首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization   总被引:1,自引:0,他引:1  
There are about 100 single point mutations of copper, zinc superoxide dismutase 1 (SOD1) which are reported (http://alsod.iop.kcl.ac.uk/Als/index.aspx) to be related to the familial form (fALS) of amyotrophic lateral sclerosis (ALS). These mutations are spread all over the protein. It is well documented that fALS produces protein aggregates in the motor neurons of fALS patients, which have been found to be associated to mitochondria. We selected eleven SOD1 mutants, most of them reported as pathological, and characterized them investigating their propensity to aggregation using different techniques, from circular dichroism spectra to ThT-binding fluorescence, size-exclusion chromatography and light scattering spectroscopy. We show here that these eleven SOD1 mutants, only when they are in the metal-free form, undergo the same general mechanism of oligomerization as found for the WT metal-free protein. The rates of oligomerization are different but eventually they give rise to the same type of soluble oligomeric species. These oligomers are formed through oxidation of the two free cysteines of SOD1 (6 and 111) and stabilized by hydrogen bonds, between beta strands, thus forming amyloid-like structures. SOD1 enters the mitochondria as demetallated and mitochondria are loci where oxidative stress may easily occur. The soluble oligomeric species, formed by the apo form of both WT SOD1 and its mutants through an oxidative process, might represent the precursor toxic species, whose existence would also suggest a common mechanism for ALS and fALS. The mechanism here proposed for SOD1 mutant oligomerization is absolutely general and it provides a common unique picture for the behaviors of the many SOD1 mutants, of different nature and distributed all over the protein.  相似文献   

2.
Mutations in the Cu,Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (ALS) through an unknown gain-of-function mechanism. Mutant SOD1 aggregation may be the toxic property. In fact, proteinaceous inclusions rich in mutant SOD1 have been found in tissues from the familial form of ALS patients and in mutant SOD1 animals, before disease onset. However, very little is known of the constituents and mechanism of formation of aggregates in ALS. We and others have shown that there is a progressive accumulation of detergent-insoluble mutant SOD1 in the spinal cord of G93A SOD1 mice. To investigate the mechanism of SOD1 aggregation, we characterized by proteome technologies SOD1 isoforms in a Triton X-100-insoluble fraction of spinal cord from G93A SOD1 mice at different stages of the disease. This showed that at symptomatic stages of the disease, part of the insoluble SOD1 is unambiguously mono- and oligoubiquitinated, in spinal cord and not in hippocampus, and that ubiquitin branches at Lys(48), the major signal for proteasome degradation. At presymptomatic stages of the disease, only insoluble unmodified SOD1 is recovered. Partial ubiquitination of SOD1-rich inclusions was also confirmed by immunohistochemical and electron microscopy analysis of lumbar spinal cord sections from symptomatic G93A SOD1 mice. On the basis of these results, we propose that ubiquitination occurs only after SOD1 aggregation and that oligoubiquitination may underline alternative mechanisms in disease pathogenesis.  相似文献   

3.
Abstract

Formation of Cu, Zn superoxide dismutase 1 (SOD1) protein inclusions within motor neurons is one of the principal characteristics of SOD1-related amyotrophic lateral sclerosis (ALS). A hypothesis as to the nature of SOD1 aggregation implicates oxidative damage to a solvent-exposed tryptophan as causative. Here, we chart the discovery of a phenanthridinone based compound (Lig9) from the NCI Diversity Set III by rational methods by in silico screening and crystallographic validation. The crystal structure of the complex with SOD1, refined to 2.5 Å, revealed that Lig9 binds the SOD1 β-barrel in the β-strand 2 and 3 region which is known to scaffold SOD1 fibrillation. The phenanthridinone moiety makes a substantial π–π interaction with Trp32 of SOD1. The compound possesses a significant binding affinity for SOD1 and inhibits oxidation of Trp32; a critical residue for SOD1 aggregation. Thus, Lig9 is a good candidate from which to develop a new library of SOD1 aggregation inhibitors through protection of Trp32 oxidation.

