共查询到20条相似文献,搜索用时 0 毫秒
1.
本文根据GenBank中报道的大肠埃希菌MG1655全基因组DNA序列中SOD的编码基因序列设计引物,PCR扩增大肠埃希菌锰超氧化物歧化酶(Mn-SOD)基因,并将其克隆入原核高效表达质粒载体pBV220中构建重组质粒pBV220-sod,并将其电转入乳酸乳球菌MG1363中获得了成功表达,为SOD发酵奶的研制奠定了基础。 相似文献
2.
Piacham T Isarankura-Na-Ayudhya C Nantasenamat C Yainoy S Ye L Bülow L Prachayasittikul V 《Biochemical and biophysical research communications》2006,341(4):925-930
Superoxide dismutase (SOD) activities of various metallobacitracin complexes were evaluated using the riboflavin-methionine-nitro blue tetrazolium assay. The radical scavenging activity of various metallobacitracin complexes was shown to be higher than those of the negative controls, e.g., free transition metal ions and metal-free bacitracin. The SOD activity of the complex was found to be in the order of Mn(II)>Cu(II)>Co(II)>Ni(II). Furthermore, the effect of bacitracin and their complexation to metals on various microorganisms was assessed by antibiotic susceptibility testing. Moreover, molecular modeling and quantum chemical calculation of the metallobacitracin complex was performed to evaluate the correlation of electrostatic charge of transition metal ions on the SOD activity. 相似文献
3.
Site-directed mutations R177A and R177K in the gene encoding manganese peroxidase isozyme 1 (mnp1) from Phanerochaete chrysosporium were generated. The mutant enzymes were expressed in P. chrysosporium during primary metabolic growth under the control of the glyceraldehyde-3-phosphate dehydrogenase gene promoter, purified to homogeneity, and characterized by spectroscopic and kinetic methods. The UV-vis spectra of the ferric and oxidized states and resonance Raman spectra of the ferric state were similar to those of the wild-type enzyme, indicating that the heme environment was not significantly affected by the mutations at Arg177. Apparent K(m) values for Mn(II) were approximately 20-fold greater for the R177A and R177K MnPs than for wild-type MnP. However, the apparent K(m) values for the substrates, H(2)O(2) and ferrocyanide, and the k(cat) values for Mn(II) and ferrocyanide oxidation were similar to those of the wild-type enzyme. The second-order rate constants for compound I (MnPI) reduction of the mutant MnPs by Mn(II) were approximately 10-fold lower than for wild-type MnP. In addition, the K(D) values calculated from the first-order plots of MnP compound II (MnPII) reduction by Mn(II) for the mutant enzymes were approximately 22-fold greater than for wild-type MnP. In contrast, the first-order rate constants for MnPII reduction by Mn(II) were similar for the mutant and wild-type MnPs. Furthermore, second-order rate constants for the wild-type and mutant enzymes for MnPI formation, for MnPI reduction by bromide, and for MnPI and MnPII reduction by ferrocyanide were not significantly changed. These results indicate that both the R177A and R177K mutations specifically affect the binding of Mn, whereas the rate of electron transfer from Mn(II) to the oxidized heme apparently is not affected. 相似文献
4.
A nucleoside N-deoxyribosyltransferase-homologous gene was detected by homological search in the genomic DNA of Lactococcus lactis subsp. lactis. The gene yejD is composed of 477 nucleotides encoding 159 amino acids with only 25% identity, which is low in comparison to the amino acid sequences of the N-deoxyribosyltransferases from other lactic acid bacteria, i.e. Lactobacillus leichmannii and Lactobacillus helveticus. The residues responsible for catalytic and substrate-binding sites in known enzymes are conserved at Gln49, Asp73, Asp93 (or Asp95), and Glu101, respectively. The recombinant YejD expressed in Escherichia coli shows a 2-deoxyribosyl transfer activity to and from both bases of purine and pyrimidine, showing that YejD should be categorized as a class II N-deoxyribosyltransferase. Interestingly, the base-exchange activity as well as the heat stability of YejD was enhanced by the presence of monovalent cations such as K(+), NH(4)(+), and Rb(+), indicating that the Lactococcus enzyme is a K(+)-activated Type II enzyme. However, divalent cations including Mg(2+) and Ca(2+) significantly inhibit the activity. Whether or not the yejD gene product actually participates in the nucleoside salvage pathway of Lc. lactis remains unclear, but the lactic acid bacterium possesses the gene coding for the nucleoside N-deoxyribosyltransferase activated by K(+) on its genome. 相似文献
5.
