首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T cell activation antigen CD26 has been recently identified as the cell surface ectopeptidase dipeptidyl peptidase IV (DPP-IV). DPP-IV is found on many cell types, including lymphocytes, epithelial cells, and certain endothelial cells. The MRC OX61 monoclonal antibody (MAb) which specifically recognises rat DPP-IV was used to examine the expression of CD26/DPP-IV on rat lymphocytes. The molecular nature of the antigen was examined by immunoprecipitation from thymocytes, splenocytes, and hepatocytes. Analysis by one- and two-dimensional gel electrophoresis indicated that the native form of CD26 includes a 220-kDa homodimer. On tissue sections MRC OX61 MAb stained nearly all thymocytes and in the spleen and lymph nodes predominantly stained the T cell areas. However, in immunofluorescence experiments OX61 stained 80 to 87% of lymph node cells and 78 to 85% of spleen cells. Furthermore, two-colour immunofluorescence analysis of the CD4+, CD8+, and Ig+ lymphocyte subsets indicated that only 2 to 5% of each of these subsets lacked OX61 staining. Spleen cells and thymocytes of both CD4+ and CD8+ subsets stained much more intensely with OX61 after these cells were stimulated with phytohemagglutinin. These findings indicate that rat CD26 antigen expression is not confined to the T cell population as has been suggested, but also occurs on B cells, and is increased on T cells following their activation.  相似文献   

2.
Previous work has suggested that the generative lineage within the human thymus can be defined by the selective expression of CD45 isoforms and is CD45RO- and predominantly CD45RA+. In order to physically localize these cells we have stained frozen sections of human thymus with antibodies to CD45RO (p180), and CD45RA (p205/P220), as well as with CD1 and HLA class I to define cortical and medullary areas, respectively. In the cortex, 70 to 90% of thymocytes were CD45RO+, whereas only 0.5% expressed CD45RA. Medullary cells were 30% CD45RO+, 29% CD45RA+; approximately 40% did not express detectable levels of either isoform but did express CD45 common determinants. To assess the degree of proliferation of cells expressing CD45 isoforms, we stained adjacent sections, or used double staining, with Ki67, an antibody that detects a nuclear Ag on proliferating cells. We found that CD45RA+ thymocytes are predominantly a resting medullary population with a small component in cell cycle, consistent with our analysis of human thymocytes by immunofluorescence, and with data in murine systems defining the generative lineage. To confirm that the CD1- or low, CD45RO-CD45RA+ thymocytes defined by immunofluorescence analysis were likely to have a medullary location, we analyzed the CD4/CD8 subset distribution of CD1-cells. From 80 to 90% of CD1-thymocytes are CD4+ or CD8+ single positives or CD-8- double negatives. CD1-thymocytes also include 12 to 14% CD4+8+ cells with a probable medullary location. A similar analysis of lymphocytes expressing a high density of HLA class I, which have a medullary location, confirmed the existence of CD4+8+ thymocytes in the medulla. Purified CD3-4-8- cells, previously shown to be CD1-CD45RA+, were also shown to bear a high density of HLA class I, indicating a medullary location. Correlative localization of a panel of Ag thus supports the argument for a medullary location of the thymic generative lineage.  相似文献   

3.
The structure of the CD38 molecule has been evaluated by one- and two-dimensional gel analysis and by enzymatic digestions. The source of the Ag was mainly membrane preparations obtained from MLC cells, from normal thymocytes, and from the plasmocytoma line LP-1. Membranes were solubilized in NP-40 and the extracts fractionated by immunoaffinity chromatography [using a specific anti-CD38 antibody (A10 mAb) covalently linked to Sepharose protein A]. The purified Ag migrated as a single chain of Mr = 45,000 not associated with beta 2-microglobulin. Two-dimensional IEF gel electrophoresis revealed five spots (isoelectric point (pI) range: 6.5 to 6.9). After neuraminidase treatment, the mobility of the five polypeptides shifted to a more basic pI. Endoglycosidase-H treatment reduced the Mr of CD38 by 20%, revealing a broader band centered at Mr = 36,000. Treatment of CD38 molecule with V8 Staphylococcus aureus protease yielded a single dominant band at Mr = 38,000 which was still reactive with A10 mAb. The CD38 molecular was trypsin-resistant in both denatured or native conditions. These results clearly show the glycoprotein nature of CD38 molecule, which includes 2 to 4 N-linked oligosaccharide chains containing sialic acid residues. Furthermore, the present data indicate that the CD38 molecule does not display an apparent biochemical polymorphism among the different CD38+ cells or lines.  相似文献   

