首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in nanotechnology have seen the manufacture of engineered nanoparticles for many commercial and medical applications such as targeted drug delivery and gene therapy. Transport of nanoparticles is mainly attributed to the Brownian force which increases as the nanoparticle decreases to 1 nm. This paper first verifies a Lagrangian Brownian model found in the commercial computational fluid dynamics software Fluent before applying the model to the nasal cavity and the tracheobronchial (TB) airway tree with a focus on drug delivery. The average radial dispersion of the nanoparticles was 9x greater for the user-defined function model over the Fluent in-built model. Deposition in the nasal cavity was high for very small nanoparticles. The particle diameter range in which the deposition drops from 80 to 18% is between 1 and 10 nm. From 10 to 150 nm, however, there is only a small change in the deposition curve from 18 to 15%. A similar deposition curve profile was found for the TB airway.  相似文献   

2.

In this paper, the effect of the turbulence and swirling of the inlet flow and the diameter of the nozzle on the flow characteristics and the particles' transport/deposition patterns in a realistic combination of the nasal cavity (NC) and the maxillary sinus (MS) were examined. A computational fluid dynamics (CFD) model was developed in ANSYS® Fluent using a hybrid Reynolds averaged Navier–Stokes–large-eddy simulation algorithm. For the validation of the CFD model, the pressure distribution in the NC was compared with the experimental data available in the literature. An Eulerian–Lagrangian approach was employed for the prediction of the particle trajectories using a discrete phase model. Different inlet flow conditions were investigated, with turbulence intensities of 0.15 and 0.3, and swirl numbers of 0.6 and 0.9 applied to the inlet flow at a flow rate of 7 L/min. Monodispersed particles with a diameter of 5 µm were released into the nostril for various nozzle diameters. The results demonstrate that the nasal valve plays a key role in nasal resistance, which damps the turbulence and swirl intensities of the inlet flow. Moreover, it was found that the effect of turbulence at the inlet of the NC on drug delivery to the MS is negligible. It was also demonstrated that increasing the flow swirl at the inlet and decreasing the nozzle diameter improves the total particle deposition more than threefold due to the generation of the centrifugal force, which acts on the particles in the nostril and vestibule. The results also suggest that the drug delivery efficiency to the MS can be increased by using a swirling flow with a moderate swirl number of 0.6. It was found that decreasing the nozzle diameter can increase drug delivery to the proximity of the ostium in the middle meatus by more than 45%, which subsequently increases the drug delivery to the MS. The results can help engineers design a nebulizer to improve the efficiency of drug delivery to the maxillary sinuses.

  相似文献   

3.
The sense of smell is largely dependent on the airflow and odorant transport in the nasal cavity, which in turn depends on the anatomical structure of the nose. In order to evaluate the effect of airway dimension on rat nasal airflow patterns and odorant deposition patterns, we constructed two 3-dimensional, anatomically accurate models of the left nasal cavity of a Sprague-Dawley rat: one was based on high-resolution MRI images with relatively narrow airways and the other was based on artificially-widening airways of the MRI images by referencing the section images with relatively wide airways. Airflow and odorant transport, in the two models, were determined using the method of computational fluid dynamics with finite volume method. The results demonstrated that an increase of 34 µm in nasal airway dimension significantly decreased the average velocity in the whole nasal cavity by about 10% and in the olfactory region by about 12% and increased the volumetric flow into the olfactory region by about 3%. Odorant deposition was affected to a larger extent, especially in the olfactory region, where the maximum odorant deposition difference reached one order of magnitude. The results suggest that a more accurate nasal cavity model is necessary in order to more precisely study the olfactory function of the nose when using the rat.  相似文献   

4.
The transport and deposition of nanoparticles, i.e., dp = 1-2 nm, or equivalent vapors, in the human nasal cavities is of interest to engineers, scientists, air-pollution regulators, and healthcare officials alike. Tiny ultrafine particles, i.e., dp < or = 5 nm, are of special interest because they are most rapidly absorbed and hence have an elevated toxic or therapeutic impact when compared to larger particles. Assuming transient laminar 3-D incompressible flow in a representative human nasal cavity, the cyclic airflow pattern as well as local and overall nanoparticle depositions were computationally simulated and analyzed. The focus was on transient effects during inhalation/exhalation as compared to the steady-state assumption typically invoked. Then, an equation for a matching steady-state inhalation flow rate was developed that generates the same deposition results as cyclic inhalation. Of special interest is the olfactory region where the narrow channel surfaces receive only about one-half of a percent of the inhaled nanoparticles because the airflow bypasses these recesses located in the superior-most portions in the geometrically complex nasal cavities.  相似文献   