Nyyssölä A Pihlajaniemi A Palva A von Weymarn N Leisola M 《Journal of biotechnology》2005,118(1):55-66
The D-xylose reductase from Pichia stipitis CBS 5773 and the xylose transporter from Lactobacillus brevis ATCC 8287 were expressed in active form in Lactococcus lactis NZ9800. Xylitol production was investigated using non-growing recombinant cells in high cell-density under microaerobic conditions in the presence of xylose and glucose. Besides xylose, the recombinant strain with xylose reductase activity reduced l-arabinose and D-ribose in significant extent to the corresponding pentitols. The ratio of xylitol produced per glucose consumed was almost 10-fold higher under glucose limitation than the ratio in the presence of excess initial glucose. The co-expression of the xylose transporter with the xylose reductase did not increase the efficiency of xylitol production appreciably when compared to the strain in which only the xylose reductase gene was expressed. A fed-batch experiment with high initial xylose concentration (160 gl(-1)) under glucose limitation was carried out using the strain co-expressing xylose reductase and xylose transporter genes. The xylitol yield from xylose was 1.0 mol mol(-1) and the ratio of xylitol produced per glucose consumed was 2.5 mol mol(-1). The volumetric productivity was 2.72 gl(-1)h(-1) at 20 h. Of the xylose initially present, 34% was consumed. Analysis of the fermentation metabolites revealed a shift from homolactic to mixed acid fermentation at early stages of the experiment. 相似文献
6.
7.
Molecular characterization of the integration of the lactose plasmid from Lactococcus lactis subsp. cremoris SK11 into the chromosome of L. lactis subsp. lactis. 总被引:1,自引:0,他引:1
下载免费PDF全文

When Lactococcus lactis subsp. lactis LM0230 is transformed by the lactose plasmid (pSK11L) from Lactococcus lactis subsp. cremoris SK11, variants with pSK11L in the integrated state can be derived (J. M. Feirtag, J. P. Petzel, E. Pasalodos, K. A. Baldwin, and L. L. McKay, Appl. Environ. Microbiol. 57:539-548, 1991). In the present study, a 1.65-kb XbaI-XhoI fragment of pSK11L was subcloned for use as a probe in Southern hybridization analyses of the mechanism of integration, which was shown to proceed via a Campbell-like, single-crossover event. Furthermore, the presence of the XbaI-XhoI fragment in a nonreplicating vector facilitated the stable, Rec-dependent integration of the vector into the chromosome of L. lactis subsp. lactis LM0230 and other lactococci. DNA sequence analysis of the fragment revealed an open reading frame of 885 bp with lactococcal expression sequences. The putative gene did not have significant homology with other genes in computer data bases. The XbaI-XhoI fragment is a naturally occurring piece of lactococcal DNA that can be used as a recombinogenic cassette in the construction of integration vectors for the industrially important lactococci. 相似文献
8.
