共查询到20条相似文献,搜索用时 0 毫秒
1.
Platelet-activating factor acetylhydrolase (PAF-AH) 总被引:4,自引:0,他引:4
Platelet-activating factor (PAF) is one of the most potent lipid messengers involved in a variety of physiological events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity, and its deacetylation induces loss of activity. The deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH). A series of biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Type I PAF-AH is a G-protein-like complex consisting of two catalytic subunits (alpha1 and alpha2) and a regulatory beta subunit. The beta subunit is a product of the LIS1 gene, mutations of which cause type I lissencephaly. Recent studies indicate that LIS1/beta is important in cellular functions such as induction of nuclear movement and control of microtubule organization. Although substantial evidence is accumulating supporting the idea that the catalytic subunits are also involved in microtubule function, it is still unknown what role PAF plays in the process and whether PAF is an endogenous substrate of this enzyme. Type II PAF-AH is a single polypeptide and shows significant sequence homology with plasma PAF-AH. Type II PAF-AH is myristoylated at the N-terminus and like other N-myristoylated proteins is distributed in both the cytosol and membranes. Plasma PAF-AH is also a single polypeptide and exists in association with plasma lipoproteins. Type II PAF-AH as well as plasma PAF-AH may play a role as a scavenger of oxidized phospholipids which are thought to be involved in diverse pathological processes, including disorganization of membrane structure and PAF-like proinflammatory action. In this review, we will focus on the structures and possible biological functions of intracellular PAF-AHs. 相似文献
2.
Guo-Hua Zheng Shang-Quan Xiong Hai-Ying Chen Li-Juan Mei Ting Wang 《Molecular biology reports》2014,41(11):7141-7151
The circulating level of platelet-activating factor acetylhydrolase (PAF-AH) is a novel biomarker to predict the presence of coronary heart disease. PAF-AH gene polymorphisms may be responsible for the variance of circulating PAF-AH levels in individuals. However, the association of PAF-AH gene polymorphisms with circulating PAF-AH levels and the susceptibility to coronary heart disease (CHD) remains unsolved. Blood stasis syndrome (BSS) of CHD is the most common type of TCM syndromes, and a previous study discovered its relationship with the elevated circulating PAF-AH levels. However, the association of gene polymorphisms and CHD with BSS is unclear at present. In this study, four polymorphisms (R92H, I198T, A379V, V279F) of the PAF-AH gene were genotyped in 570 CHD patients, of which 299 had BSS. In addition, 317 unaffected individuals from the same hospitals served as controls. Plasma PAF-AH levels were measured in 155 controls and 271 CHD patients selected randomly, including 139 CHD patients with BSS. In the Chinese Han population, plasma PAF-AH levels in CHD patients with BSS or without BSS were significantly higher (12.9 ± 6.5 and 11.1 ± 5.0 μM, respectively) than in controls (9.3 ± 5.2 μM); this difference still remained significant after adjustment for traditional risk factors or the inflammatory factors. The R92H polymorphism was highly related to the plasma PAF-AH levels and the risk of CHD, especially among patients with BSS, even with the adjustment for the effects of traditional factors. The I198T polymorphism was highly associated with risk of CHD with BSS, but was associated with neither the risk of CHD with no BSS nor with elevated plasma PAF-AH levels. 相似文献
3.
D M Stafforini M R Elstad T M McIntyre G A Zimmerman S M Prescott 《The Journal of biological chemistry》1990,265(17):9682-9687
When monocytes mature to macrophages, their ability to accumulate the pro-inflammatory lipid autacoid, platelet-activating factor (PAF), is markedly decreased (Elstad, M. R. Stafforini, D. M., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (1989) J. Biol. Chem. 264, 8467-8470) in conjunction with a 260-fold increase in the activity of intracellular PAF acetylhydrolase (PAF-AH). We now demonstrate that macrophages also secrete PAF-AH and that the secreted enzyme is biochemically and immunologically identical to the human plasma PAF-AH. It is sensitive to the same active-site-directed inhibitors, has the same electrophoretic mobility, is associated with lipoprotein particles, and transfers between low density lipoprotein and high density lipoprotein in a pH-dependent manner like the plasma PAF-AH. In addition, both activities hydrolyze oxidatively fragmented phospholipids and PAF. These data indicate that macrophages are a cellular source of the plasma PAF-AH. Thus, macrophages secrete an enzyme that inactivates lipid mediators at sites of inflammation and in plasma. These changes during the maturation of monocytes to macrophages may serve to limit the acute inflammatory response. 相似文献
4.
