首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lin Guo 《Biophysical journal》2010,98(12):2914-2922
Lateral diffusion of cell membrane constituents is a prerequisite for many biological functions. However, the diffusivity (or mobility) of a membrane-bound species can be influenced by many factors. To provide a better understanding of how the conformation and location of a membrane-bound biological molecule affect its mobility, herein we study the diffusion properties of a pH low insertion peptide (pHLIP) in model membranes using fluorescence correlation spectroscopy. It is found that when the pHLIP peptide is located on the membrane surface, its lateral diffusion is characterized by a distribution of diffusion times, the characteristic of which depends on the peptide/lipid ratio. Whereas, under conditions where pHLIP adopts a well-defined transmembrane α-helical conformation the peptide still exhibits heterogeneous diffusion, the distribution of diffusion times is found to be independent of the peptide/lipid ratio. Taken together, these results indicate that the mobility of a membrane-bound species is sensitive to its conformation and location and that diffusion measurement could provide useful information regarding the conformational distribution of membrane-bound peptides. Furthermore, the observation that the mobility of a membrane-bound species depends on its concentration may have important implications for diffusion-controlled reactions taking place in membranes.  相似文献   

2.
Antimicrobial peptides (AMPs) are an important component of innate immunity and have generated considerable interest as a potential new class of antibiotic. The biological activity of AMPs is strongly influenced by peptide-membrane interactions; however, for many of these peptides the molecular details of how they disrupt and/or translocate across target membranes are not known. CM15 is a linear, synthetic hybrid AMP composed of the first seven residues of the cecropin A and residues 2-9 of the bee venom peptide mellitin. Previous studies have shown that upon membrane binding CM15 folds into an alpha-helix with its helical axis aligned parallel to the bilayer surface and have implicated the formation of 2.2-3.8 nm pores in its bactericidal activity. Here we report site-directed spin labeling electron paramagnetic resonance studies examining the behavior of CM15 analogs labeled with a methanethiosulfonate spin label (MTSL) and a brominated MTSL as a function of increasing peptide concentration and utilize phospholipid-analog spin labels to assess the effects of CM15 binding and accumulation on the physical properties of membrane lipids. We find that as the concentration of membrane-bound CM15 is increased the N-terminal domain of the peptide becomes more deeply immersed in the lipid bilayer. Only minimal changes are observed in the rotational dynamics of membrane lipids, and changes in lipid dynamics are confined primarily to near the membrane surface. However, the accumulation of membrane-bound CM15 dramatically increases accessibility of lipid-analog spin labels to the polar relaxation agent, nickel (II) ethylenediaminediacetate, suggesting an increased permeability of the membrane to polar solutes. These results are discussed in relation to the molecular mechanism of membrane disruption by CM15.  相似文献   

3.
4.
Biological membranes have unique and highly diverse compositions of their lipid constituents. At present, we have only partial understanding of how membrane lipids and lipid domains regulate the structural integrity and functionality of cellular organelles, maintain the unique molecular composition of each organellar membrane by orchestrating the intracellular trafficking of membrane-bound proteins and lipids, and control the steady-state levels of numerous signaling molecules generated in biological membranes. Similar to other organellar membranes, a single lipid bilayer enclosing the peroxisome, an organelle known for its essential role in lipid metabolism, has a unique lipid composition and organizes some of its lipid and protein components into distinctive assemblies. This review highlights recent advances in our knowledge of how lipids and lipid domains of the peroxisomal membrane regulate the processes of peroxisome assembly and maintenance in the yeast Yarrowia lipolytica. We critically evaluate the molecular mechanisms through which lipid constituents of the peroxisomal membrane control these multistep processes and outline directions for future research in this field.  相似文献   

5.
Cell penetrating peptides (CPPs) can cross cell membranes in a receptor independent manner and transport cargo molecules inside cells. These peptides can internalize through two independent routes: energy dependent endocytosis and energy independent translocation across the membrane, but the exact mechanisms are still unknown. The interaction of the CPP with different membrane components is certainly a preliminary key point that triggers internalization, such as the interaction with lipids to lead to the translocation process. In this study, we used two arginine-rich peptides, RW9 (RRWWRRWRR-NH(2)), which is a potent CPP, and RL9 (RRLLRRLRR-NH(2)) that, although binding tightly and accumulating on membranes, does not enter into cells. Using a set of experimental and theoretical techniques, we studied the binding, insertion and orientation of the peptides into different model membranes as well as the subsequent membrane reorganization. Herein we show that although the two peptides had rather similar behavior regarding lipid membrane interaction, subtle differences were found concerning the depth of peptide insertion, effect on the lipid chain ordering and kinetics of peptide insertion in the membrane, which altogether might explain their different cell internalization capacities. Molecular dynamics simulation studies show that some peptide molecules flipped their orientation over the course of the simulation such that the hydrophobic residues penetrated deeper in the lipid core region while Arg-residues maintained H-bonds with the lipid headgroups, serving as a molecular hinge in a conformation that appeared to correspond to the equilibrium one.  相似文献   

