for xylanase and cellulase activities. The population distributions of these traits are reported after growth on switchgrass in comparison with cellulose. The distribution profiles suggest that the growth on switchgrass strongly promotes xylanase production. The IK4 strain displayed the highest xylanase activity after growth on switchgrass (133U/mL). Enzymes (10FPU/g substrate) from IK4 were compared with those from 2 cellulolytic Trichoderma strains and a commercial enzyme in saccharification time-course experiments on untreated and pretreated switchgrass and on an artificial substrate. Samples were analysed by DNS assay and by an oxygraphic method for sugar equivalent or glucose concentration. On the untreated substrate, IK4 enzymes even outperformed a 5-fold load of commercial enzyme, suggesting that xylanase or accessory enzymes are a limiting factor on this type of recalcitrant substrate. On the other substrates, IK4 preparations showed intermediate behaviour if compared with the commercial enzyme at 10FPU/g substrate and at 5-fold load. IK4 also nearly halved the time to release 50% of the hydrolysable sugar equivalents (T(50%)), with respect to the other preparations at the same enzymatic load. DNS assay and oxygraphic method gave highly correlated results for the 3 saccharified substrates. The study suggests that accessory enzymes like xylanase play a key role in improving the performance of cellulase preparations on herbaceous lignocellulosic feedstocks like switchgrass.  相似文献   

4.
Some enzymes are inactivated by their natural substrates during catalytic turnover, limiting the ultimate extent of reaction. These enzymes can be separated into three broad classes, depending on the mechanism of the inactivation process. The first type is enzymes which use molecular oxygen as a substrate. The second type is inactivated by hydrogen peroxide, which is present either as a substrate or a product, and are stabilized by high catalase activity. The oxidation of both types of enzymes shares common features with oxidation of other enzymes and proteins. The third type of enzyme is inactivated by non-oxidative processes, mainly reversible loss of cofactors or attached groups. Sub classes are defined within each broad classification based on kinetics and stoichiometry. Reaction-inactivation is in part a regulatory mechanism in vivo, because specific proteolytic systems give rapid turnover of such labelled enzymes. The methods for enhancing the stability of these enzymes under reaction conditions depends on the enzyme type. The kinetics of these inactivation reactions can be used to optimize bioreactor design and operation.  相似文献   

5.
The contribution of three exoglucanases from a commercial Trichoderma viride cellulase to transcellobiosylation, and the tolerance of these enzymes to acetonitrile co-solvent were studied. The enzymatic reactions were performed with p-nitrophenyl-β-d-cellobioside as the starting substrate. Among these enzymes, the least anionic exoglucanase (Exo I) showed the highest transcellobiosylation activity and acetonitrile tolerance. Exo I retained considerable activity even in 30% MeCN/water and produced p-nitrophenyl-β-d-cellotetraoside at about 1.5% conversion from the initial substrate in 30% MeCN/water. The residual activity of Exo I after incubation in MeCN/water mixture was almost identical to that of the crude cellulase and a considerable amount of the transcellobiosylation properties of the crude cellulase seemed to be attributable to this Exo I component.  相似文献   

6.
The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the re calcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis pro cess, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of celulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc.  相似文献   

7.
The adrenaline test for enzymes is a colorimetric enzyme assay based on the quantification of periodate-sensitive reaction products such as 1,2-diols and 1,2-aminoalcohols by back-titration of the oxidant with adrenaline to produce adrenochrome as an easily detectable red product. The test uses commercial reagents and is suitable for screening the activity of various hydrolases. It is demonstrated here for testing epoxide hydrolases, lipases and esterases, and for activity fingerprinting of these enzymes across substrate series. The complete assay requires 2-3 h.  相似文献   