When Lactococcus lactis subsp. lactis LM0230 is transformed by the lactose plasmid (pSK11L) from Lactococcus lactis subsp. cremoris SK11, variants with pSK11L in the integrated state can be derived (J. M. Feirtag, J. P. Petzel, E. Pasalodos, K. A. Baldwin, and L. L. McKay, Appl. Environ. Microbiol. 57:539-548, 1991). In the present study, a 1.65-kb XbaI-XhoI fragment of pSK11L was subcloned for use as a probe in Southern hybridization analyses of the mechanism of integration, which was shown to proceed via a Campbell-like, single-crossover event. Furthermore, the presence of the XbaI-XhoI fragment in a nonreplicating vector facilitated the stable, Rec-dependent integration of the vector into the chromosome of L. lactis subsp. lactis LM0230 and other lactococci. DNA sequence analysis of the fragment revealed an open reading frame of 885 bp with lactococcal expression sequences. The putative gene did not have significant homology with other genes in computer data bases. The XbaI-XhoI fragment is a naturally occurring piece of lactococcal DNA that can be used as a recombinogenic cassette in the construction of integration vectors for the industrially important lactococci. 相似文献
9.
Two families of ATP phosphoribosyl transferases (ATP-PRT) join ATP and 5-phosphoribosyl-1 pyrophosphate (PRPP) in the first reaction of histidine biosynthesis. These consist of a homohexameric form found in all three kingdoms and a hetero-octameric form largely restricted to bacteria. Hetero-octameric ATP-PRTs consist of four HisGS catalytic subunits related to periplasmic binding proteins and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. To clarify the relationship between the two families of ATP-PRTs and among phosphoribosyltransferases in general, we determined the steady state kinetics for the hetero-octameric form and characterized the active site by mutagenesis. The KmPRPP (18.4 +/- 3.5 microM) and kcat (2.7 +/- 0.3 s-1) values for the PRPP substrate are similar to those of hexameric ATP-PRTs, but the Km for ATP (2.7 +/- 0.3 mM) is 4-fold higher, suggestive of tighter regulation by energy charge. Histidine and AMP were determined to be noncompetitive (Ki = 81.1 microM) and competitive (Ki = 1.44 mM) inhibitors, respectively, with values that approximate their intracellular concentrations. Mutagenesis experiments aimed at investigating the side chains recognizing PRPP showed that 5'-phosphate contacts (T159A and T162A) had the largest (25- and 155-fold, respectively) decreases in kcat/Km, while smaller decreases were seen with mutants making cross subunit contacts (K50A and K8A) to the pyrophosphate moiety or contacts to the 2'-OH group. Despite their markedly different quaternary structures, hexameric and hetero-octameric ATRP-PRTs exhibit similar functional parameters and employ mechanistic strategies reminiscent of the broader PRT superfamily. 相似文献
10.
Purification and Characterization of Cystathionine (gamma)-Lyase from Lactococcus lactis subsp. cremoris SK11: Possible Role in Flavor Compound Formation during Cheese Maturation
下载免费PDF全文

A cystathionine (gamma)-lyase (EC 4.4.1.1) ((gamma)-CTL) was purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris SK11 by a procedure including anion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration chromatography. The activity of SK11 (gamma)-CTL is pyridoxal-5(prm1)-phosphate dependent, and the enzyme catalyzes the (alpha),(gamma)-elimination reaction of L-cystathionine to produce L-cysteine, (alpha)-ketobutyrate, and ammonia. The native enzyme has a molecular mass of approximately 120 to 200 kDa and apparently consists of at least six identical subunits of 20 kDa. In this respect, the SK11 enzyme clearly differs from other bacterial cystathionine lyases, which are all tetrameric proteins with identical subunits of approximately 40 kDa. In addition, the specific activity of purified SK11 (gamma)-CTL toward L-cystathionine is relatively low compared with those reported for other bacterial cystathionine lyases. The SK11 enzyme shows a broad substrate specificity. In the case of L-methionine, the action of SK11 (gamma)-CTL results in the formation of methanethiol, a volatile sulfur compound known to be required in flavor development in cheddar cheese. The (alpha),(beta)-elimination reaction of L-cysteine is also efficiently catalyzed by the enzyme, resulting in the formation of hydrogen sulfide. Although the conditions are far from optimal, cystathionine (gamma)-lyase is still active under cheddar cheese-ripening conditions, namely, pH 5.0 to 5.4 and 5% (wt/vol) NaCl. The possible role of the enzyme in cheese flavor development is discussed. 相似文献
11.