Lipoprotein-associated phospholipase A2 (platelet-activating factor acetylhydrolase) and cardiovascular disease 总被引:6,自引:0,他引:6
PURPOSE OF REVIEW: Plasma lipoproteins carry a number of highly active enzymes in the circulation. One of these is lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), also known as platelet-activating factor acetylhydrolase. This review addresses the molecular properties of Lp-PLA(2), the controversy surrounding its role in atherosclerosis and the regulation of its plasma levels in humans. RECENT FINDINGS: Recent reports indicate that the enzyme Lp-PLA(2) found in both LDL and HDL may be independently regulated in these lipoprotein subclasses and have distinct roles in atherogenesis. Seminal findings establishing the response-to-retention hypothesis of atherosclerosis support further the potentially damaging role that in-situ release of LDL-associated oxidative products by Lp-PLA(2) may have in the formation of arterial wall lesions. In the mouse, where Lp-PLA(2) circulates mainly bound to HDL, overexpression leads to reduced atherosclerosis, raising the possibility that the enzyme in HDL may have a protective role. Further evidence for a potential protective role is seen in studies of partial or complete deficiency of the enzyme. In the more general setting of population studies, however, it is clear that Lp-PLA(2) is a positive risk factor for coronary disease and measurements of its mass may contribute to the prediction of coronary heart disease risk, especially in individuals with low LDL cholesterol levels. SUMMARY: Lp-PLA(2) is an enzyme with potentially multiple risks in atherosclerosis. In humans the weight of evidence suggests that it is a positive risk factor for coronary heart disease - an observation commensurate with its position in the direct pathological sequence leading from formation of oxidized LDL in the artery wall to cellular dysfunction and formation of lesions. 相似文献
5.
6.
Denizot Y Truffinet V Bouvier S Gainant A Cubertafond P Mathonnet M 《Mediators of inflammation》2004,13(1):53-54
This clinical study reports that blood levels of the pro-inflammatory mediator platelet-activating factor (PAF) did not change in colorectal cancer patients. In contrast, plasma levels of two enzymatic activities, one implicated in PAF production (i.e. phospholipase A2) and one in PAF degradation (i.e. PAF acetylhydrolase activity) were significantly elevated. 相似文献
7.
L Li K Yasuda T Matsubara H Okada T Nakajima M Sanezumi H Kanzaki 《Prostaglandins & other lipid mediators》1999,57(4):219-230
The platelet-activating factor (PAF) concentration of the uterus spontaneously increased during pregnancy. When 17alpha-ethynylestradiol (0.25 mg/kg) was administered subcutaneously to pregnant rats for 3 days starting on Day 17 of pregnancy, some rats delivered prematurely on Day 20. However, none of the vehicle-treated (80% dimethylsulfoxide and 20% ethanol) pregnant rats delivered prematurely. The PAF concentration of the uterus in pregnant rats treated with 17alpha-ethynylestradiol was significantly higher than in those treated with vehicle on Days 19 and 20. On the other hand, the specific activity of uterine PAF-acetylhydrolase (PAF-AH) in pregnant rats treated with 17alpha-ethynylestradiol was significantly lower than in those treated with vehicle on Days 19 and 20, and the plasma PAF-AH activity in pregnant rats treated with estrogen was also significantly lower than in treated with vehicle on Days 18, 19, and 20. These findings indicate that estrogen increases PAF concentrations in the rat uterus, and this was correlated with a decrease in PAF-AH in the uterus and plasma. The increase in PAF concentrations in the uterus may be related to premature delivery and labor caused by PAF's known effect on myometrial contraction. 相似文献
8.