5.
Intranasal drug delivery has attracted significant attention because of the opportunity to deliver systemic drugs directly to the blood stream. However, the mucociliary clearance poses a challenge in gaining high efficacy of intranasal drug delivery because cilia continuously carry the mucus blanket towards the laryngeal region. To better understand mucus flow behaviour on the human nasal cavity wall, we present computational model development, and evaluation of mucus motion on a realistic nasal cavity model reconstructed from CT-scans. The model development involved two approaches based on the actual nasal cavity geometry namely: (i) unwrapped-surface model in 2D domain and (ii) 3D-shell model. Conservation equations of fluid motion were applied to the domains, where a mucus production source term was used to initiate the mucus motion. The analysis included mucus flow patterns, virtual saccharin tests and quantitative velocity magnitude analysis, which demonstrated that the 3D-shell model results provided better agreement with experimental data. The unwrapped-surface model also suffered from mesh-deformations during the unwrapping stage and this led to higher mucus velocity compared to experimental data. Therefore, the 3D-shell model was recommended for future mucus flow simulations. As a first step towards mucus motion modelling this study provides important information that accurately simulates a mucus velocity field on a human nasal cavity wall, for assessment of toxicology and efficacy of intranasal drug delivery.  相似文献   

6.
Many nasally applied compounds gain access to the brain and the central nervous system (CNS) with varying degree. Direct nose-to-brain access is believed to be achieved through nervous connections which travel from the CNS across the cribriform plate into the olfactory region of the nasal cavity. However, current delivery strategies are not targeted to preferentially deposit drugs to the olfactory at cribriform. Therefore, we have developed a pressurized olfactory delivery (POD) device which consistently and non-invasively deposited a majority of drug to the olfactory region of the nasal cavity in rats. Using both a hydrophobic drug, mannitol (log P = -3.1), and a hydrophobic drug, nelfinavir (log P = 6.0), and POD device, we compared brain and blood levels after nasal deposition primarily on the olfactory region with POD or nose drops which deposited primarily on the respiratory region in rats. POD administration of mannitol in rats provided a 3.6-fold (p < 0.05) increase in cortex-to-blood ratio, compared to respiratory epithelium deposition with nose drop. Administration of nelfinavir provided a 13.6-fold (p < 0.05) advantage in cortex-to-blood ratio with POD administration, compared to nose drops. These results suggest that increasing the fraction of drug deposited on the olfactory region of the nasal cavity will result in increased direct nose-to-brain transport.  相似文献   

7.
Burns in the airway from inhaling hot gases lead to one of the most common causes of death in the United States. In order to navigate tissues with large burn areas, the velocity, temperature, and heat flux distributions throughout the human airway system are computed for the inhalation of hot air using the finite-element method. From there, the depth of burned tissue is estimated for a range of exposure times. Additionally, the effectiveness of drug or stem cell delivery to the burned airway tissue is considered for a range of drug or cell sizes. Results showed that the highest temperature and lowest heat flux regions are observed near the pharynx and just upstream of the glottis. It was found that large particles such as stem cells (>20 μm) are effective for treatment of the upper airways, whereas small particles (<10 μm) such as drug nanoparticles are effective in the lower airways.  相似文献   

8.
A computational model for flow and particle deposition in a three-dimensional representation of the human nasal cavity is developed. Simulations of steady state and dynamic airflow during inhalation are performed at flow rates of 9–60 l/min. Depositions for particles of size 0.5–20 μm are determined and compared with experimental and simulation results from the literature in terms of deposition efficiencies. The nasal model is validated by comparison with experimental and simulation results from the literature for particle deposition under steady-state flow. The distribution of deposited particles in the nasal cavity is presented in terms of an axial deposition distribution as well as a bivariate axial deposition and particle size distribution. Simulations of dynamic airflow and particle deposition during an inhalation cycle are performed for different nasal cavity outlet pressure variations and different particle injections. The total particle deposition efficiency under dynamic flow is found to depend strongly on the dynamics of airflow as well as the type of particle injection.  相似文献   