构建重组乳酸乳球菌生产谷胱甘肽 总被引:5,自引:0,他引:5
以大肠杆菌染色体DNA为模板,分别扩增得到编码γ-谷氨酰半胱氨酸合成酶和谷胱甘肽合成酶的基因gsbA和gshB。将gsbA和gshB基因克隆到质粒pNZSl48中,电转化乳酸乳球菌NZ9000,获得重组菌NZ9000(pNZ3203)。在添加10mmol/L谷氨酸、半胱氨酸和甘氨酸的M17培养基中培养该重组茵,当OD600达到0、4时用乳酸链球菌素诱导4h,胞内谷胱甘肽含量达到358mmol/mg蛋白(胞内浓度相当于140mmol/L),这是在革兰氏阳性茵中生产谷胱甘肽的首例报道。 相似文献
12.
María J. Loera-Arias Julio Villatoro-Hernández Miguel A. Parga-Castillo Alejandro Salcido-Montenegro Oralia Barboza-Quintana Gerardo E. Muñoz-Maldonado Roberto Montes-de-Oca-Luna Odila Saucedo-Cárdenas 《Biotechnology letters》2014,36(12):2489-2494
Interleukin-22 (IL-22) participates in the modulation of innate immunity and inflammation. This cytokine has important therapeutic potential, such as with ulcerative colitis, liver and lung injury, and infection, in different animal models. We generated a Lactococcus lactis strain that secretes human IL-22 under the regulation of the nisin-inducible promoter. Identification and secretion of this cytokine was demonstrated using western blots of culture supernatants from IL-22-expressing bacteria. The recombinant IL-22 protein produced by L. lactis was biologically active as determined by its ability to induce IL-10 secretion when co-cultured with a colon epithelial cell line in vitro. We consider this novel strain a promising live vaccine for various therapeutic applications. 相似文献
13.
Ana R. Neves Wietske A. Pool Ana Solopova Jan Kok Helena Santos Oscar P. Kuipers 《Applied and environmental microbiology》2010,76(21):7048-7060
Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.Lactococcus lactis is a lactic acid bacterium widely used in the dairy industry for the production of fermented milk products. Because of its economic importance, L. lactis has been studied extensively in the last 40 years. A small genome, a large set of genetic tools, a wealth of physiological knowledge, and a relatively simple metabolic potential render L. lactis an attractive model with which to implement metabolic engineering strategies (reviewed in references 21 and 57).In the process of milk fermentation by L. lactis, lactose is taken up and concomitantly phosphorylated at the galactose moiety (C-6) by the lactose-specific phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTSLac), after which it is hydrolyzed to glucose and galactose 6-phosphate (Gal6P) (64). The glucose moiety enters the glycolytic pathway upon phosphorylation via glucokinase to glucose 6-phosphate (G6P), whereas Gal6P is metabolized to triose phosphates via the d-tagatose 6-phosphate (Tag6P) pathway, encompassing the steps catalyzed by galactose 6-phosphate isomerase (LacAB), Tag6P kinase (LacC), and tagatose 1,6-bisphosphate aldolase (LacD) (Fig. (Fig.1).1). Curiously, during the metabolism of lactose by L. lactis, part of the Gal6P is dephosphorylated and excreted into the growth medium, while the glucose moiety is readily used (2, 7, 51, 56, 60).Open in a separate windowFIG. 1.Schematic overview of the alternative routes for galactose uptake and further catabolism in L. lactis. Galactose can be imported by the non-PTS permease GalP and metabolized via the Leloir pathway (galMKTE) to α-G1P, which is converted to the glycolytic intermediate G6P by α-phosphoglucomutase (pgmH). Alternatively, galactose can be imported by PTSLac (lacFE) and further metabolized to triose phosphates by the Tag6P pathway (lacABCD). Here, we propose a new uptake route consisting of galactose translocation via the galactose PTS, followed by dephosphorylation of the internalized Gal6P to galactose, which is further metabolized via the Leloir pathway (highlighted in the gray box). galP, galactose permease; galM, galactose mutarotase; galK, galactokinase; galT, galactose 1-phosphate uridylyltransferase; galE, UDP-galactose-4-epimerase; pgmH, α-phosphoglucomutase; lacAB, galactose 6-phosphate isomerase; lacC, Tag6P kinase; lacD, tagatose 1,6-bisphosphate