6.
The intricate and tightly regulated organization of eukaryotic cells into spatially and functionally distinct membrane-bound compartments is a defining feature of complex organisms. These compartments are defined by their lipid and protein compositions, with their limiting membrane as the functional interface to the rest of the cell. Thus, proper segregation of membrane proteins and lipids is necessary for the maintenance of organelle identity, and this segregation must be maintained despite extensive, rapid membrane exchange between compartments. Sorting processes of high efficiency and fidelity are required to avoid potentially deleterious mis-targeting and maintain cellular function. Although much molecular machinery associated with membrane traffic (i.e. membrane budding/fusion/fission) has been characterized both structurally and biochemically, the mechanistic details underlying the tightly regulated distribution of membranes between subcellular locations remain to be elucidated. This review presents evidence for the role of ordered lateral membrane domains known as lipid rafts in both biosynthetic sorting in the late secretory pathway, as well as endocytosis and recycling to/from the plasma membrane. Although such evidence is extensive and the involvement of membrane domains in sorting is definitive, specific mechanistic details for raft-dependent sorting processes remain elusive.  相似文献   

7.
Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid 'rafts' and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid-cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains.  相似文献   

8.
Positively charged polybasic domains are essential for recruiting multiple signaling proteins, such as Ras GTPases and Src kinase, to the negatively charged cellular membranes. Much less, however, is known about the influence of electrostatic interactions on the lateral dynamics of these proteins. We developed a dynamic Monte-Carlo automaton that faithfully simulates lateral diffusion of the adsorbed positively charged oligopeptides as well as the dynamics of mono- (phosphatidylserine) and polyvalent (PIP2) anionic lipids within the bilayer. In agreement with earlier results, our simulations reveal lipid demixing that leads to the formation of a lipid shell associated with the peptide. The computed association times and average numbers of bound lipids demonstrate that tetravalent PIP2 interacts with the peptide much more strongly than monovalent lipid. On the spatially homogeneous membrane, the lipid shell affects the behavior of the peptide only by weakly reducing its lateral mobility. However, spatially heterogeneous distributions of monovalent lipids are found to produce peptide drift, the velocity of which is determined by the total charge of the peptide-lipid complex. We hypothesize that this predicted phenomenon may affect the spatial distribution of proteins with polybasic domains in the context of cell-signaling events that alter the local density of monovalent anionic lipids.  相似文献   

9.
Maturation of spermatozoa in the epididymis involves remodelling of many protein and lipid components of the plasma membrane. In this investigation we have examined whether (a) diffusion of lipid molecules in the surface membrane changes during epididymal maturation; (b) diffusion is spatially restricted; and (c) differences in lipid diffusion can be related to known changes in membrane composition. For this purpose we have used the technique of fluorescence recovery after photobleaching (FRAP) to measure diffusion of the lipid reporter probe ODAF (5‐(octa‐decanoyl)aminofluorescein) in spermatozoa from two species: ram, where substantial changes in membrane lipids occur during passage through the epididymis, and boar, where there are relatively few changes. Results on ram spermatozoa show that between the testis and cauda epididymidis, diffusion coefficients values (D) for ODAF increase significantly in all the surface domains. Percentage recovery values (%R) remain constant irrespective of maturational status. In boar spermatozoa, however, D and %R values do not change significantly between epididymal regions. Cholesterol, which has widespread effects on the behaviour of lipid molecules in cell membranes, was visualized by binding of filipin. In both species filipin was concentrated over the acrosomal domain and cytoplasmic droplet of testicular spermatozoa, but in the epididymis it had a heterogenous distribution over the whole head and tail. These results are discussed in relation to the establishment and maintenance of lipid domains in spermatozoa and their influence on development of fertilizing capacity. Mol. Reprod. Dev. 52:207–215, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid ‘rafts’ and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid-cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains.  相似文献   

11.
Both biological and model membranes can exhibit the formation of domains. A brief review of some of the diverse methodologies used to identify the presence of domains in membranes is given. Some of these domains are enriched in cholesterol. The segregation of lipids into cholesterol-rich domains can occur in both pure lipid systems as well as membranes containing peptides and proteins. Peptides and proteins can promote the formation of cholesterol-rich domains not only by preferentially interacting with cholesterol and being sequestered into these regions of the membrane, but also indirectly as a consequence of being excluded from cholesterol-rich domains. The redistribution of components is dictated by the thermodynamics of the system. The formation of domains in a biological membrane is a consequence of all of the intermolecular interactions including those among lipid molecules as well as between lipids and proteins.  相似文献   

