首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA profiling     
Although some concerns still remain in standard DNA profiling technology over the assumptions from population genetics used to calculate expected match frequencies, forensic scientists are preparing for the introduction of the next generation of DNA profiling techniques based on the polymerase chain reaction. These new techniques offer the prospect of dramatically increasing the speed and sensitivity of DNA profiling and have already been applied in some casework studies.  相似文献   

2.
DNA microarrays in clinical cancer research   总被引:4,自引:0,他引:4  
The recent sequencing of the human genome, coupled with advances in biotechnology, is enabling the comprehensive molecular "profiling" of human tissues. In particular, DNA microarrays are powerful tools for obtaining global views of human tumor gene expression. Complex information from tumor "expression profiling" studies can, in turn, be used to create novel molecular cancer diagnostics. We discuss the utility of DNA microarray-based tumor profiling in clinical cancer research, highlight some important recent studies, and identify future avenues of research in this evolving field.  相似文献   

3.
Fish species identification is traditionally based on external morphological features. Yet, in many cases fishes and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. This work intends to provide an updated and extensive overview on the PCR-methods for fish species identification. Among the ten main methods developed, three PCR-RFLP, PCR-FINS and PCR-specific primers have been the most used. Two other emerging methods, namely real-time PCR and microarray technology, offer new potential for quantification of DNA and simultaneous detection of numerous species, respectively. Almost 500 species have been targeted in the past decade, among which the most studied belong to gadoids, scombroids, and salmonids. The mitochondrial cytochrome b gene was by far the most targeted DNA markers. The most common applications belonged to the forensic, taxonomic, and ecological fields. At last, some key problems, such as the degradation of DNA, the reliability of sequences, and the use of scientific names, likely to be encountered during the development of molecular identification methods are described. In conclusion, the tremendous advances in molecular biology in the past 10 years has rendered possible the study of DNA from virtually any substrates, offering new perspectives for the development of various applications, which will likely continue to increase in the future.  相似文献   

4.
5.
Over the past decades, main advances in the field of molecular biology, coupled with benefits in genomic technologies, have led to detailed molecular investigations in the genetic diversity generated by researchers. Short tandem repeat (STR) loci are polymorphic loci found throughout all eukaryotic genome. DNA profiling identification, parental testing and kinship analysis by analysis of STR loci have been widely used in forensic sciences since 1993. Malignant tissues may sometimes be the source of biological material for forensic analysis, including identification of individuals or paternity testing. There are a number of studies on microsatellite instability in different types of tumors by comparing the STR profiles of malignant and healthy tissues on the same individuals. Defects in DNA repair pathways (non-repair or mis-repair) and metabolism lead to an accumulation of microsatellite alterations in genomic DNA of various cancer types that result genomic instabilities on forensic analyses. Common forms of genomic instability are loss of heterozygosity (LOH) and microsatellite instability (MSI). In this study, the applicability of autosomal STR markers, which are routinely used in forensic analysis, were investigated in order to detect genotypes in blood samples collected from leukemic patients to estimate the reliability of the results when malignant tissues are used as a source of forensic individual identification. Specimens were collected from 90 acute and 10 chronic leukemia volunteers with oral swabs as well as their paired peripheral blood samples from the Oncology Centre of the Department of Hematology at Istanbul University, during the years 2010–2011. Specimens were tested and compared with 16 somatic STR loci (CSFIPO, THO1, TPOX, vWA, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11 and FGA) widely used in forensic identification and kinship. Only two STR instabilities were encountered among 100 specimens. An MSI in the FGA loci and a LOH in the D2S1338 loci were determined in two individuals separately. Our results demonstrate that the use of the biological samples from leukemia patients in forensic identification and kinship testing is questionable, especially if known microsatellite instability is available. Genetic instabilities may alter the STR polymorphism, leading to potential errors on forensic identification of individuals. Therefore, typing of autosomal STRs from leukemia patients should be performed with both healthy and malignant tissue samples of individual as references.  相似文献   

6.
Human genetic variation is a major resource in forensics, but does not allow all forensically relevant questions to be answered. Some questions may instead be addressable via epigenomics, as the epigenome acts as an interphase between the fixed genome and the dynamic environment. We envision future forensic applications of DNA methylation analysis that will broaden DNA-based forensic intelligence. Together with genetic prediction of appearance and biogeographic ancestry, epigenomic lifestyle prediction is expected to increase the ability of police to find unknown perpetrators of crime who are not identifiable using current forensic DNA profiling.  相似文献   