9.
TArPP (Tyr-D-Arg-Phe-Phe-NH(2)), 1-10 micromol/kg, was administered to anesthetized rats by nasal microinfusion, intratracheal microinfusion, intratracheal nebulization, aerosol inhalation, and i.v. bolus and infusion. Plasma concentrations of TArPP and its deamidated metabolite were determined by LC-MS-MS.Regional differences in bioavailability (F), first-pass metabolism, and absorption rate were found for TArPP after delivery to the respiratory tract. Absorption was rapid after both pulmonary and nasal administration (t(max) approximately 10-20 min). After nasal microinfusion, F was 52 +/- 9%. For all the pulmonary groups, F was higher (72-114%). First-pass metabolism of TArPP was lower in the lung than in the nasal cavity. It is evident that the pulmonary route is attractive for successful systemic delivery of small, hydrophilic and enzymatic susceptible peptides.  相似文献   

10.
Nano-size particles show promise for pulmonary drug delivery, yet their behavior after deposition in the lung remains poorly understood. In this study, a series of near-infrared (NIR) fluorescent nanoparticles were systematically varied in chemical composition, shape, size and surface charge, and their biodistribution and elimination were quantified in rat models after lung instillation. We demonstrate that nanoparticles with hydrodynamic diameter (HD) less than ≈34 nm and a noncationic surface charge translocate rapidly from the lung to mediastinal lymph nodes. Nanoparticles of HD < 6 nm can traffic rapidly from the lungs to lymph nodes and the bloodstream, and then be subsequently cleared by the kidneys. We discuss the importance of these findings for drug delivery, air pollution and carcinogenesis.  相似文献   

11.
Aerosol delivery is noninvasive and is effective in much lower doses than required for oral administration. Currently, there are several types of therapeutic aerosol delivery systems, including the pressurized metered-dose inhaler, the dry powder inhaler, the medical nebulizer, the solution mist inhaler, and the nasal sprays. Both oral and nasal inhalation routes are used for the delivery of therapeutic aerosols. Following inhalation therapy, only a fraction of the dose reaches the expected target area. Knowledge of the amount of drug actually deposited is essential in designing the delivery system or devices to optimize the delivery efficiency to the targeted region of the respiratory tract. Aerosol deposition mechanisms in the human respiratory tract have been well studied. Prediction of pharmaceutical aerosol deposition using established lung deposition models has limited success primarily because they underestimated oropharyngeal deposition. Recent studies of oropharyngeal deposition of several drug delivery systems identify other factors associated with the delivery system that dominates the transport and deposition of the oropharyngeal region. Computational fluid dynamic simulation of the aerosol transport and deposition in the respiratory tract has provided important insight into these processes. Investigation of nasal spray deposition mechanisms is also discussed.  相似文献   

12.
Glyceryl monooleate (GMO)/poloxamer 407 cubic nanoparticles were investigated as potential oral drug delivery systems to enhance the bioavailability of the water-insoluble model drug simvastatin. The simvastatin-loaded cubic nanoparticles were prepared through fragmentation of the GMO/poloxamer 407 bulk cubic-phase gel using high-pressure homogenization. The internal structure of the cubic nanoparticles was identified by cryo-transmission electron microscopy. The mean diameter of the cubic nanoparticles varied within the range of 100–150 nm, and both GMO/poloxamer 407 ratio and theoretical drug loading had no significant effect on particle size and distribution. Almost complete entrapment with efficiency over 98% was achieved due to the high affinity of simvastatin to the hydrophobic regions of the cubic phase. Release of simvastatin from the cubic nanoparticles was limited both in 0.1 M hydrochloride solution containing 0.2% sodium lauryl sulfate and fasted-state simulated intestinal fluid with a total release of <3.0% at 10 h. Pharmacokinetic profiles in beagle dogs showed sustained plasma levels of simvastatin for cubic nanoparticles over 12 h. The relative oral bioavailability of simvastatin cubic nanoparticles calculated on the basis of area under the curve was 241% compared to simvastatin crystal powder. The enhancement of simvastatin bioavailability was possibly attributable to facilitated absorption by lipids in the formulation rather than improved release.  相似文献   