Human plasma platelet-activating factor acetylhydrolase. Purification and properties 总被引:14,自引:0,他引:14
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid synthesized by a variety of cell types upon appropriate stimulation. PAF is a potent hypotensive factor and it activates platelets and inflammatory cells at concentrations as low as 10(-10) M. Removal of the acetyl moiety at the sn-2 position abolishes the biological activity and this reaction is catalyzed by a specific acetylhydrolase present in plasma and animal tissues. Ultracentrifugation in density gradients showed that 30% of the activity is associated with high density lipoproteins and 70% with low density lipoproteins. We have purified the plasma low density lipoprotein-associated activity to near homogeneity using a rapid assay based on the separation of [3H]acetate from 1-O-alkyl-2-[3H]acetyl-sn-glycerol-3-phosphocholine on disposable reversed-phase columns. The enzyme was purified by 25,000-fold and approximately 10% of the starting activity was recovered. Plasma PAF-acetylhydrolase has an apparent molecular weight of 43,000, does not require calcium, has preference for micellar versus monomeric substrate, and exhibits surface dilution kinetics. The purified protein has an apparent Km of 13.7 microM and a Vmax of 568 mumol/h/mg with micellar PAF. It can act both on 1-O-alkyl and 1-acyl substrates and on ethanolamine analogs of PAF. However, the enzyme has a marked preference for the sn-2 acetyl residue and therefore can be considered as a specific PAF-acetylhydrolase. 相似文献
9.
Platelet-activating factor acetylhydrolase type II (PAFAH-II) is an intracellular phospholipase A(2) enzyme that hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. This N-terminally myristoylated protein becomes associated with cytoplasm-facing cell membranes under oxidative stress. The structural requirements for binding of PAFAH-II to membranes in response to oxidative stress are unknown. To begin elucidating the mechanism of trafficking and stress response, we constructed a homology model of PAFAH-II. From the predicted membrane orientation of PAFAH-II, the N-terminal myristoyl group and a hydrophobic patch are hypothesized to be involved in membrane binding. Localization studies of human PAFAH-II in HEK293 cells indicated that an unmyristoylated mutant remained cytoplasmic under stressed and unstressed conditions. The myristoylated wild-type enzyme was partially localized to the cytoplasmic membranes prior to stress and became more localized to these membranes upon stress. A triple mutation of three hydrophobic patch residues of the membrane binding region likewise did not localize to membranes following stress. These results indicate that both the myristoyl group and the hydrophobic patch are essential for proper trafficking of the enzyme to the membranes following oxidative stress. Additionally, colocalization studies using organelle-specific proteins demonstrate that PAFAH-II is transported to the membranes of both the endoplasmic reticulum and Golgi apparatus. 相似文献
10.
Activity of platelet-activating factor (PAF) acetylhydrolase in plasma from patients with ischemic cerebrovascular disease 总被引:1,自引:0,他引:1
K Satoh T Imaizumi Y Kawamura H Yoshida S Takamatsu S Mizono B Shoji M Takamatsu 《Prostaglandins》1988,35(5):685-698
Platelet-activating factor (PAF) is metabolized by a specific enzyme, PAF acetylhydrolase, which may play an important role in the manifestation of the biological activities of PAF in vivo. The activity of PAF acetylhydrolase in plasma of patients with ischemic stroke was higher than that in healthy controls. The incidence of irreversible platelet aggregation in response to PAF, as well as to ADP, was found to be higher in patients than in controls. The patients whose platelets responded with irreversible aggregation to PAF displayed a higher activity of plasma PAF acetylhydrolase than those with only reversible aggregation. In controls, PAF acetylhydrolase activity correlated positively, although weakly, with LDL-cholesterol, which may reflect the major role of LDL in carrying this enzyme. However, since there was no significant difference in plasma levels of lipids and apoproteins between patients and controls (except for apo B) and there was no significant relationship between the enzyme activity and the levels of other lipids and apoproteins, it is unlikely that increased plasma level of PAF acetylhydrolase activity in stroke patients is accounted for by an abnormality of lipoprotein metabolism. Platelet hyperfunction may be associated with augmented generation of PAF, which, in turn, may bring about the induction of the inactivating enzyme, PAF acetylhydrolase. 相似文献
11.