8.
Cultivation of two commercial Pleurotus ostreatus (oyster mushroom) strains was performed in plastic bags. Tree leaves appeared to be an excellent growth substrate for the conversion into fruiting bodies with biological efficiency of 108-118%. The level of enzyme activity was strongly regulated during the life cycle of mushrooms. However, despite the quantitative variations, each strain had a similar pattern of enzyme accumulation in fermentation of both substrates. Laccase and MnP activities were high during substrate colonization and declined rapidly during fruiting body development. On the contrary, in substrate colonization P. ostreatus expressed comparatively low activity of hydrolases. When primordia appeared, the activity of these enzymes sharply increased. Both cellulase and xylanase activity peaked at the mature fruiting body stage. When mushrooms shifted to the vegetative growth, the activity of ligninolytic enzymes again gradually increased, whereas the activity of hydrolases decreased.  相似文献   

9.
The presence of lignin is known to reduce the efficiency of the enzymatic hydrolysis of lignocellulosic raw materials. On the other hand, solubilization of hemicellulose, especially of xylan, is known to enhance the hydrolysis of cellulose. The enzymatic hydrolysis of spruce, recognized among the most challenging lignocellulosic substrates, was studied by commercial and purified enzymes from Trichoderma reesei. Previously, the enzymatic hydrolysis of steam pretreated spruce has been studied mainly by using commercial enzymes and no efforts have been taken to clarify the bottlenecks by using purified enzyme components.Steam-pretreated spruce was hydrolyzed with a mixture of Celluclast and Novozym 188 to obtain a hydrolysis residue, expectedly containing the most resistant components. The pretreated raw material and the hydrolysis residue were analyzed for the enrichment of structural bottlenecks during the hydrolysis. Lignin was removed from these two materials with chlorite delignification method in order to eliminate the limitations caused by lignin. Avicel was used for comparison as a known model substrate. Mixtures of purified enzymes were used to investigate the hydrolysis of the individual carbohydrates: cellulose, glucomannan and xylan in the substrates. The results reveal that factors limiting the hydrolysis are mainly due to the lignin, and to a minor extent by the lack of accessory enzymes. Removal of lignin doubled the hydrolysis degree of the raw material and the residue, and reached close to 100% of the theoretical within 2 days. The presence of xylan seems to limit the hydrolysability, especially of the delignified substrates. The hydrolysis results also revealed significant hemicellulose impurities in the commonly used cellulose model substrate, making it questionable to use Avicel as a model cellulose substrate for hydrolysis experiments.  相似文献   

10.
Saccharomyces cerevisiae catalyses the asymmetric reductive biotransformation of a variety of compounds containing a carbonyl group or carbon-carbon double bond. Oxidoreductases participating in these reactions which have commercial potential in biotransformation processes are likely to have relatively broad substrate specificity. Important carbonyl reductases falling into this category include YADH- and yeast NADP-dependent beta-ketoester reductases. The enoyl reductase component of the FAS complex may have a role in asymmetric yeast reduction of carbon-carbon double bonds of unnatural substrates. Other nicotinamide-requiring oxidoreductases of yeast are also surveyed to rationalize observed biotransformations of whole yeast cells in terms of specific enzymes. Genetic and protein engineering may enable enzymes to be tailored to accept new substrates. A greater understanding of the enzymes and reactions involved will facilitate further optimization and exploitation of these catalytic systems in industrial processes.  相似文献   

11.
The phospholipase of Sclerotinia fungus was separated by the paperelectrophoresis method into three fractions, of which one component is phospholipase A and the others phospholipase B. These enzymes could be isolated also by the column chromatography using anion exchange resin Duolite A 2 and DEAE cellulose. The former and one of the latter enzymes were obtained in a crystalline form from its solution saturated with ammonium sulfate. The investigation of substrate specificities of these enzymes has shown that the two phospholipase B hydrolyze a commercial soybean lecithin, and one of them can also attack egg-yolk lecithin without addition of any activating lipides.  相似文献   