7.
Comprehensive genomic molecular analyses require relatively large DNA amounts that are often not available from forensic, clinical and other crucial biological samples. Numerous methods to amplify the whole genome have been proposed for cancer, forensic and taxonomic research. Unfortunately, when using truly random primers for the initial priming step, all of these procedures suffer from high background problems for sub-nanogram quantities of input DNA. Here we report an approach to eliminate this problem for PCR-based methods even at levels of DNA approaching that of a single cell.  相似文献   

8.
DNA鉴定技术在法科学中的应用   总被引:10,自引:1,他引:9  
李生斌  阎春霞  赖江华  汪建  杨焕明 《遗传》2001,23(2):157-160
人类基因组遗传多态现象研究的深入,导致了法科学领域个体识别和亲权鉴定发生根本性变化。本就新的遗传标记和各种DNA鉴定技术在法科学中的研究进展,应用前景与亟待解决的问题进行了探讨。  相似文献   

9.
The analysis and profiling of short tandem repeat (STR) loci is routinely used in forensic genetics. Current methods to investigate STR loci, including PCR-based standard fragment analyses and capillary electrophoresis, only provide amplicon lengths that are used to estimate the number of STR repeat units. These methods do not allow for the full resolution of STR base composition that sequencing approaches could provide. Here we present an STR profiling method based on the use of the Roche Genome Sequencer (GS) FLX to simultaneously sequence multiple core STR loci. Using this method in combination with a bioinformatic tool designed specifically to analyze sequence lengths and frequencies, we found that GS FLX STR sequence data are comparable to conventional capillary electrophoresis-based STR typing. Furthermore, we found DNA base substitutions and repeat sequence variations that would not have been identified using conventional STR typing.  相似文献   

10.
The field of forensic science is increasingly based on biomolecular data and many European countries are establishing forensic databases to store DNA profiles of crime scenes of known offenders and apply DNA testing. The field is boosted by statistical and technological advances such as DNA microarray sequencing, TFT biosensors, machine learning algorithms, in particular Bayesian networks, which provide an effective way of evidence organization and inference. The aim of this article is to discuss the state of art potentialities of bioinformatics in forensic DNA science. We also discuss how bioinformatics will address issues related to privacy rights such as those raised from large scale integration of crime, public health and population genetic susceptibility-to-diseases databases.  相似文献   

11.
Forensic biology has reached an unprecedented prominence with the advent of DNA profiling, which allows the biologist to use microscopic evidence to match a person to a scene of crime. But there's a lot more in the forensic biologist's arsenal. Here we take a brief look at the who, when and how (and a little of the where to) of forensic biology.  相似文献   

12.
粪便DNA分析技术在动物生态学中的应用   总被引:20,自引:0,他引:20  
王戎疆 《动物学报》2001,47(6):699-703
粪便DNA分析是一项新发展起来的从粪便中获取动物DNA并用于相关研究的技术,该技术有助于分子生态学研究中所遇到的取样难题。通过对粪便DNA分析的研究方法、研究内容以及研究进展情况的介绍,提供了该技术不仅能用于分子生态学的许多研究领域,而且还能够提供诸如种群数量估计、领域边界划定等生态生态学信息,这是对分子生态学的重要补充。  相似文献   

13.
DNA分子量标准制备技术:方法与进展   总被引:1,自引:0,他引:1  
DNA分子量标准是一组分子量大小已知的DNA片段混合物,用于指示核酸电泳中未知样品的分子量大小,从而帮助实验人员判断DNA样品的性质。因而DNA分子量标准成为目前分子生物学和基因工程领域不可或缺的一种电泳耗材。综述了目前各种DNA分子量标准产品的制备方法和技术原理及近年来该领域的一些技术进展情况。  相似文献   

14.
Conventional methods to identify fungi have often relied on identification of disease symptoms, isolation and culturing of environmental organisms, and laboratory identification by morphology and biochemical tests. Although these methods are still fundamental there is an increasing move towards molecular diagnostics of fungi in all fields. In this review, some of the molecular approaches to fungal diagnostics based on polymerase chain reaction (PCR) and DNA/RNA probe technology are discussed. This includes several technological advances in PCR-based methods for the detection, identification and quantification of fungi including real-time PCR which has been successfully used to provide rapid, quantitative data on fungal species from environmental samples. PCR and probe based methods have provided new tools for the enumeration of fungal species, but it is still necessary to combine the new technology with more conventional methods to gain a fuller understanding of interactions occurring in the environment. Since its introduction in the mid 1980's PCR has provided many molecular diagnostic tools, some of which are discussed within this review, and with the advances in micro-array technology and real-time PCR methods the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual fungal species but also on whole communities.  相似文献   