aldolase; lacFE, PTSLac; PTSGal, unidentified galactose PTS; Phosphatase; unidentified Gal6P-phosphatase; pgi, phosphoglucose isomerase; pfk, 6-phosphofructo-1-kinase; fba, fructose 1,6-bisphosphate aldolase; tpi, triose phosphate isomerase; α-Gal1P, α-galactose 1-phosphate; α-G1P, α-glucose 1-phosphate; UDP-gal, UDP-galactose; UDP-glc, UDP-glucose; G6P, glucose 6-phosphate; Gal6P, galactose 6-phosphate; Tag6P, tagatose 6-phosphate; TBP, tagatose 1,6-bisphosphate; FBP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde 3-phosphate. The dotted arrow represents the conversions of GAP to pyruvate via the glycolytic pathway. Steps essential to improve galactose consumption are shown in black boxes.As a result of incomplete lactose utilization, some fermented dairy products contain significant residual amounts of galactose. The presence of galactose has been associated with shoddier qualities of the fermented product (6, 27, 43). In particular, galactose is a major contributor to the browning that occurs when dairy products (e.g., yogurt and mozzarella, Swiss, and cheddar cheese) are cooked or heated in the manufacture of pizzas, sauce preparation, or processed cheese. In addition, availability of residual galactose may result in production of CO2 by heterofermentative starters and, consequently, in textural defects such as the development of slits and fractures in cheeses. Therefore, the availability of starter strains with improved galactose utilization capacity is desirable to develop higher-quality dairy products. Additionally, strains with increased galactose metabolism could provide galactose-free foods for individuals and, in particular, children suffering from the rare disease galactosemia (36). To this end, a comprehensive understanding of galactose catabolism is essential.Galactose metabolism in L. lactis was thoroughly studied in the past and has been and still is the subject of some controversy. Indeed, conflicting results regarding the type of PTS involved in galactose uptake have been published. Some authors advocated that galactose is exclusively transported via the plasmid-encoded PTSLac, whereas others proposed transport via a galactose-specific PTS (PTSGal) to the extreme of questioning the contribution of the PTSLac (17, 20, 50, 59). However, a gene encoding PTSGal has never been identified in L. lactis. Independently of the nature of the PTS, it is generally accepted that the resulting Gal6P is metabolized via the Tag6P pathway (lac operon) (Fig. (Fig.1).1). On the other hand, galactose translocated via the highly specific galactose permease (GalP) is metabolized via the Leloir pathway to α-glucose 1-phosphate (α-G1P) through the sequential action of galactose mutarotase (GalM), galactokinase (GalK), and galactose 1-phosphate uridylyltransferase (GalT)/UDP-galactose-4-epimerase (GalE) (gal operon). Entry in glycolysis is preceded by the α-phosphoglucomutase (α-PGM)-catalyzed isomerization of α-G1P to G6P. The use of the Leloir and/or the Tag6P pathway for galactose utilization is currently viewed as being strain dependent (9, 16, 25, 32, 33, 58), but the relative efficacy in the degradation of the sugar has not been established.The ultimate aim of this study was to engineer L. lactis for improved galactose-fermenting capacity as a means to minimize the galactose content in dairy products. To gain insight into galactose catabolism via the Leloir (gal genes) and the Tag6P (lac genes) pathways, a series of L. lactis subsp. cremoris NZ9000 isogenic gal and lac mutants were constructed. Carbon 13 labeling experiments coupled with nuclear magnetic resonance (NMR) spectroscopy were used to investigate galactose metabolism in the gal and lac strains. The data obtained revealed a novel route for galactose dissimilation and provided clues to further enhance galactose utilization. 相似文献
14.