12.
A large and increasing volume of wastewater is produced globally by the winery and distillery industries. These wastewaters are generally acidic, high in chemical oxygen demand (COD) and color, and may contain phenolic compounds that can inhibit biological treatment systems. Treatment of distillery and phenolic compound–rich wastewaters by physicochemical, aerobic biological systems and hybrid treatment methods are discussed, as well as products derived from fungal treatment. White-rot fungi have been shown to exhibit unique biodegradation capabilities, primarily due to their production of extracellular and broad substrate range enzymes that are capable of mineralizing lignin, a recalcitrant biopolymer. One of these enzymes, laccase, catalyses the oxidation of various organic compounds with the subsequent reduction of molecular oxygen to water. Laccase synthesis, induction, and inhibition are discussed with the utilization of waste residues for laccase production and the enzyme's potential industrial applications. Distillery wastewaters offer a unique, presterilized, potential growth substrate for the production of lignolytic enzymes such as laccase. Compounds may be utilized for enzyme and biomass production resulting in remediation by the growing fungus.  相似文献   

13.
Enzyme-based antifouling coatings: a review   总被引:2,自引:0,他引:2  
A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF coating is not yet available commercially. The technology is mainly limited by the instability of substrate supply, whether the substrates are found in the surrounding seawater or in the coating itself. Legislative issues regarding which part(s) of an enzyme system should be regarded as biocidal for product registration purposes are also considered. The above question currently remains unanswered for technologies utilising indirect enzymatic AF.  相似文献   

14.
Abstract

A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF coating is not yet available commercially. The technology is mainly limited by the instability of substrate supply, whether the substrates are found in the surrounding seawater or in the coating itself. Legislative issues regarding which part(s) of an enzyme system should be regarded as biocidal for product registration purposes are also considered. The above question currently remains unanswered for technologies utilising indirect enzymatic AF.  相似文献   

15.
Microbial pectinase: sources, characterization and applications   总被引:2,自引:0,他引:2  
Today pectinases are upcoming industrially important bacterial enzymes. It can be produced by a variety of microorganisms. These enzymes act on pectin, which is the major component of middle lamella in plant cell wall. Pectinolytic enzymes are classified according to their mode of attack on the galacturonan part of the pectin molecules such as protopectinases, esterase’s and depolymerases. As we know that microbial enzymes work depends up on the type of enzymes application, temperature, concentration, and pH and so on, therefore, pectinase enzyme also differentiated according to their physical and chemical factors too. The biochemical structures of pectinases include members of all the major classes and the structure–function relationship, studies of a few available complexes of pectinases with substrate/analogs could be considered as prototypes for related family member and the molecular characterization of pectinolytic enzymes is also well documented. Furthermore, it provides a bird’s eye view of the possible application of these enzymes in commercial sector.  相似文献   

16.
Lignocellulose is a complex substrate which requires a variety of enzymes, acting in synergy, for its complete hydrolysis. These synergistic interactions between different enzymes have been investigated in order to design optimal combinations and ratios of enzymes for different lignocellulosic substrates that have been subjected to different pretreatments. This review examines the enzymes required to degrade various components of lignocellulose and the impact of pretreatments on the lignocellulose components and the enzymes required for degradation. Many factors affect the enzymes and the optimisation of the hydrolysis process, such as enzyme ratios, substrate loadings, enzyme loadings, inhibitors, adsorption and surfactants. Consideration is also given to the calculation of degrees of synergy and yield. A model is further proposed for the optimisation of enzyme combinations based on a selection of individual or commercial enzyme mixtures. The main area for further study is the effect of and interaction between different hemicellulases on complex substrates.  相似文献   

17.
Concomitant hydroxylation of proline and lysine residues in protocollagen was studied using purified enzymes. The data suggest that prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) and lysyl hydroxylase (peptidyllysine, 2-oxoglutarate; oxygen 5-oxidoreductase, EC 1.14.11.4) are competing for the protocollagen substrate, this competition resulting in an inhibition of the lysyl hydroxylase but not of the prolyl 4-hydroxylase reaction. When the same protocollagen was used for these hydroxylases, the affinity of prolyl 4-hydroxylase to the protocollagen substrate was about 2-fold higher than that of lysyl hydroxylase. Hydroxylation of lysine residues in protocollagen had no effect on the affinity of prolyl 4-hydroxylase, whereas hydroxylation of proline residues decreased the affinity of lysyl hydroxylase to one-half of the value determined before the hydroxylation. When enzyme preparations containing different ratios of lysyl hydroxylase activity to prolyl 4-hydroxylase activity were used to hydroxylase protocollagen substrate, it was found that in the case of a low ratio the hydroxylation of lysine residues seemed to proceed only after a short lag period. Accordingly, it seems probable that most proline residues are hydroxylated to 4-hydroxyproline residues before hydroxylation of lysine residues if the prolyl 4-hydroxylase and lysyl hydroxylase are present as free enzymes competing for the same protocollagen substrate.  相似文献   

