首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to investigate the production of extracellular polymeric substances (EPS) by Aeromonas hydrophila grown under anaerobic conditions. EPS composition was studied for planktonic cells, cells attached to carbon fibre supports using a soluble ferric iron source and cells grown with a solid ferric iron mineral (gossan). Conventional spectrophotometric methods, Fourier transform infrared (FTIR) and confocal laser scanning microscopy (CLSM) were used to determine the main components in the biofilm extracted from the cultures. The key EPS components were proteins, indicating their importance for electron transfer reactions. Carbohydrates were observed mostly on the mineral and contained terminal mannosyl and/or terminal glucose, fucose and N-acetylgalactosamine residues.  相似文献   

2.
Exopolymeric substances (EPS) isolated from a pure culture of the marine bacterium Marinobacter sp. and the marine diatom Skeletonema costatum (axenic) were partially purified, chemically characterized and used as dissolved organic matter (DOM) for the production of macroaggregates. The role of organic particles such as transparent exopolymeric particles (TEP) and Coomassie stained particles (CSP) in the production of macroaggregates was experimentally assessed. Three experimental rolling tanks containing sterile medium with: (1) EPS, (2) EPS + live diatom cells and (3) EPS + killed bacteria, and three control tanks without any added EPS were used for macroaggregate production. Changes in abundance and average size of macroaggregates were monitored using image analysis, whereas TEP and CSP were enumerated microscopically. In the presence of microbial EPS, macroaggregates of a size of 23-35 mm(2) were produced. Aggregate size and abundance considerably varied with both time and source of EPS. No correlation was observed for macroaggregate size and abundance with either TEP or CSP. One-way ANOVA demonstrated significant differences in the variance of particle abundance and size in tanks having only EPS or EPS in combination with live diatom cells. Our data suggest that production of macroaggregates was influenced by polymer chemistry and surface properties of colliding particles, whereas TEP and CSP concentrations were influenced by molecular weight of EPS and the presence of growing cells. Interestingly, macroaggregates were formed in the near absence of TEP and CSP, highlighting the role of other unknown processes in the transformation of DOM to particulate organic matter (POM) in aquatic environments.  相似文献   

3.
The present study deals with the sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges or pure bacterial strains. The percentage of sorbed metal increases with the concentration of the EPS–water solution. Pb(II) always presents a higher affinity than Cd(II) for EPS. For the EPS extracted from pure bacterial strains, only one global binding constant from a simple equilibrium sorption model, may be used to assess the effect of microbial products such as EPS on Cd(II) and Pb(II) speciation or mobility in the environment. However, for EPS extracted from activated sludges, the wide variation of the global binding constants determined for Cd(II) and Pb(II) do not permit such a simple approach. The differences in sorption to metals between the two types of EPS (bacterial, activated sludges) could be explained by the differences in EPS composition: organic macromolecules, as well as the nature of the mineral fraction.  相似文献   

4.
This article reports studies on a continuous pulsed plate bioreactor (PPBR) with the cells of Pseudomonas desmolyticum (NCIM2112) immobilized on granular activated carbon (GAC) used as a biofilm reactor for biodegradation of phenol. Almost complete removal of 200 ppm phenol could be achieved in this bioreactor. Biofilm structure and characteristics are influenced by hydrodynamic and shear conditions in bioreactors. In this article, the effect of shear stress induced by frequency of pulsation on biofilm characteristics during the startup period in the PPBR is reported. The startup time decreased with the increase in frequency of pulsation. The formation of biofilm in PPBR was found to have three phases: accumulation, compaction, and plateau. The effect of frequency on production of exoploymeric substances (EPS) such as, protein, carbohydrate, and humic substance is reported. An increase in shear stress induced by the frequency of pulsation increased the production of exopolymeric substances in the biofilm during startup of the bioreactor. Increase in shear stress caused a decrease in biofilm thickness and an increase in dry density of the biofilm. Increase in shear stress resulted in a smoother and thinner biofilm surface with more compact and dense structure.  相似文献   

5.
6.
This work characterises the mineral fraction of EPS extracts obtained using eight different methods from two activated sludges by total mineral content determination, Fourier Transformed Infrared spectrometry and with scanning electron microscopy coupled with an EDX probe. Despite EPS dialysis, the EPS extracts displayed a mineral fraction between 2% and 40% of the EPS dry weight depending on the extraction method used. The main mineral elements found in the EPS extract were Ca, Mg, Na, K, Al, Fe, Mn, P, Si and S, but their contents were strongly affected by the extraction method used. Some of the minerals are associated with the organic molecules within the EPS. The presence of mineral particles of various compositions and structures (clays, quartz or carbonate) in the EPS extract with a wide range in size was clearly demonstrated. Moreover, the association of metallic elements with the mineral particles in the EPS extract was highlighted.  相似文献   