Communicated by Ramaswamy H. Sarma  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons. We tested the hypothesis that proteomic analysis will identify protein biomarkers that provide insight into disease pathogenesis and are diagnostically useful. To identify ALS specific biomarkers, we compared the proteomic profile of cerebrospinal fluid (CSF) from ALS and control subjects using surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS). We identified 30 mass ion peaks with statistically significant (p < 0.01) differences between control and ALS subjects. Initial analysis with a rule-learning algorithm yielded biomarker panels with diagnostic predictive value as subsequently assessed using an independent set of coded test subjects. Three biomarkers were identified that are either decreased (transthyretin, cystatin C) or increased (carboxy-terminal fragment of neuroendocrine protein 7B2) in ALS CSF. We validated the SELDI-TOF-MS results for transthyretin and cystatin C by immunoblot and immunohistochemistry using commercially available antibodies. These findings identify a panel of CSF protein biomarkers for ALS.  相似文献   

5.
Inherited neurodegenerative diseases, such as Huntington disease and subset of Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis, are caused by the mutant genes that have gained undefined properties that harm cells in the nervous system, causing neurodegeneration and clinical phenotypes. Lowering the mutant gene expression is predicted to slow the disease progression and produce clinical benefit. Administration of small interfering RNA (siRNA) can silence specific genes. However, long term delivery of siRNA to silence the mutant genes, a requirement for treatment of these chronic central nervous system (CNS) diseases, remains a critical unsolved issue. Here we designed and tested a chemically stabilized siRNA against human Cu,Zn-superoxide dismutase (SOD1) in a mouse model for amyotrophic lateral sclerosis. We show that the modified siRNA has enhanced stability and retains siRNA activity. Administration of this siRNA at the disease onset by long term infusion into the CNS resulted in widespread distribution of this siRNA, knocked down the mutant SOD1 expression, slowed the disease progression, and extended the survival. These results bring RNA interference therapy one step closer to its clinical application for treatment of chronic, devastating, and fatal CNS disorders.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that leads to loss of motor function and early death. About 5% of cases are inherited, with the majority of identified linkages in the gene encoding copper, zinc-superoxide dismutase (SOD1). Strong evidence indicates that the SOD1 mutations confer dominant toxicity on the protein. To provide new insight into mechanisms of ALS, we have generated and characterized a model for familial ALS in Drosophila with transgenic expression of human SOD1. Expression of wild type or disease-linked (A4V, G85R) mutants of human SOD1 selectively in motor neurons induced progressive climbing deficits. These effects were accompanied by defective neural circuit electrophysiology, focal accumulation of human SOD1 protein in motor neurons, and a stress response in surrounding glia. However, toxicity was not associated with oligomerization of SOD1 and did not lead to neuronal loss. These studies uncover cell-autonomous injury by SOD1 to motor neurons in vivo, as well as non-autonomous effects on glia, and provide the foundation for new insight into injury and protection of motor neurons in ALS.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a fatal motoneuronal disease which occurs in sporadic or familial forms, clinically indistinguishable. About 15% of familial ALS cases are linked to mutations of the superoxide dismutase 1 (SOD1) gene that may induce misfolding in the coded protein, exerting neurotoxicity to motoneurons. However, other cell types might be target of SOD1 toxicity, because muscle-restricted expression of mutant SOD1 correlates with muscle atrophy and motoneurons death. We analysed the molecular behaviour of mutant SOD1 in motoneuronal NSC34 and muscle C2C12 cells. We found that misfolded mutant SOD1 clearance is much more efficient in muscle C2C12 than in motoneuronal NSC34 cells. Mutant SOD1 forms aggregates and impairs the proteasome only in motoneuronal NSC34 cells. Interestingly, NSC34 cells expressing mutant SOD1 are more sensitive to a superoxide-induced oxidative stress. Moreover, in muscle C2C12 cells mutant SOD1 remains soluble even when proteasome is inhibited with MG132. The higher mutant SOD1 clearance in muscle cells correlates with a more efficient proteasome activity, combined with a robust autophagy activation. Therefore, muscle cells seem to better manage misfolded SOD1 species, not because of an intrinsic property of the mutant protein, but in function of the cell environment, indicating also that the SOD1 toxicity at muscle level may not directly depend on its aggregation rate.  相似文献   

8.
One of the mechanisms by which mutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis (fALS) is proposed to involve the accumulation of detergent-insoluble, disulfide-cross-linked, mutant protein. Recent studies have implicated cysteine residues at positions 6 and 111 as critical in mediating disulfide cross-linking and promoting aggregation. In the present study, we used a panel of experimental and disease-linked mutations at cysteine residues of SOD1 (positions 6, 57, 111, and 146) in cell culture assays for aggregation to demonstrate that extensive disulfide cross-linking is not required for the formation of mutant SOD1 aggregates. Experimental mutants possessing only a single cysteine residue or lacking cysteine entirely were found to retain high potential to aggregate. Furthermore we demonstrate that aggregate structures in symptomatic SOD1-G93A mice can be dissociated such that they no longer sediment upon ultracentrifugation (i.e. appear soluble) under relatively mild conditions that leave disulfide bonds intact. Similar to other recent work, we found that cysteines 6 and 111, particularly the latter, play interesting roles in modulating the aggregation of human SOD1. However, we did not find that extensive disulfide cross-linking via these residues, or any other cysteine, is critical to aggregate structure. Instead we suggest that these residues participate in other features of the protein that, in some manner, modulate aggregation.  相似文献   