4.
The 10D1 Ag is a 90-kDa homodimeric molecule specifically expressed on a subpopulation of human T cells, and is involved in an alternative pathway of T cell activation. In the present study, we have examined the expression and function of the 10D1 Ag on human thymocytes. Three-color FMF analysis showed that the 10D1 Ag was highly expressed on minor but distinct subpopulations of double-negative and CD4 single-positive thymocytes, and weakly on a part of double-positive thymocytes, but not on CD8 single-positive thymocytes. In double-negative thymocytes, the vast majority of 10D1+ cells were immature thymocytes of CD7+2+3- phenotype. Interestingly, 10D1 mAb could induce the proliferation of CD4 single-positive thymocytes in the presence of goat anti-mouse Ig to cross-link the 10D1 Ag. The treatment of thymocytes with OKT4 mAb plus C but not with OKT8 mAb plus C totally abrogated the proliferative response induced by 10D1 mAb, indicating that the 10D1-responsible thymocytes were of CD4+8- phenotype. This 10D1 mAb-induced thymocyte proliferation was perfectly dependent on the endogenous IL-2/IL-2R system since a complete inhibition was observed with anti-IL-2 and anti-IL-2R mAb. The proliferating CD4 single positive thymocytes predominantly expressed the IL-2R alpha (p55) but not a detectable level of the IL-2R beta (p75). These results indicate that, although the 10D1 Ag can be detected on the CD7+2+3-4-8- thymocytes, its functional expression is restricted to a minor more mature CD4+ thymocyte population as well as in peripheral blood T cells, and the implications of these findings are discussed.  相似文献   

5.
The T cell antigen receptor (TCR)-associated invariable membrane proteins (CD3-gamma, -delta, -epsilon and -zeta) are critical to the assembly and cell surface expression of the TCR/CD3 complex and to signal transduction upon engagement of TCR with antigen. Disruption of the CD3-zeta gene by homologous recombination resulted in a structurally abnormal thymus which primarily contained CD4- CD8- and TCR/CD3very lowCD4+CD8+ cells. Spleen and lymph nodes of CD3-zeta-/- mutant mice contained a normal number and ratio of CD4+ and CD8+ single positive cells that were TCR/CD3very low. These splenocytes did not respond to antibody cross-linking or mitogenic triggering. The V beta genes of CD4-CD8- and CD4+CD8+ thymocytes and splenic T cells were productively rearranged. These data demonstrated that (i) in the absence of the CD3-zeta chain, the CD4- CD8- thymocytes could differentiate to CD4+CD8+ TCR/CD3very low thymocytes, (ii) that thymic selection might have occurred, (iii) but that the transition to CD4+CD8- and CD4-CD8+ cells took place at a very low rate. Most strikingly, intraepithelial lymphocytes (IELs) isolated from the small intestine or the colon expressed normal levels of TCR/CD3 complexes on their surface which contained Fc epsilon RI gamma homodimers. In contrast to CD3-zeta containing IELs, these cells failed to proliferate after triggering with antibody cross-linking or mitogen. In comparison to thymus-derived peripheral T cells in the spleen and lymph nodes, the preferential expression of normal levels of TCR/CD3 in intestinal IELs suggested they mature via an independent extrathymic pathway.  相似文献   