Acetylhydrolase, the enzyme which inactivates platelet-activating factor (PAF, 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine), was selectively released from bovine platelets by aggregation with physiological concentrations (0.1-10 nM) of PAF with no cell lysis. The release of the acetylhydrolase paralleled that of serotonin. The acetylhydrolase released was active over a broad pH range (pH 5.4-8.6) and was not affected by Ca2+ (1-4 mM) or EDTA (1-8 mM). The Km value of the enzyme was 4.6 microM. Net specific acetylhydrolase activity recovered in the 130,000 x g supernatant after stimulation with PAF could be determined in the presence of EDTA without the activity of Ca2+-dependent phospholipase A2 which was also released from the cells at the same concentration of PAF. The acetylhydrolase was inhibited competitively by specific PAF antagonists, rac-3-(N-n-octadecylcarbamoyloxy)-2-methyoxypropyl-2-thiazolioe thyl phosphate (CV-3988) and (2RS)-1-O-hexadecyl-2-O-ethyl-3-O-(7-thiazolinoheptyl)-glycerol methanesulfonate (ONO-6040). Their Ki values for the enzyme were 1.17 microM and 0.84 microM, respectively. The release of the enzyme could also be detected when the platelets were aggregated with ADP (2.3 microM) or thrombin (0.5 unit). These results suggest that the enzyme released from the aggregated platelets to the blood plasma may also have a physiological function cooperating with the plasma acetylhydrolase. 相似文献
12.
Zhou G Marathe GK Willard B McIntyre TM 《The Journal of biological chemistry》2011,286(40):34820-34829
Aspirin (acetylsalicylic acid) prophylaxis suppresses major adverse cardiovascular events, but its rapid turnover limits inhibition of platelet cyclooxygenase activity and thrombosis. Despite its importance, the identity of the enzyme(s) that hydrolyzes the acetyl residue of circulating aspirin, which must be an existing enzyme, remains unknown. We find that circulating aspirin was extensively hydrolyzed within erythrocytes, and chromatography indicated these cells contained a single hydrolytic activity. Purification by over 1400-fold and sequencing identified the PAFAH1B2 and PAFAH1B3 subunits of type I platelet-activating factor (PAF) acetylhydrolase, a phospholipase A(2) with selectivity for acetyl residues of PAF, as a candidate for aspirin acetylhydrolase. Western blotting showed that catalytic PAFAH1B2 and PAFAH1B3 subunits of the type I enzyme co-migrated with purified erythrocyte aspirin hydrolytic activity. Recombinant PAFAH1B2, but not its family member plasma PAF acetylhydrolase, hydrolyzed aspirin, and PAF competitively inhibited aspirin hydrolysis by purified or recombinant erythrocyte enzymes. Aspirin was hydrolyzed by HEK cells transfected with PAFAH1B2 or PAFAH1B3, and the competitive type I PAF acetylhydrolase inhibitor NaF reduced erythrocyte hydrolysis of aspirin. Exposing aspirin to erythrocytes blocked its ability to inhibit thromboxane A(2) synthesis and platelet aggregation. Not all individuals or populations are equally protected by aspirin prophylaxis, the phenomenon of aspirin resistance, and erythrocyte hydrolysis of aspirin varied 3-fold among individuals, which correlated with PAFAH1B2 and not PAFAH1B3. We conclude that intracellular type I PAF acetylhydrolase is the major aspirin hydrolase of human blood. 相似文献
13.