13.
The deposition of ultrafine aerosols in the respiratory tract presents a significant health risk due to the increased cellular-level response that these particles may invoke. However, the effects of geometric simplifications on local and regional nanoparticle depositions remain unknown for the oral airway and throughout the respiratory tract. The objective of this study is to assess the effects of geometric simplifications on diffusional transport and deposition characteristics of inhaled ultrafine aerosols in models of the extrathoracic oral airway. A realistic model of the oral airway with the nasopharynx (NP) included has been constructed based on computed tomography scans of a healthy adult in conjunction with measurements reported in the literature. Three other geometries with descending degrees of physical realism were then constructed with successive geometric simplifications of the realistic model. A validated low Reynolds number k-omega turbulence model was employed to simulate laminar, transitional, and fully turbulent flow regimes for the transport of 1-200 nm particles. Results of this study indicate that the geometric simplifications considered did not significantly affect the total deposition efficiency or maximum local deposition enhancement of nanoparticles. However, particle transport dynamics and the underlying flow characteristics such as separation, turbulence intensity, and secondary motions did show an observable sensitivity to the geometric complexity. The orientation of the upper trachea was shown to be a major factor determining local deposition downstream of the glottis and should be retained in future models of the respiratory tract. In contrast, retaining the NP produced negligible variations in airway dynamics and could be excluded for predominantly oral breathing conditions. Results of this study corroborate the use of existing diffusion correlations based on a circular oral airway model. In comparison to previous studies, an improved correlation for the deposition of nanoparticles was developed based on a wider range of particle sizes and flow rates, which captures the dependence of the Sherwood number on both Reynolds and Schmidt numbers.  相似文献   

14.
Aerosol delivery to the airways of the human respiratory tract, followed by absorption, constitutes an alternative route of administration for compounds unsuitable for delivery by conventional oral and parenteral routes. The target for aerosol drug delivery is the airways epithelium, i.e. tracheal, bronchial, bronchiolar and alveolar cells, which become the site of drug deposition. These epithelial layers also serve as a barrier to the penetration of inhaled material. An in vitro model for aerosol deposition and transport across epithelia in the human airways may be a good predictor of in vivo disposition. The present preliminary studies begin an investigation that blends the dynamics of aerosol delivery and the basis of an in vitro simulated lung model to evaluate the transport properties of a series of molecular weight marker compounds across human-derived bronchiolar epithelial cell monolayers. An Andersen viable cascade impactor was used as a delivery apparatus for the deposition of size-segregated particles onto monolayers of small airway epithelial cells and Calu-3 cells. It was shown that these cell layers can withstand placement in the impactor, and that permeability can be tested subsequent to removal from the impactor.  相似文献   

15.
This study presents an approach to deliver non invasive, near-IR imaging agent using oral delivery system. Low molecular weight heparin (LMWH)-deoxycholic acid (DOCA)/(LHD) nanoparticles formed by a self-assembly method was prepared to evaluate their physicochemical properties and oral absorption in vitro and in vivo. Near-IR QDs were prepared and loaded into LHD nanoparticles for imaging of the gastro-intestinal (GI) tract absorption. Q-LHD nanoparticles were almost spherical in shape with diameters of 194-217nm. The size and fluorescent intensity of the Q-LHD nanoparticles were stable in 10% FBS solution and retained their fluorescent even after 5 days of incubation. Cell viability of Q-LHD nanoparticles maintained in the range of 80-95% for 24h incubation. No damage was found in tissues or organs during animal experiments. The in vivo oral absorption of Q-LHD was observed in SKH1 mice for 3h under different doses. From the results, we confirmed that Q-LHD was absorbed mostly into the ileum of small intestine containing intestinal bile acid transporter as observed in TEM and molecular imaging system. Our designed nanoparticles could be administered orally for bio-imaging and studying the bio-distribution of drug.  相似文献   

16.
Particle deposition and transport in human airways isfrequently modeled numerically by the Lagrangian approach. Current formulations of such models always require some ad hoc assumptions, and they are computationally expensive. A new drift-flux model is developed and incorporated into a commercial finite volume code. Because it is Eulerian in nature, the model is able to simulate particle deposition patterns, distribution and transport both spatially and temporally. Brownian diffusion, gravitational settling, and electrostatic force are three major particle deposition mechanisms in human airways. The model is validated against analytical results for three deposition mechanisms in a straight tube prior to applying the method to a single bifurcation G3-G4. Two laminar flows with Reynolds numbers 500 and 2000 are simulated. Particle concentration contour deposition pattern, and enhancement factor are evaluated. To demonstrate how the diffusion and settling influence the deposition and transport along the bifurcation, particle sizes from 1 nm to 10 microm are studied. Different deposition mechanisms can be combined into the mass conversation equation. Combined deposition efficiency for the three mechanisms simultaneously was evaluated and compared with two commonly used empirical expressions.  相似文献   