12.
Characterization of membranes and of biological processes occurring within membranes is essential for understanding fundamental cellular behavior. Here we present a detailed biophysical study of a recently developed colorimetric biomimetic membrane assembly constructed from physiological lipid molecules and conjugated polydiacetylene. Various analytical techniques have been applied to characterize the organization of the lipid components in the chromatic vesicles and their contributions to the observed blue-to-red color transitions. Experiments reveal that both the polymerized units as well as the lipids exhibit microscopic phases and form domains whose properties and bilayer organization are interdependent. These domains are interspersed within mixed lipid/polymer vesicles that have a size distribution different from those of aggregates of the individual molecular constituents. The finding that fluidity changes induced within the lipid domains are correlated with the chromatic transitions demonstrates that the colorimetric platform can be used to evaluate the effects of individual molecular components, such as negatively charged lipids and cholesterol, upon membrane fluidity and thermal stability.  相似文献   

13.
《Biophysical journal》2021,120(17):3718-3731
The collective behavior of lipids with diverse chemical and physical features determines a membrane’s thermodynamic properties. Yet, the influence of lipid physicochemical properties on lipid dynamics, in particular interbilayer transport, remains underexplored. Here, we systematically investigate how the activation free energy of passive lipid transport depends on lipid chemistry and membrane phase. Through all-atom molecular dynamics simulations of 11 chemically distinct glycerophospholipids, we determine how lipid acyl chain length, unsaturation, and headgroup influence the free energy barriers for two elementary steps of lipid transport: lipid desorption, which is rate limiting, and lipid insertion into a membrane. Consistent with previous experimental measurements, we find that lipids with longer, saturated acyl chains have increased activation free energies compared to lipids with shorter, unsaturated chains. Lipids with different headgroups exhibit a range of activation free energies; however, no clear trend based solely on chemical structure can be identified, mirroring difficulties in the interpretation of previous experimental results. Compared to liquid-crystalline phase membranes, gel phase membranes exhibit substantially increased free energy barriers. Overall, we find that the activation free energy depends on a lipid’s local hydrophobic environment in a membrane and that the free energy barrier for lipid insertion depends on a membrane’s interfacial hydrophobicity. Both of these properties can be altered through changes in lipid acyl chain length, lipid headgroup, and membrane phase. Thus, the rate of lipid transport can be tuned through subtle changes in local membrane composition and order, suggesting an unappreciated role for nanoscale membrane domains in regulating cellular lipid dynamics.  相似文献   

14.
Factor Va is an essential protein cofactor of the enzyme factor Xa, which activates prothrombin to thrombin during blood coagulation. Peptides with an apparent Mr of approximately 94,000 (heavy chain; HC) and approximately 74,000 or 72,000 (light chain; LC) interact in the presence of Ca2+ to form active Va. The two forms of Va-LC differ in their carboxyl-terminal C2 domain. Using Va reconstituted with either LC form, we examined the effects of the two LC species on membrane binding and on the activity of membrane-bound Va. We found that 1) Va composed of the 72,000 LC bound only slightly more tightly to membranes composed of a mixture of neutral and acidic lipids, the Kd being reduced by a factor of approximately 3 at 5 mM and by a factor of 6 at 2 mM Ca2+. 2) The two forms of Va seemed to undergo different conformational changes when bound to a membrane. 3) The activity of bovine Va varied somewhat with LC species, the difference being greatest at limiting Xa concentration. We have also addressed the role of the two Va peptides in membrane lipid rearrangements and binding: 1) Va binding increased lateral packing density in mixed neutral/acidic lipid membranes. In the solid phase, Va-HC had no effect, whereas Va-LC and whole Va had similar but small effects. In the fluid phase, Va-HC and whole Va both altered membrane packing, with Va-HC having the largest effect. 2) Va-HC bound reversibly and in a Ca2+-independent fashion to membranes composed of neutral phospholipid (Kd, approximately 0.3 microM; stoichiometry approximately 91). High ionic strength had little effect on binding. 3) The substantial effect of Va on packing within neutral phospholipid membranes was mimicked by Va-HC. 4) Based on measurements of membrane phase behavior, binding of Va or its peptide components did not induce thermodynamically discernible lateral membrane domains. These results suggest that the membrane association of factor Va is a complex process involving both chains of Va, changes in lipid packing, and changes in protein structure.  相似文献   

15.
We present an experimental study of the pore formation processes of small amphipathic peptides in model phosphocholine lipid membranes. We used atomic force microscopy to characterize the spatial organization and structure of alamethicin- and melittin-induced defects in lipid bilayer membranes and the influence of the peptide on local membrane properties. Alamethicin induced holes in gel DPPC membranes were directly visualized at different peptide concentrations. We found that the thermodynamic state of lipids in gel membranes can be influenced by the presence of alamethicin such that nanoscopic domains of fluid lipids form close to the peptide pores, and that the elastic constants of the membrane are altered in their vicinity. Melittin-induced holes were visualized in DPPC and DLPC membranes at room temperature in order to study the influence of the membrane state on the peptide induced hole formation. Also differential scanning calorimetry was used to investigate the effect of alamethicin on the lipid membrane phase behaviour.  相似文献   