Properties of the Cell Walls of Lactococcus lactis subsp. cremoris SK110 and SK112 and Their Relation to Bacteriophage Resistance 总被引:1,自引:5,他引:1
下载免费PDF全文

Resistance of Lactococcus lactis subsp. cremoris SK110 to bacteriophage sk11G, encoded on the plasmid pSK112, is due to poor phage adsorption. Its phage-sensitive variant SK112, cured of pSK112, adsorbs phages effectively. Incubation of SK112 with concanavalin A remarkably reduced phage adsorption to this strain. This treatment also caused agglutination of SK112 that was not found with SK110, indicating different concanavalin A adsorption characteristics of cell walls of both strains. The differences between the two strains were reduced by a mild alkali treatment of cells. This resulted in a positive agglutination with concanavalin A for both strains and in parallel adsorption of phage sk11G to both. Moreover, isolated cell walls of the two strains were investigated, and both bound phage sk11G. These observations suggest the presence of phage receptor material in SK112 as well as in SK110. SK110 contained a relatively high level of bound galactose when compared with the phage-sensitive SK112. After the mild alkali treatment, however, the galactose content of SK110 was diminished such that it became comparable with that of SK112. It is hypothesized that the alkali treatment liberates a galactose-containing component from the cell wall and causes phage sensitivity in L. lactis subsp. cremoris SK110. 相似文献
15.
W. Bockelmann V. Monnet A. Geis M. Teuber J. C. Gripon 《Applied microbiology and biotechnology》1989,31(3):278-282
Summary Cell wall-associated proteinases were isolated from Lactococcus lactis subsp. cremoris AC1 and subsp. lactis NCDO 763 in order to compare their specificities towards different caseins. Two purification strategies were applied. Cells grown in casein-free M17 medium were a suitable starting material for purification, since electrophoretic purity could be achieved after one chromatographic step. Both enzymes has an apparent molecular mass of about 145000 daltons as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Electrophoresis and reversed phase HPLC patterns of hydrolysates of s1-, s2-, -, and K-caseins indicated that both proteinases had a similar specificity. The enzyme of L. lactis subsp. lactis split s1- and s2-caseins more extensively than that of L. lactis subsp. cremoris. 相似文献
16.
Isolation and characterization of nisin-producing Lactococcus lactis subsp. lactis from bean-sprouts 总被引:5,自引:0,他引:5
Bacterial isolates from bean-sprouts were screened for anti- Listeria monocytogenes bacteriocins using a well diffusion method. Thirty-four of 72 isolates inhibited the growth of L.monocytogenes Scott A. One, HPB 1688, which had the biggest inhibition zone against L.monocytogenes Scott A, was selected for subsequent analysis. Both ribotyping and DNAsequencing of 16S ribosomal RNA gene demonstrated that the isolate was Lactococcus lactis subsp. lactis . Polymerase chain reaction and nucleotide sequencing revealed that thegenomic DNA of the bean-sprout isolates contained a nisin Z structural gene. In MRS broth,bean-sprout isolate HPB 1688 survived at 3–4·5°C for at least 20 d, grew at 4°Cand produced anti-listerial compoundsat 5°C. When co-cultured with L. monocytogenes in MRS broth, the isolate inhibited thegrowth of L. monocytogenes at 4°C after 14d and at 10°C after 2 d. When co-inoculatedwith 102 cells g−1 of L.monocytogenes on fresh-cut ready-to-eat Caesar salad, L. lactis subsp. lactis (108 cells g−1 ) was able to reduce the number of L. monocytogenes by 1–1·4 logs after storage for 10 d at 7° and 10°C. A bacteriocin-producing Enterococcusfaecium was also able to reduce the numbers of L. monocytogenes onCaesar salad, butdid not act synergistically when co-inoculated with L. lactis subsp. lactis . 相似文献
17.