《Prostaglandins & other lipid mediators》2009,88(1-4):42-46
Plasma activity of the platelet-activating factor acetylhydrolase (PAF-AH) plays an important role in inflammation and atherosclerotic process in chronic diseases. We aimed to evaluate the levels of PAF-AH activity and their association with the metabolic profile and chronic complications in patients with type 1 diabetes. The study included 118 outpatients (54 males) aged 27.1 ± 11.3 years with disease duration of 12.3 ± 8.5 years with (n = 38) or without (n = 80) diabetes complications and 96 control subjects (48 males) matched for age, gender, body mass index and smoking habits. The serum levels of PAF-AH activity were higher in patients either with or without chronic complications (16 ± 5.3 and 14 ± 5.4 nmol/(min mL), respectively) than in controls (13 ± 5.1 nmol/(min mL), P = 0.02). In the total population, PAF-AH activity was correlated with age, HDL-cholesterol, total cholesterol and LDL-cholesterol. In patients, PAF-AH activity was correlated with age, HbA1c, uric acid, HDL-cholesterol, cholesterol, LDL-cholesterol, cholesterol/HDL-cholesterol ratio and the LDL-cholesterol/HDL-cholesterol ratio. It is concluded that PAF-AH plasma activity could be a novel candidate for low-grade inflammatory marker in patients with type 1 diabetes. 相似文献
14.
Gomes MB Cobas RA Nunes E Nery M Castro-Faria-Neto HC Tibiriçá E 《Prostaglandins & other lipid mediators》2008,87(1-4):42-46
Plasma activity of the platelet-activating factor acetylhydrolase (PAF-AH) plays an important role in inflammation and atherosclerotic process in chronic diseases. We aimed to evaluate the levels of PAF-AH activity and their association with the metabolic profile and chronic complications in patients with type 1 diabetes. The study included 118 outpatients (54 males) aged 27.1+/-11.3 years with disease duration of 12.3+/-8.5 years with (n=38) or without (n=80) diabetes complications and 96 control subjects (48 males) matched for age, gender, body mass index and smoking habits. The serum levels of PAF-AH activity were higher in patients either with or without chronic complications (16+/-5.3 and 14+/-5.4 nmol/(min mL), respectively) than in controls (13+/-5.1 nmol/(min mL), P=0.02). In the total population, PAF-AH activity was correlated with age, HDL-cholesterol, total cholesterol and LDL-cholesterol. In patients, PAF-AH activity was correlated with age, HbA1c, uric acid, HDL-cholesterol, cholesterol, LDL-cholesterol, cholesterol/HDL-cholesterol ratio and the LDL-cholesterol/HDL-cholesterol ratio. It is concluded that PAF-AH plasma activity could be a novel candidate for low-grade inflammatory marker in patients with type 1 diabetes. 相似文献
15.
Study of the paraoxonase and platelet-activating factor acetylhydrolase activities with aging 总被引:2,自引:0,他引:2
Milochevitch C Khalil A 《Prostaglandins, leukotrienes, and essential fatty acids》2001,65(5-6):241-246
The purpose of this study was to investigate, with aging, the activity of two enzymes associated to HDL and responsible for its anti-atherogenic activity; paraoxonase (PON1) and platelet-activating factor acetylhydrolase (PAF-AH). Ninety-five subjects aged between 26 and 77 years were recruited for the study. The prevalence of phenotype A, AB, and B in our subjects group was 69.47,21.05 and 9.47% respectively. Plasma as well as HDL paraoxonase activity decreased significantly with aging (r =-0.218, P < 0.039) and (r = -0.280, P < 0.006) respectively. PAF-AH activity was unchanged with aging however, we noted a negative correlation between PAF-AH and PON1 activity in HDL (r = -0.243, P < 0.02) and in LDL vs HDL (r =-0.462, P < 0.001). 相似文献
16.