6.
1F7, a novel cell surface molecule, involved in helper function of CD4 cells   总被引:18,自引:0,他引:18  
We have developed a monoclonal antibody, anti-1F7, that inhibits soluble Ag-driven T cell proliferation as well as PWM-driven IgG synthesis. Anti-1F7 antibody reacts with approximately 57% of unfractionated T cells, 62% of CD4+ cells, and 54% of CD8+ cells. Although the 1F7 Ag is widely distributed among lymphoid cells, this Ag on CD4+ cells is preferentially expressed on the CDw29(4B4+) helper population. Moreover, anti-1F7 antibody further subdivides the CD4+CDw29+ cell subset into CDw29+1F7+ and CDw29+1F7- populations. The CD4+CDw29+1F7+ population of cells maximally proliferates to recall Ag such as tetanus toxoid, whereas helper function for PWM-driven IgG synthesis by B cells belongs to both the CD4+CDw29+1F7+ and CD4+CDw29+1F7- population of cells. The most prominent structure defined by this antibody is a 110-kDa molecule that is different from the 135-kDa, 160-kDa, and 185-kDa glycoproteins identified by anti-CDw29 antibody and the 180-kDa glycoprotein identified by UCHL-1 antibody. It is, however, related to the molecule recognized by anti-Ta1, an activation Ag on T cells. Furthermore, although the Ta1 molecule is recognized by anti-1F7 mAb, the 1F7 family of structures also includes molecules distinct from Ta1.  相似文献   

7.
Expression and function of the UM4D4 antigen in human thymus   总被引:3,自引:0,他引:3  
UM4D4 is a newly identified T cell surface molecule, distinct from the Ag receptor and CD2, which is expressed on 25% of peripheral blood T cells, resting or activated. Monoclonal anti-UM4D4 is mitogenic for T cells and T cell clones. Since alternative activation pathways independent of Ag/MHC recognition may be important in thymic differentiation, the expression and function of UM4D4 was examined in human thymus. UM4D4 was found on the surface of 6% of thymocytes. All thymocyte subsets contained UM4D4+ cells but expression was greatest on thymocytes that were CD1- (12%), CD3+ (11%) and especially CD4-CD8- (18%). CD3+CD4- CD8- cells, most of which bear the gamma delta-receptor, were greater than or equal to 50% + for UM4D4. Moreover, anti-UM4D4 was comitogenic for thymocytes together with PMA or IL-2. Anti-UM4D4 also reacted strongly with a subset of thymic epithelial cells in both cortex and medulla. Dual color fluorescence microscopy, with anti-UM4D4 and antibodies to other thymic epithelial Ag, showed UM4D4 expression on neuroendocrine thymic epithelium but not on thymic fibrous stroma. Thus, UM4D4 is expressed on, and represents an activation pathway for, a subset of thymic T cells. In addition, this determinant, initially identified as a novel T cell activating molecule, is broadly expressed by neuroendocrine thymic epithelium. Although the function of UM4D4 on the thymic epithelial cells is not yet clear, it is possible that UM4D4 represents a pathway for the functional activation of a subset of the thymic epithelium as well as a subset of thymocytes, thus playing a dual role in T cell differentiation.  相似文献   

8.
A murine mAb, 7D3, was produced by fusion of spleen cells obtained from mice immunized with a rat thymic epithelial cell line, Tu-D3 and NS/1 myeloma cells. 7D3 antibody reacted with approximately 95% thymocytes, 17% spleen cells, less than 9% of mesenteric lymph node cells and 32% of bone marrow cells of rat origin. 7D3 also reacted with two rat thymic epithelial cell lines but not with a rat fibroblastic cell line. Immunochemical analysis demonstrated that 7D3 antibody recognized a single polypeptide with molecular weight of 80,000 in FTE cells and 80,000 to 96,000 in thymocytes. 7D3 antibody strongly inhibited the thymocyte binding to thymic epithelial cells. In addition, 7D3 antibody inhibited TPA-induced thymocyte aggregation. 7D3 negative rat thymic lymphoma cells bound to 7D3 positive thymic epithelial cells and this binding was inhibited by 7D3 antibody, indicating that a part of thymocyte-thymic epithelial cell binding was mediated by the interaction of 7D3 Ag and undefined ligand to 7D3.  相似文献   