7.
The properties and microbial turnover of exopolymeric substances (EPS) were measured in a hypersaline nonlithifying microbial mat (Eleuthera, Bahamas) to investigate their potential role in calcium carbonate (CaCO3) precipitation. Depth profiles of EPS abundance and enzyme activities indicated that c . 80% of the EPS were turned over in the upper 15–20 mm. Oxic and anoxic mat homogenates amended with low-molecular-weight (LMW) organic carbon, sugar monomers, and different types of EPS revealed rapid consumption of all substrates. When comparing the consumption of EPS with that of other substrates, only marginally longer lag times and lower rates were observed. EPS (5–8%) were readily consumed during the conversion of labile to refractory EPS. This coincided with a decrease in glucosidase activity and a decrease in the number of acidic functional groups on the EPS. Approximately half of the calcium bound to the EPS remained after 10 dialyses steps. This tightly bound calcium was readily available to precipitate as CaCO3. We present a conceptual model in which LMW organic carbon complexed with the tightly bound calcium is released upon enzyme activity. This increases alkalinity and creates binding sites for carbonate and allows CaCO3 to precipitate. Therefore, this model explains interactions between EPS and CaCO3 precipitation, and underscores the critical role of aerobic and anaerobic microorganisms in early diagenesis and lithification processes.  相似文献   

8.
Extraction of extracellular polymeric substances (EPS) of sludges   总被引:54,自引:0,他引:54  
The efficacies of extracting extracellular polymeric substances (EPS) from aerobic, acidogenic and methanogenic sludges using EDTA, cation exchange resin and formaldehyde under various conditions were compared. Results show that formaldehye plus NaOH was most effective in extracting EPS for all sludges; only 1.1-1.2% of DNA in the sludge samples were detected, suggesting the EPS extracted were not contaminated by intracellular substances. For each gram of volatile solids, formaldehyde-NaOH extracted 165, 179 and 102 mg of EPS from aerobic, acidogenic and methanogenic sludges, respectively. All EPS were mainly composed of carbohydrate, protein and humic substance, plus small quantities of uronic acid and DNA. Carbohydrate was predominant in the acidogenic sludge (62% in the EPS extracted by formaldehyde-NaOH), whereas protein was predominant in the methanogenic sludge (41%). Humic substance, which has often been overlooked, accounted for 30.6, 8.4 and 22.8% of the extracted EPS from aerobic, acidogenic and methanogenic sludges, respectively. However, judging from EPS quantities estimated from confocal laser scanning microscopic observations, formaldehyde-NaOH extracted only a limited portion of EPS. Optimization of extraction procedures and/or development of a more effective extraction method are warranted.  相似文献   

9.
Different chemical extractants (NaCl, EDTA, HCl and NaOH) and physical methods (ultrasonication and heating) were examined by their efficacies of extracting “attached” exopolymeric substances (EPS) secreted by marine bacterium Sagittula stellata (SS) and terrestrial bacterium Pseudomonas fluorescens Biovar II (PF). Extraction by 0.5 N HCl for 3 h was best for SS while extraction by 0.05 N NaCl for 3–5 h was regarded as optimal for PF. Improvements in EPS purification included a pre-diafiltration step to remove the broth material and reduce the solution volume, thus the usage of ethanol, and time. The EPS harvested at the optimal time and purified by the improved method were enriched in polysaccharides, with smaller amounts of proteins, thus having amphiphilic properties. Isoelectric focusing of 234Th or 240Pu labeled EPS showed both actinides were strongly bound to macromolecules with low pI, similar to reported marine or soil colloidal natural organic matter (NOM).  相似文献   

10.
Extracellular polymeric substances (EPS) were removed by mechanical (high-speed centrifugation) and chemical (EDTA treatment) methods. The number of attached microorganisms decreased from 33.0 2 107 CFU/cm2 to 17.5 2 107 CFU/cm2 and 12.5 2 107 CFU/cm2, respectively. When the activated sludge was treated with polysaccharide-oxidizing agent (sodium meta periodate) and protease (pronase E), the number of attached microorganisms decreased to 41% and 43.5%, respectively. Transmission electron microphotographs showed that polysaccharide-oxidizing agent and protease treatment caused the removal of filamentous extracellular structures.  相似文献   