9.
Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.  相似文献   

10.
Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ion deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.  相似文献   

11.
Many autosomal dominant diseases such as familial amyotrophic lateral sclerosis (ALS) with copper/zinc superoxide dismutase (SOD1) mutation may be induced by missense point mutations that result in the production of proteins with toxic properties. Reduction in the encoding of proteins from such mutated genes can therefore be expected to improve the disease phenotype. The duplex of 21-nucleotide RNA, known as small interfering RNA (siRNA), has recently emerged as a powerful gene silencing tool. We made transgenic (Tg) mice with modified siRNA, which had multiple mismatch alternations within the sense strand, to prevent the "shutdown phenomenon" of transgenic siRNA. Consequently, the in vivo knockdown effect of siRNA on SOD1 expression did not diminish over four generations. When we crossed these anti-SOD1 siRNA Tg mice with SOD1G93A Tg mice, a model for ALS, siRNA prevented the development of disease by inhibiting mutant G93A SOD1 production in the central nervous system. Our findings clearly proved the principle that siRNA-mediated gene silencing can stop the development of familial ALS with SOD1 mutation.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, whose primary mechanisms or causes are still not defined and for which no effective treatment is available. We have recently reported that before disease onset the level of tyrosine nitrated proteins is increased in the G93A SOD1 transgenic mouse model of ALS. In the present investigation, we carried out a proteomic analysis of spinal cord extracts from G93A SOD1 mice at the presymptomatic stage of the disease to further unravel primary events in the pathogenesis and tentatively screen for potential pharmacological targets. Using a robust two-dimensional gel electrophoresis-based proteomic approach, we detected a number of proteins differentially represented in presymptomatic mice in comparison with controls. Alterations of these proteins correlate with mitochondrial dysfunction, aggregation, and stress response. Moreover, we found a variation in the isoform pattern of cyclophilin A, a molecular chaperone that protects cells from the oxidative stress.  相似文献   

13.
Before potential therapeutic strategies for the treatment of amyotrophic lateral sclerosis (ALS) can be advanced to human clinical trials, there is a need to assess them in an animal model that best resembles the disease process. SOD1 G93A mice have close resemblance to familial ALS (fALS) and have been used in this study to evaluate the therapeutic potential of leukaemia inhibitory factor (LIF). LIF action was investigated by assessing three delivery methods: (1) daily subcutaneous injection; (2) through LIF rods placed adjacent to hind limb skeletal muscle and (3) continuous intrathecal infusion. The effect on disease progression was assessed by semi-quantitative and quantitative functional measurements, and histologically on the survival of motor neurons and number of reactive astrocytes. The results show that LIF had no beneficial effects when administered using the three methods of drug delivery. These results suggest that further evaluation of LIF in this transgenic model is required to fully characterize its' therapeutic potential.  相似文献   

14.
Molecular modeling is a promising method for assessing protein structures that is capable of presenting an energetically beneficial protein conformation with atomic precision. This method is of great importance for studying molecular interactions and confirming the pathogenic significance of the changes in protein structures caused by particular mutations. In this study, we used molecular modeling to assess mutations in the SOD1 gene in patients with amyotrophic lateral sclerosis (ALS), a severe neurodegenerative disorder characterized by the loss of spinal and cerebral motor neurons. The product of SOD1 is a cytosolic dimeric enzyme Cu/Zn superoxide dismutase (SOD1) responsible for the detoxification of cellular superoxide radicals. We showed that all eight revealed coding-point mutations of the gene led to moderate or significant changes in SOD1 protein energy. The mutation His49Arg increased protein energy, and the reconstruction of the respective model indicated the spatial destabilization of the molecule and abnormal interactions with the metal ion inside the active center. Conversely, the other seven mutations (Gly17Ala, Leu85Val, Asn87Ser, Asp91Ala, Ser106Leu, Glu134Gly, and Leu145Phe) led to a decrease in protein energy and an increase in the spatial stability of SOD 1, which is usually accompanied by an increased tendency for the inert mutant molecule to misfold and demonstrate cellular aggregation. Therefore, the results of the in silico analysis of the SOD1 gene mutations confirms that ALS belongs to the class of the so-called conformational diseases of the central nervous system, a characteristic feature of which is the formation of cytotoxic, insoluble protein inclusions in neurons.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive motor neuron death. More than 90 mutations in the copper-zinc superoxide dismutase (SOD1) gene cause a subset of familial ALS. Toxic properties have been proposed for the ALS-linked SOD1 mutants, but the nature of the toxicity has not been clearly specified. Cytoplasmic inclusion bodies containing mutant SOD1 and a number of other proteins are a pathological hallmark of mutant SOD1-mediated familial ALS, but whether such aggregates are toxic to motor neurons remains unclear. In this study, we identified a dynein subunit as a component of the mutant SOD1-containing high molecular weight complexes using proteomic techniques. We further demonstrated interaction and colocalization between dynein and mutant SOD1, but not normal SOD1, in cultured cells and also in G93A and G85R transgenic rodent tissues. Moreover, the interaction occurred early, prior to the onset of symptoms in the ALS animal models and increased over the disease progression. Motor neurons with long axons are particularly susceptible to defects in axonal transport. Our results demonstrate a direct "gain-of-interaction" between mutant SOD1 and dynein, which may provide insights into the mechanism by which mutant SOD1 could contribute to a defect in retrograde axonal transport or other dynein functions. The aberrant interaction is potentially critical to the formation of mutant SOD1 aggregates as well as the toxic cascades leading to motor neuron degeneration in ALS.  相似文献   