17.
Considerable progress has been made on modeling particle deposition in the oral-tracheal airway under some normal breathing conditions,i.e.,resting,light activity and moderate exercise.None of these standard breathing patterns correspond to very low inhalation profiles.It is known that particle deposition in the oral-tracheal airway is greatly influenced by flow and particle inlet conditions.In this work,very low inhalation flow rates are considered.Particle deposition is numerically investigated in different oral-tracheal airway models,i.e.,circular,elliptic and realistic oral-tracheal airway models.Both micro- and nano-particles that are normally present in cigarette smoke are considered.Results show that inhalation profiles greatly influence the particle deposition.Due to relatively low flow rate,for ultra-fine particles,the oral deposition is enhanced due to longer residence time in oral cavity and stronger Brownian motion.However,for larger particles,less particles deposit in the oral-tracheal airway due to the weaker impaction.The transition happens when particle size changes from 0.01 μm to 0.1 μm.The influence of the limited entrance area is shown and discussed.Under the low inhalation profiles,the highest deposition fraction could be in either circular or realistic models depending on the particle property and the geometric characteristic of oral cavity.The knowledge obtained in this study may be beneficial for the design of bionic inhaler and understanding of health effect from smoke particle on human being.  相似文献   

18.
Protection by parenteral immunization with plasmid DNA vaccines against pulmonary tuberculosis (TB) is very modest. In this study, we have investigated the underlying mechanisms for the poor mucosal protective efficacy and the avenues and mechanisms to improve the efficacy of a single i.m. immunization with a monogenic plasmid DNA TB vaccine in a murine model. We show that i.m. DNA immunization fails to elicit accumulation of Ag-specific T cells in the airway lumen despite robust T cell responses in the spleen. Such systemically activated T cells cannot be rapidly mobilized into the airway lumen upon Mycobacterium tuberculosis exposure. However, airway deposition of low doses of soluble mycobacterial Ags in previously immunized mice effectively mobilizes the systemically activated T cells into the airway lumen. A fraction of such airway luminal T cells can persist in the airway lumen, undergo quick, robust expansion and activation and provide marked immune protection upon airway M. tuberculosis exposure. Airway mucosal deposition of soluble mycobacterial Ags was found to create a tissue microenvironment rich in proinflammatory molecules including chemokines and hence conducive to T cell recruitment. Thus, in vivo neutralization of MIP-1alpha or IFN-inducible protein-10 markedly inhibited the accumulation of Ag-specific T cells in the airway lumen. Our data suggest that immunoprotective efficacy on the mucosal surface by i.m. plasmid DNA immunization could be substantially improved by simple mucosal soluble Ag inoculation and restoration of mucosal luminal T cells. Our study holds implication for the future design of DNA vaccination strategies against intracellular infections.  相似文献   

19.
Amphiphilic core-shell nanoparticles have drawn considerable interest in biomedical applications. The precise control over their physicochemical parameters and the ability to attach various ligands within specific domains suggest shell cross-linked (SCK) nanoparticles may be used as multi-/polyvalent scaffolds for drug delivery. In this study, the biodistribution of four SCKs, differing in size, core composition, and surface PEGylation, was evaluated. To facilitate in-vivo tracking of the SCKs, the positron-emitting radionuclide copper-64 was used. By using biodistribution and microPET imaging approaches, we found that small diameter (18 nm) SCKs possessing a polystyrene core showed the most favorable biological behavior in terms of prolonged blood retention and low liver accumulation. The data demonstrated that both core composition, which influenced the SCK flexibility and shape adaptability, and hydrodynamic diameter of the nanoparticle play important roles in the respective biodistributions. Surface modification with poly(ethylene glycol) (PEG) had no noticeable effects on SCK behavior.  相似文献   

20.
Detailed flow patterns in the nasal cavity.   总被引:9,自引:0,他引:9  
The human nasal cavity filters and conditions inspired air while providing olfactory function. Detailed experimental study of nasal airflow patterns has been limited because of the complex geometry of the nasal cavity. In this work, particle image velocimetry was used to determine two-dimensional instantaneous velocity vector fields in parallel planes throughout a model of the nasal cavity that was subjected to a nonoscillatory flow rate of 125 ml/s. The model, which was fabricated from 26 computed tomography scans by using rapid prototyping techniques, is a scaled replica of a human right nasal cavity. The resulting vector plots show that the flow is laminar and regions of highest velocity are in the nasal valve and in the inferior airway. The relatively low flow in the olfactory region appears to protect the olfactory bulb from particulate pollutants. Low flows were also observed in the nasal meatuses, whose primary function has been the subject of debate. Comparison of sequentially recorded data suggests a steady flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号