11.
The unique properties of engineered nanoparticles (ENs) that make their industrial applications so attractive simultaneously raise questions regarding their environmental safety. ENs exhibit behaviors different from bulk materials with identical chemical compositions. Though the nanotoxicity of ENs has been studied intensively, their unintended environmental impacts remain largely unknown. Herein we report experimental results of EN interactions with exopolymeric substances (EPS) from three marine phytoplankton species: Amphora sp., Ankistrodesmus angustus and Phaeodactylum tricornutum. EPS are polysaccharide-rich anionic colloid polymers released by various microorganisms that can assemble into microgels, possibly by means of hydrophobic and ionic mechanisms. Polystyrene nanoparticles (23 nm) were used in our study as model ENs. The effects of ENs on EPS assembly were monitored with dynamic laser scattering (DLS). We found that ENs can induce significant acceleration in Amphora sp. EPS assembly; after 72 hours EN-EPS aggregation reached equilibrium, forming microscopic gels of ~4-6 μm in size. In contrast, ENs only cause moderate assembly kinetic acceleration for A. angustus and P. tricornutum EPS samples. Our results indicate that the effects of ENs on EPS assembly kinetics mainly depend on the hydrophobic interactions of ENs with EPS polymers. The cycling mechanism of EPS is complex. Nonetheless, the change of EPS assembly kinetics induced by ENs can be considered as one potential disturbance to the marine carbon cycle.  相似文献   

12.
《Process Biochemistry》2010,45(3):297-305
Pure glycerol and glycerol-rich product (GRP) obtained from the biodiesel industries were used as carbon source for the production of a new extracellular polysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682. The influence of temperature (20–40 °C) and pH (6.0–8.0) was studied. A temperature of 30 °C and pH control at 6.8 gave the maximum cell growth and EPS production. The culture attained a maximum cell dry weight (CDW) of 9.55 g l−1 and an EPS concentration of 11.82 g l−1 when cultivated with pure glycerol. GRP was a suitable carbon source, as shown by the slightly higher EPS concentration (12.18 g l−1). The EPS productivity obtained with GRP (3.85 g l−1 d−1) was almost twice that obtained with pure glycerol (2.00 g l−1 d−1). Also, the yield on glycerol was higher for the cultivation with GRP (0.36 g g−1) than for pure glycerol (0.28 g g−1). The EPS was a high molecular weight heteropolysaccharide, composed by neutral sugars (37–80 wt% galactose, 2–30 wt% glucose, 0.5–25 wt% mannose and 0.5–20 wt% rhamnose) and containing acyl group substituents (pyruvil, acetyl and succinyl were identified). The EPS forms highly viscous aqueous dispersions with many potential commercial applications.  相似文献   

13.
Laboratory experiments were carried out on activated sludge (AS) to investigate the correlations between the content of extracellular polymeric substances (EPS) and the performance of biosolids–water separation, including sludge flocculation, sedimentation, compression, and dewatering, under non-steady-state conditions. On three stabilized AS reactors changes were made in sludge retention time (SRT), substrate composition, and loading rate, respectively, to bring about unstable operation to the reactors. A two-step heating method was used to extract from the sludge the easily extractable EPS, or loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS), respectively. The experimental results demonstrate dynamic changes in sludge characteristic and EPS production under the non-steady-state conditions. During the early phase of transition after a change was imposed, the sludge became generally worse in flocculation, compressibility, and dewaterability. With the acclimatization of the biomass to the new process conditions, biosolids–water separation showed a general trend of improvement. Changes in AS process condition also resulted in considerable variations in EPS production. The change of the LB-EPS content appeared to be more significant than that of the TB-EPS. Throughout the non-steady-state operation, the sludge flocculating behavior, settleability, compressibility, and dewaterability had a positive correlation with the LB-EPS content; however, no correlation could be found between these properties and the TB-EPS content. The results suggest that although EPS is essential to biofloc formation, excessive EPS in the form of LB-EPS would weaken cell attachment and deteriorate the AS floc structure, resulting in poor biosolids–water separation.  相似文献   

14.
In Pb2+ accumulation by Aureobasidium pullulans, the time to reach an equilibrium state was not dependent on the initial cell dry weight. The Pb2+ accumulation capacity was increased from 56.9 to 215.6 mg Pb2+/g cell dry weight as the biomass was stored from 1 to 53 days, and correlated with the amount of excreted extracellular polymeric substances (EPS). It was observed that Pb2+ accumulated only on the surface of the intact cells of A. pullulans due to the existence of EPS, whereas Pb2+ penetrated into the inner cellular parts of the EPS-extracted cells.  相似文献   