18.
Substituted primary hydroxamic acids were found to inhibit the catalytic activity of a number of redox enzymes. The inhibition was not related to the nature of the metal-active site of the enzyme nor to the nature of the oxygen-containing substrate. Two easily available enzymes, mushroom tyrosinase (monophenol,dihydroyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) and horseradish peroxidase (donor:hydrogen-peroxide oxidoreductase, EC 1.11.1.7), which were potently inhibited by hydroxamic acids, were chosen for more detailed study. A kinetic analysis of the inhibitory effects on the partially purified tyrosinase of mushroom (Agaricus bispora) revealed that inhibition was reversible and competiitive with respect to reducing substrate concentration, but was not competitive with respect to molecular oxygen concentration. A spectrophotometric and EPR study of the binding of salicylhydroxamic acid to horseradish peroxidase revealed that his hydroxamic acid was bound to the enzyme in the same manner as a typical substrate, hydroquinone. Spectroscopic and thermodynamic measurements of the binding reactions suggested that this binding site is close, to but, not directly onto, the heme group of the enzyme. From these results it is concluded that the mode of inhibition of hydroxamic acid need not be, as generally supposed, by metal chelation, and mechanisms involving either hydrogen bonding at the reducing substrate binding site or the formation of a charge transfer complex between hydroxamic acid and an electron-accepting group in the enzyme are considered to be more feasible. The relevance of these findings to deductions on the nature of other hydroxamic acid-inhibitable systems is discussed.  相似文献   

19.
Reducing cellulase cost remains a major challenge for lignocellulose to fuel and chemical industries. In this study, mutants of a novel wild-type cellulolytic fungal strain Talaromyces pinophilus OPC4-1 were developed by consecutive UV irradiation, N-methyl-N`-nitro-N-nitrosoguanidine (NTG) and ethylmethane sulfonate (EMS) treatment. A potential mutant EMM was obtained and displayed enhanced cellulase production. Using Solka Floc cellulose as the substrate, through fed-batch fermentation, mutant strain T. pinophilus EMM generated crude enzymes with an FPase activity of 27.0 IU/mL and yield of 900 IU/g substrate. When corncob powder was used, strain EMM produced crude enzymes with an FPase activity of 7.3 IU/mL and yield of 243.3 IU/g substrate. In addition, EMM crude enzymes contained 29.2 and 16.3 IU/mL β-glucosidase on Solka Floc cellulose and corncob power, respectively. The crude enzymes consequently displayed strong biomass hydrolysis performance. For corncob hydrolysis, without supplement of any commercial enzymes, glucose yields of 591.7 and 548.6 mg/g biomass were obtained using enzymes produced from Solka Floc cellulose and corncob powder, respectively. It was 553.9 mg/g biomass using the commercial enzyme mixture of Celluclast 1.5 L and Novozyme 188. Strain T. pinophilus EMM was therefore a potential fungus for on-site enzyme production in biorefinery processes.  相似文献   

20.
Enzymes containing heme, non-heme iron and copper active sites play important roles in the activation of dioxygen for substrate oxidation. One key reaction step is CH bond cleavage through H-atom abstraction. On the basis of the ligand environment and the redox properties of the metal, these enzymes employ different methods of dioxygen activation. Heme enzymes are able to stabilize the very reactive iron(IV)-oxo porphyrin-radical intermediate. This is generally not accessible for non-heme iron systems, which can instead use low-spin ferric-hydroperoxo and iron(IV)-oxo species as reactive oxidants. Copper enzymes employ still a different strategy and achieve H-atom abstraction potentially through a superoxo intermediate. This review compares and contrasts the electronic structures and reactivities of these various oxygen intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号