Human plasma platelet-activating factor acetylhydrolase. Association with lipoprotein particles and role in the degradation of platelet-activating factor 总被引:17,自引:0,他引:17
D M Stafforini T M McIntyre M E Carter S M Prescott 《The Journal of biological chemistry》1987,262(9):4215-4222
Platelet-activating factor (PAF) is a bioactive phospholipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) synthesized by a variety of mammalian cell types. PAF induces hypotension, and activates neutrophils and platelets, among other actions. Removal of the acetyl moiety abolishes biological activity, so this reaction may regulate the concentration of PAF and its physiological effects. We have studied the significance of this reaction, which is catalyzed in vitro by an acetylhydrolase present in mammalian plasma, blood cells, and tissues. We have shown that the plasma PAF-acetylhydrolase is responsible for the degradation of PAF in whole human blood and that alternate pathways for PAF degradation in plasma or blood cells are negligible. Human plasma PAF-acetylhydrolase is associated with low and high density lipoproteins (LDL and HDL with apoE). We have confirmed that the activity is a stable component of these particles by density gradient ultracentrifugation, chromatography on heparin-agarose, and immunoprecipitation. The LDL-associated activity accounts for most or all of the PAF degradation that occurs in plasma ex vivo, while the HDL-associated activity contributes little to this process. However, the two activities likely are due to a single protein since the HDL- and LDL-associated PAF-acetylhydrolase activities can transfer from one lipoprotein to the other. These transfer processes are pH-dependent and specific, since they only occur from LDL to a well characterized subclass of HDL (apoE-containing HDL) and vice versa. We discuss the equilibrium between the two particles and the role that this process may have in vivo. 相似文献
17.
E B Tarbet D M Stafforini M R Elstad G A Zimmerman T M McIntyre S M Prescott 《The Journal of biological chemistry》1991,266(25):16667-16673
Platelet-activating factor (PAF) is a phospholipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) with diverse physiological effects. It has been implicated as a mediator of inflammation, allergy, shock, and thrombosis. Plasma contains an enzyme, PAF acetylhydrolase, that catalyzes the degradation of PAF, and the level of this enzyme may regulate the concentration of PAF in the blood and extracellular spaces under some conditions. Thus, the cellular source(s) of this enzyme and the factors that regulate its synthesis and secretion are issues that may have important physiological and pathological implications. We found that cultures of Hep G2, a human hepatocarcinoma line, secreted PAF acetylhydrolase activity. Optimal secretion occurred in medium that contained serum, and the newly secreted PAF acetylhydrolase was associated with high density and low density lipoproteins (LDL and HDL, respectively), just as the enzyme is in plasma. In the absence of serum. PAF acetylhydrolase was secreted with a particle that had a density similar to HDL. Apolipoproteins B and E were found in the same fractions. We tested the effects of a variety of hormones on the secretion of PAF acetylhydrolase and found that secretion was inhibited by 17 alpha-ethynylestradiol with a maximal effect at 30 microM. This may account for the observation of others that estrogens reduce the activity of PAF acetylhydrolase in the plasma. The PAF acetylhydrolase secreted by Hep G2 cells appeared to be identical to the enzyme in human plasma based on substrate specificity, association with LDL and HDL, response to inhibitors, and reactivity with antibodies against the plasma PAF acetylhydrolase. In conclusion, we have demonstrated that hepatocytes in culture secrete a PAF acetylhydrolase that is apparently identical to the plasma form. The secretion is constitutive but may also be regulated in response to hormonal stimulation. 相似文献
18.
Differential expression of platelet-activating factor acetylhydrolase in macrophages and monocyte-derived dendritic cells 总被引:2,自引:0,他引:2
Al-Darmaki S Schenkein HA Tew JG Barbour SE 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(1):167-173
Although macrophages (Mphi) and monocyte-derived dendritic cells (MDDC) come from a common precursor, they are distinct cell types. This report compares the two cell types with respect to the metabolism of platelet-activating factor (PAF), a biologically active lipid mediator. These experiments were prompted by our studies of localized juvenile periodontitis, a disease associated with high IgG2 production and a propensity of monocytes to differentiate into MDDC. As the IgG2 Ab response is dependent on PAF, and MDDC selectively induce IgG2 production, we predicted that PAF levels would be higher in MDDC than in Mphi. To test this hypothesis, human MDDC were prepared by treating adherent monocytes with IL-4 and GM-CSF, and Mphi were produced by culture in M-CSF. Both Mphi and MDDC synthesized PAF; however, MDDC accumulated significantly more of this lipid. We considered the possibility that PAF accumulation in MDDC might result from reduced turnover due to lower levels of PAF acetylhydrolase (PAFAH), the enzyme that catabolizes PAF. Although PAFAH increased when monocytes differentiated into either cell type, MDDC contained significantly less PAFAH than did Mphi and secreted almost no PAFAH activity. The reduced levels of PAFAH in MDDC could be attributed to lower levels of expression of the enzyme in MDDC and allowed these cells to produce PGE(2) in response to exogenous PAF. In contrast, Mphi did not respond in this manner. Together, these data indicate that PAF metabolism may impinge on regulation of the immune response by regulating the accessory activity of MDDC. 相似文献
19.