V. Monnet W. Bockelmann J. C. Gripon M. Teuber 《Applied microbiology and biotechnology》1989,31(2):112-118
Summary The cell wall proteinases of Lactococcus lactis subsp. lactis NCDO 763 and L. lactis subsp. cremoris AC1 hydrolyse -casein with a similar specificity even though some quantitative differences can be observed for a few degradation products analysed by reverse phase HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The main peptides soluble in 1.1% trifluoroacetic acid and liberated by the two proteinases were identified and have been found to be the same for the two enzymes. They are located in two areas of the -casein sequence (53–93 and the C-terminal part: 129–209) and they include bitter tasting or physiologically active fragments. No narrow specificity was observed for these proteinases. However, glutamine and serine residues are more frequently encountered in position P1 and P1 of the sensitive peptide bond and the close environment (position P2 to P4 and P2 to P4) of the cleaved bond is mainly hydrophobic. 相似文献
18.
Characterization by partial 16S rRNA gene sequencing, ribotyping, and green fluorescent protein-based nisin bioassay revealed that 6 of 20 human milk samples contained nisin-producing Lactococcus lactis bacteria. This suggests that the history of humans consuming nisin is older than the tradition of consuming fermented milk products. 相似文献
19.
Loss of phage resistance encoded by plasmid pSK112 in chemostat cultures of Lactococcus lactis ssp. cremoris SK110 总被引:2,自引:0,他引:2
In cultures of L. lactis ssp. cremoris SK110, phage SK11G-resistant through the presence of pSK112, phage-sensitive variants segregated spontaneously that lacked the plasmid. In overnight batch culture these comprised up to 1% of the total population. Upon prolonged incubation in chemostat culture, a further loss of resistance was observed after a lag period. At high growth rates (0.7 h-1) this period amounted to approximately 35 generations, whereas cultures grown at rates of 0.4 and 0.1 h-1 remained resistant for 55 and 70 generations, respectively. At average-to-high growth rate, characteristics of the partially mixed populations that evolved were comparable to those of pure cultures of L. lactis ssp. cremoris SK110. However, in the culture fluid of the mixed populations that occurred at growth rate 0.1 h-1, higher acetate and formate concentrations were found than in the fluid of pure cultures of L. lactis ssp. cremoris SK110. This indicated that the former metabolized lactose more efficiently. Competition experiments between the resistant strain and a cured, sensitive derivative, L. lactis ssp. cremoris SK112, gave stable mixed populations. It is concluded that at average-to-high growth rates, loss of resistance from cultures of L. lactis ssp. cremoris SK110 had occurred due to instability of the plasmid and not to a competitive disadvantage of the resistant strain towards emerging sensitive variants. 相似文献
20.
Lactococcus lactis release from calcium alginate beads. 总被引:1,自引:0,他引:1
C P Champagne C Gaudy D Poncelet R J Neufeld 《Applied and environmental microbiology》1992,58(5):1429-1434
Cell release during milk fermentation by Lactococcus lactis immobilized in calcium alginate beads was examined. Numbers of free cells in the milk gradually increased from 1 x 10(6) to 3 x 10(7) CFU/ml upon successive reutilization of the beads. Rinsing the beads between fermentations did not influence the numbers of free cells in the milk. Cell release was not affected by initial cell density within the beads or by alginate concentration, although higher acidification rates were achieved with increased cell loading. Coating alginate beads with poly-L-lysine (PLL) did not significantly reduce the release of cells during five consecutive fermentations. A double coating of PLL and alginate reduced cell release by a factor of approximately 50. However, acidification of milk with beads having the PLL-alginate coating was slower than that with uncoated beads. Immersing the beads in ethanol to kill cells on the periphery reduced cell release, but acidification activity was maintained. Dipping the beads in aluminum nitrate or a hot CaCl2 solution was not as effective as dipping them in ethanol. Ethanol treatment or heating of the beads appears to be a promising method for maintaining acidification activity while minimizing viable cell release due to loosely entrapped cells near the surface of the alginate beads. 相似文献