15.
Li  Ningjie  Zhang  Xuehong  Wang  Dunqiu  Cheng  Yan  Wu  Lei  Fu  Linbo 《Bioprocess and biosystems engineering》2017,40(10):1447-1452
Bioprocess and Biosystems Engineering - White rot fungi have been extensively reported to have strong adsorption capacity to heavy metal ions, whereas the knowledge of extracellular polymeric...  相似文献   

16.
The extracellular polymeric substances (EPS) extracted from three granular and one flocculant anaerobic sludges were characterised by size exclusion chromatography (SEC) using two serially linked chromatographic columns in order to obtain more detailed chromatograms. A Superdex peptide 10/300 GL (0.1–7 kDa) and Superdex 20010/300GL (10–600 kDa) from Amersham Biosciences were used in series with a mobile phase at pH 7 with an ionic strength of 0.223 M (phosphate buffer 50 mM and NaCl 150 mM). A part of the EPS molecules displays hydrophobic and/or ionic interactions with the column packing. Interactions could be modified by changing the mobile phase ionic strength or polarity (addition of acetonitrile). The detection wavelength (210 or 280 nm) affects strongly the EPS chromatogram. For a sludge originating from the same type of biofilms (i.e., anaerobic granules), the differences in EPS fingerprints are mainly due to differences in the absorbance of the chromatographic peaks, linked to EPS molecules content and composition. The EPS fingerprint changes significantly when the EPS originate from another type of anaerobic sludges. In addition, EPS fingerprints were affected by the extraction method used (centrifugation only; heat and centrifugation or cationic exchange resin and centrifugation). This phenomenon was observed mainly for the largest and smallest molecules and molecules which display interactions with column packing.  相似文献   

17.
Extracellular polymeric substances (EPS) of biological origin are ubiquitous in excess sludges and can be applied as an underlying bioflocculant, owing to their high content of macromolecules and cations. However, low flocculating activity limits the feasibility of their practical applications. This study provides a novel EPS fractionation approach to improve their flocculability by extracting an active EPS fraction and removing the others with low flocculability. The results showed that for two excess sludges (called sludge A and sludge B), the tightly bound EPS (TB-EPS) fraction possessed a high flocculating rate to kaolin suspension compared with the other EPS fractions [i.e., supernatant, slime, and loosely bound EPS (LB-EPS) fraction] (>54.1 ± 1.4% vs <7.8 ± 1.6%). High bioflocculability of TB-EPS fraction could be attributable to high contents of macromolecules (330–1200 kDa) and trivalent cations (Fe3+ and Al3+). Further investigation reveals that the TB-EPS fraction caused aggregation of particles by bridging and sweep flocculation.  相似文献   

18.
The efficiency of eight extracellular polymeric substances (EPS) extraction methods was compared on two different activated sludges. Three chemical methods (EDTA, formaldehyde + NaOH, glutaraldehyde), four physical methods (sonication, cation exchange resin, sonication + cation exchange resin, heating) and a control method (centrifugation alone) were tested.EPS quantities extracted were more greater for chemical methods than those for physical methods. For the chemical methods used EPS contamination due to extracting reagents was pointed out by infra-red analysis. The EPS extracted by physical methods can show a different qualitative composition with protein and carbohydrate as predominant compounds. This study therefore underlines that the choice of EPS extraction method should not only be limited to extraction yield and nucleic acid content but should also consider that the EPS solution may be contaminated by extracting reagents and/or be greatly modified by the extraction protocol.  相似文献   

19.
Enterococcus faecalis strain OG1RF and its (p)ppGpp-deficient ΔrelA, ΔrelQ, and ΔrelA ΔrelQ mutants were grown in biofilms and evaluated for growth profiles, biofilm morphology, cell viability, and proteolytic activity. E. faecalis lacking (p)ppGpp had a diminished capacity to sustain biofilm formation over an extended period of time and expressed abundant proteolytic activity.  相似文献   

20.
A review concerning the definition, extraction, characterization, production and functions of extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment reactors is given in this paper. EPS are a complex high-molecular-weight mixture of polymers excreted by microorganisms, produced from cell lysis and adsorbed organic matter from wastewater. They are a major component in microbial aggregates for keeping them together in a three-dimensional matrix. Their characteristics (e.g., adsorption abilities, biodegradability and hydrophilicity/hydrophobicity) and the contents of the main components (e.g., carbohydrates, proteins, humic substances and nucleic acids) in EPS are found to crucially affect the properties of microbial aggregates, such as mass transfer, surface characteristics, adsorption ability, stability, the formation of microbial aggregates etc. However, as EPS are very complex, the knowledge regarding EPS is far from complete and much work is still required to fully understand their precise roles in the biological treatment process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号