Increased activity of the platelet-activating factor acetylhydrolase in plasma low density lipoprotein from patients with essential hypertension 总被引:2,自引:0,他引:2
We have measured activity of platelet-activating factor (PAF) acetylhydrolase, an enzyme that specifically inactivates PAF, in plasma from patients with essential hypertension and healthy controls. The average activities in 34 patients and 22 controls were 113 +/- 60 and 79 +/- 32 nmol/ml/min, respectively, and the difference was significant (p less than 0.05). Approximately three fourths of the total plasma activity was recovered in LDL, with the remainder in HDL; and there was a significant difference in the activity associated with the LDL between patients and controls. The relative distribution of the activity among lipoproteins was almost equal in the two groups, and there was no difference in plasma lipids or apoproteins between them. In patients there was a tendency for plasma PAF acetylhydrolase activity to increase with the length of the history of hypertension. Further studies are needed to distinguish between a number of reasons for increased levels of plasma PAF acetylhydrolase in essential hypertension. 相似文献
20.
Hydrolysis of phosphatidylcholine during LDL oxidation is mediated by platelet-activating factor acetylhydrolase 总被引:10,自引:0,他引:10
Degradation of phosphatidylcholine to lysophosphatidylcholine occurs during oxidative modification of low density lipoproteins (LDL). In this study, we have shown that this phospholipid hydrolysis is brought about by an LDL-associated phospholipase A2 that can hydrolyze oxidized but not intact LDL phosphatidylcholine. The chemical nature of the oxidized phospholipids that can act as substrates for this enzyme was not fully characterized, but we hypothesized that the specificity of the enzyme for oxidized LDL phosphatidylcholine might be explained by fragmentation of polyunsaturated sn-2 fatty acyl groups in LDL phosphatidylcholine during oxidation. To facilitate characterization of this enzyme, we therefore selected a fluorescent phosphatidylcholine substrate that had a short-chain, polar residue in the sn-2 position: 1-palmitoyl 2-(6-[7-nitrobenzoxadiazolyl]amino) caproyl phosphatidylcholine, (C6NBD PC). This substrate was efficiently hydrolyzed by LDL, but the dodecanoyl analogue of C6NBD PC, which differed only in that a 12-carbon rather than a 6-carbon acyl derivative was present in the sn-2 position, was not hydrolyzed. The phospholipase activity was heat-stable, calcium-independent, and was inhibited by the serine esterase inhibitors phenylmethylsulfonyl-fluoride and diisopropylfluorophosphate, but was resistant to p-bromophenacylbromide and dithiobisnitrobenzoic acid. The phospholipid hydrolysis could not be attributed to the action of lecithin:cholesterol acyltransferase or lipoprotein lipase. Nearly all of the activity in EDTA-anticoagulated normal plasma was physically associated with apoB-containing lipoproteins, but this apoprotein was not essential as enzyme activity was present in plasma from abetalipoproteinemic patients. These properties are very similar to those recently reported for human plasma platelet-activating factor (PAF) acetylhydrolase. In the present study, we found that acylhydrolase activity against C6NBD PC, PAF, and oxidized phosphatidylcholine copurfied through gel filtration and ion-exchange chromatography. Substrate competition was demonstrated between C6NBD PC, PAF, and oxidized 2-arachidonyl phosphatidylcholine, suggesting that a single enzyme was active against all three substrates. The enzyme had an apparent molecular weight of 40,000-45,000 by high pressure gel exclusion chromatography. Inhibition of this activity with disopropyfluorophosphate prior to oxidative modification of LDL prevented phospholipid hydrolysis but did not affect the production of thiobarbituric acid reactive compounds or the change in electrophoretic mobility. In addition, this inhibition of phospholipase did not prevent the rapid degradati 相似文献