16.
Endoplasmic reticulum (ER) stress is an important pathway to cell death in amyotrophic lateral sclerosis (ALS). We previously demonstrated that ER stress is linked to neurotoxicity associated with formation of inclusions of mutant Cu,Zn-superoxide dismutase 1 (SOD1). Cells bearing mutant inclusions undergo mitochondrial apoptotic signalling. Here, we demonstrate that the BH3-only protein, Bim, is a direct link between ER stress and mitochondrial apoptosis. In the murine neuroblastoma cell line, Neuro2a, bearing mutant SOD1 inclusions, indicators of both ER stress and apoptosis are expressed. Bim knockdown by siRNA significantly reduced nuclear apoptotic features in these inclusion-bearing cells (but did not affect the proportion of cells overall that bear inclusions). Further, both Bax recruitment to mitochondria and cytochrome c redistribution were also decreased under Bim-depletion conditions. However, upregulation of CHOP, a marker of ER stress, was not reduced by Bim knockdown. Significantly, knockdown of CHOP by siRNA reduced the extent of apoptosis in cells bearing mutant SOD1 inclusions. These sequential links between ER stress, CHOP upregulation, and Bim activation of mitochondrial apoptotic signalling indicate a clear pathway to cell death mediated by mutant SOD1.  相似文献   

17.
Mutations in a Cu, Zn-superoxide dismutase (SOD1) cause motor neuron death in human familial amyotrophic lateral sclerosis (FALS) and its mouse model, suggesting that mutant SOD1 has a toxic effect on motor neurons. However, the question of how the toxic function is gained has not been answered. Here, we report that the mutant SOD1s linked to FALS, but not wild-type SOD1, aggregated in association with the endoplasmic reticulum (ER) and induced ER stress in the cDNA-transfected COS7 cells. These cells showed an aberrant intracellular localization of mitochondria and microtubules, which might lead to a functional disturbance of the cells. Motor neurons of the spinal cord in transgenic mice with a FALS-linked mutant SOD1 also showed a marked increase of GRP78/BiP, an ER-resident chaperone, just before the onset of motor symptoms. These data suggest that ER stress is involved in the pathogenesis of FALS with an SOD1 mutation.  相似文献   

18.
The human SOD1(G93A) transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS). In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months) is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6) SOD1(G93A) transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.  相似文献   

19.
20.
Amyotrophic lateral sclerosis (ALS) is a fatal neurologic disease characterized by progressive motor neuron degeneration. Clinical disease management is hindered by both a lengthy diagnostic process and the absence of effective treatments. Reliable panels of diagnostic, surrogate, and prognostic biomarkers are needed to accelerate disease diagnosis and expedite drug development. The cysteine protease inhibitor cystatin C has recently gained interest as a candidate diagnostic biomarker for ALS, but further studies are required to fully characterize its biomarker utility. We used quantitative enzyme-linked immunosorbent assay (ELISA) to assess initial and longitudinal cerebrospinal fluid (CSF) and plasma cystatin C levels in 104 ALS patients and controls. Cystatin C levels in ALS patients were significantly elevated in plasma and reduced in CSF compared to healthy controls, but did not differ significantly from neurologic disease controls. In addition, the direction of longitudinal change in CSF cystatin C levels correlated to the rate of ALS disease progression, and initial CSF cystatin C levels were predictive of patient survival, suggesting that cystatin C may function as a surrogate marker of disease progression and survival. These data verify prior results for reduced cystatin C levels in the CSF of ALS patients, identify increased cystatin C levels in the plasma of ALS patients, and reveal correlations between CSF cystatin C levels to both ALS disease progression and patient survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号