16.
The plasma membrane of mammalian spermatozoa, like that of other differentiated cells, is compartmentalized into discrete regions or domains that are biochemically and functionally distinct from one another. Physical structures within the membrane, such as the posterior ring at the juncture of the sperm head and tail, have long been thought to act as diffusion barriers to help segregate important molecules required for fertilization within specific domains and to regulate migration of molecules between domains. In this investigation, we used a quantitative photobleaching technique (video-FRAP) to assess the efficacy of the posterior ring as a barrier to exchange of lipids between the postacrosomal and midpiece plasma membranes. A lipid reporter probe (1,1'-diduodecyl-3,3,3', 3'-tetramethylindocarbocyanine; DiIC(12)) was incorporated into the plasma membrane of live ram and boar spermatozoa, and the directionality of its diffusion across the posterior ring was measured by line-profile analysis. Results showed that DiIC(12) was able to traverse the posterior ring from the direction of the postacrosomal plasma membrane and to diffuse onto the midpiece plasma membrane. These results suggest that the posterior ring is not an immutable barrier to lipid exchange in mature spermatozoa and that there are other mechanisms for maintaining in-plane lipid asymmetry, such as differential phase behavior and interaction with the submembranous cytoskeleton.  相似文献   

17.
We present an experimental study of the pore formation processes of small amphipathic peptides in model phosphocholine lipid membranes. We used atomic force microscopy to characterize the spatial organization and structure of alamethicin- and melittin-induced defects in lipid bilayer membranes and the influence of the peptide on local membrane properties. Alamethicin induced holes in gel DPPC membranes were directly visualized at different peptide concentrations. We found that the thermodynamic state of lipids in gel membranes can be influenced by the presence of alamethicin such that nanoscopic domains of fluid lipids form close to the peptide pores, and that the elastic constants of the membrane are altered in their vicinity. Melittin-induced holes were visualized in DPPC and DLPC membranes at room temperature in order to study the influence of the membrane state on the peptide induced hole formation. Also differential scanning calorimetry was used to investigate the effect of alamethicin on the lipid membrane phase behaviour.  相似文献   

18.
Here we identify the recruitment of solvent ions to lipid membranes as the dominant regulator of lipid phase behavior. Our data demonstrate that binding of counterions to charged lipids promotes the formation of lamellar membranes, whereas their absence can induce fusion. The mechanism applies to anionic and cationic liposomes, as well as the recently introduced amphoteric liposomes. In the latter, an additional pH-dependent lipid salt formation between anionic and cationic lipids must occur, as indicated by the depletion of membrane-bound ions in a zone around pH 5. Amphoteric liposomes fuse under these conditions but form lamellar structures at both lower and higher pH values. The integration of these observations into the classic lipid shape theory yielded a quantitative link between lipid and solvent composition and the physical state of the lipid assembly. The key parameter of the new model, κ(pH), describes the membrane phase behavior of charged membranes in response to their ion loading in a quantitative way.  相似文献   

19.
Cellular membranes are laterally organized into domains of distinct structures and compositions by the differential interaction affinities between various membrane lipids and proteins. A prominent example of such structures are lipid rafts, which are ordered, tightly packed domains that have been widely implicated in cellular processes. The functionality of raft domains is driven by their selective recruitment of specific membrane proteins to regulate their interactions and functions; however, there have been few general insights into the factors that determine the partitioning of membrane proteins between coexisting liquid domains. In this work, we used extensive coarse-grained and atomistic molecular dynamics simulations, potential of mean force calculations, and conceptual models to describe the partitioning dynamics and energetics of a model transmembrane domain from the linker of activation of T cells. We find that partitioning between domains is determined by an interplay between protein-lipid interactions and differential lipid packing between raft and nonraft domains. Specifically, we show that partitioning into ordered domains is promoted by preferential interactions between peptides and ordered lipids, mediated in large part by modification of the peptides by saturated fatty acids (i.e., palmitoylation). Ordered phase affinity is also promoted by elastic effects, specifically hydrophobic matching between the membrane and the peptide. Conversely, ordered domain partitioning is disfavored by the tight molecular packing of the lipids therein. The balance of these dominant drivers determines partitioning. In the case of the wild-type linker of activation of T cells transmembrane domain, these factors combine to yield enrichment of the peptide at Lo/Ld interfaces. These results define some of the general principles governing protein partitioning between coexisting membrane domains and potentially explain previous disparities among experiments and simulations across model systems.  相似文献   

20.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号