15.
The serology-based methods routinely used in forensic casework for the identification of biological fluids are costly in terms of time and sample and have varying degrees of sensitivity and specificity. Recently, the use of a molecular genetics-based approach using messenger RNA (mRNA) profiling has been proposed to supplant conventional methods for body fluid identification. However, the size of the amplification products used in these mRNA assays (∼ 200-300 nt) might not be ideal for use with degraded or compromised samples frequently encountered in forensic casework. Recently, there has been an explosion of interest in a novel class of small noncoding RNAs, microRNAs (miRNAs, ∼20-25 bases in length), with numerous published studies reporting that some miRNAs are expressed in a tissue-specific manner. In this article, we provide the first comprehensive evaluation of miRNA expression in dried, forensically relevant biological fluids—blood, semen, saliva, vaginal secretions, and menstrual blood—in an attempt to identify putative body fluid-specific miRNAs. Most of the 452 human miRNAs tested (∼67% of the known miRNAome) were either expressed in multiple body fluids or not expressed at all. Nevertheless, we have identified a panel of nine miRNAs—miR451, miR16, miR135b, miR10b, miR658, miR205, miR124a, miR372, and miR412—that are differentially expressed to such a degree as to permit the identification of the body fluid origin of forensic biological stains using as little as 50 pg of total RNA. The miRNA-based body fluid identification assays were highly specific because the miRNA expression profile for each body fluid was different from that obtained from 21 human tissues. The results of this study provide an initial indication that miRNA profiling may provide a promising alternative approach to body fluid identification for forensic casework.  相似文献   

16.
DNA fingerprinting is a powerful technology that has revolutionized forensic science. No two individuals can have an identical DNA pattern except identical twins. Such DNA-based technologies have enormous social implications and can help in the fight against crime. This technology has experienced many changes over time with many advancements occurring. DNA testing is a matter of serious concern as it involves ethical issues. This article describes various trends in DNA fingerprinting and the current technology used in DNA profiling, possible uses and misuses of DNA databanks and ethical issues involved in DNA testing. Limitations and problems prevailing in this field are highlighted.  相似文献   

17.
DNA microarrays: raising the profile   总被引:6,自引:0,他引:6  
Expression profiling using DNA microarrays is starting to come of age. The past year has seen significant advances in the number, scope and quality of studies that incorporate expression profiling experiments. Attention is starting to move on from making DNA microarrays to appropriate experimental design and sophisticated data analysis techniques.  相似文献   

18.
19.
Aims:  To evaluate: (i) the impact of air-drying on bacterial, archaeal and fungal soil DNA profiles and (ii) the potential use of multiplex-terminal restriction fragment length polymorphism (M-TRFLP) as a tool for forensic comparison of soil.
Methods and Results:  An M-TRFLP approach was used to profile bacterial, archaeal and fungal DNA profiles from five different soil sites. Air-drying soil significantly reduced the quantity of DNA but the number of operational taxanomic units (OTU) was unaffected. The impact of air-drying on soil DNA profiles was dependent on soil site and microbial primers. Fungal profiles were altered the least by air-drying. For prokaryotic profiles, air-drying altered the relative similarity/dissimilarity between soil sites. The M-TRFLP approach was more discriminatory compared with soil colour and single-taxa profiling, but did not significantly improve resolution between two similar soils.
Conclusions:  Of those tested, soil fungi were potentially the more robust target for application to soil forensic studies as they were altered less by air-drying and provided clear discrimination of soils from different sites. The M-TRFLP method demonstrated potential to achieve greater resolution, discriminating the soil sites based on both bacterial and fungal components.
Significance and Impact of the Study:  Soil DNA profiling has potential as a forensic tool, but sample condition and the appropriate selection of microbial target taxa must be considered.  相似文献   

20.
The first application of DNA forensics evidence was carried out by Dr. Alec Jefferies in 1983, in a British court case that sought to identify the relationship between an emigrant and her son. Since then, genotyping technology (also known as DNA fingerprinting and genetic profiling) has been developed and applied to identifying individuals for a wide variety of purposes including exonerating convicts. Faulty forensic evidence is a common cause of wrongful convictions. And once convicted, access to the forensic evidence remains a clear barrier to possible exoneration. In fact, it is DNA exoneration that is driving state legislators to address some of the apparent legislative flaws that govern forensic evidence testing in the U.S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号