9.
In addition to TCR-derived signals, costimulatory signals derived from stimulation of the CD28 molecule by its natural ligand, B7, have been shown to be required for CD4+8- T cell activation. We investigate the ability of B7 to provide costimulatory signals necessary to drive proliferation and differentiation of virgin CD4-8+ T-cells that express a transgenic TCR specific for the male (H-Y) Ag presented by H-2Db class I MHC molecules. Virgin male-specific CD4-8+ T cells can be activated either with B7 transfected chinese hamster ovary (CHO) cells and T3.70, a mAb specific for the transgenic TCR-alpha chain that is associated with male-reactivity, or by male dendritic cells (DC). Activated CD4-8+ T cells proliferated in the absence of exogenously added IL-2. IL-2 activity was detected in supernatants of CD4-8+T3.70+ cells that were stimulated with T3.70 and B7+CHO cells. The response of CD4-8+T3.70+ cells to T3.70/B7+CHO or to male DC stimulation were inhibited by CTLA4Ig, a fusion protein comprising the extracellular portion of CTLA4 and human IgG C gamma 1. It has been previously shown that CTLA4Ig binds B7 with high affinity. Staining with CTLA4Ig revealed that DC express about 50 times more B7 than CD4-8+ T cells. CTLA4Ig also specifically blocked the proliferation of male-reactive cells in vivo. We have also used an in vitro deletion assay whereby immature CD4+8+ thymocytes expressing the transgenic male-specific TCR are deleted by overnight incubation with either immobilized T3.70 or male DC to investigate the participation of the CD28/B7 pathway in the negative selection of immature thymocytes. Staining with B7Ig established that both immature murine CD4+8+ and mature CD4-8+ thymocytes express a high level of CD28. However, despite the high expression of CD28 on CD4+8+ thymocytes, it was found that deletion of CD4+8+ thymocytes expressing the male-specific TCR by the T3.70 mAb was not inhibited by B7+CHO cells. Furthermore, the deletion of these thymocytes by DC also was not inhibited by CTLA4Ig. These findings provide evidence that although signaling through CD28 can costimulate a primary anti-male response in mature CD4-8+ T cells, the CD28/B7 pathway does not appear to participate in the negative selection of immature CD4+8+ thymocytes.  相似文献   

10.
Loss of CD45R (Lp220) represents a post-thymic T cell differentiation event   总被引:26,自引:0,他引:26  
CD45R+ and CDw29+ CD4+ T cells are widely regarded as separate functionally defined T cell lineages. The work described here indicates that they represent maturation stages within the same differentiation pathway. Purified populations of CD4+ or CD8+ T cells, after stimulation with PHA, lose cell surface expression of CD45R (Lp220) and gain an increased surface density of CDw29 (4B4). Clonal analysis demonstrated that individual CD4+ CD45R+ T cells lost CD45R and acquired CDw29 with time in culture. This effect was selective for the high Mr 220-kDa form of the T200 (CD45) complex because the density of CD45, detected by an antibody to common determinants, did not decrease. This strongly indicates that CD45R+ cells are an immature stage in a lineage that culminates in CDw29 expression. To further define the expression of CD45R and CDw29, we analyzed infant thymus cells. Thymocytes include only 4 to 6% CD45R+ cells, but 95% express CDw29 in moderate density. The CD45R+ set appears to include mainly single CD4+ or CD8+, CD3 "bright" medullary cells, although only 15 to 25% of thymocytes with medullary phenotype express CD45R. In vitro culture of thymocytes with Con A and T cell growth factor induces expression of CD45R but these cells differ from the peripheral CD45R+ set by virtue of their co-expression of a high density of CDw29 (4B4) Ag. We postulate that post-thymically CD45R (Lp200) and CDw29 (4B4) comprise a functional assembly on the surface of T cells that changes in composition after stimulation with Ag or mitogen. This may result in enhanced ability of an Ag-experienced T cell to respond effectively to Ag due perhaps to a more efficient signaling complex.  相似文献   

11.
CD5 positively costimulates TCR-stimulated mature T cells, whereas this molecule has been suggested to negatively regulate the activation of TCR-triggered thymocytes. We investigated the effect of CD5 costimulation on the differentiation of CD4+CD8+ thymocytes. Coligation of thymocytes with anti-CD3 and anti-CD5 induced enhanced tyrosine phosphorylation of LAT (linker for activation of T cells) and phospholipase C-gamma (PLC-gamma) compared with ligation with anti-CD3 alone. Despite increased phosphorylation of PLC-gamma, this treatment down-regulated Ca2+ influx. In contrast, the phosphorylation of LAT and enhanced association with Grb2 led to activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase. When CD3 and CD5 on CD4+CD8+ thymocytes in culture were coligated, they lost CD8, down-regulated CD4 expression, and induced CD69 expression, yielding a CD4+(dull)CD8-CD69+ population. An ERK inhibitor, PD98059, inhibited the generation of this population. The reduction of generation of CD4+CD8- cells resulted from decreased survival of these differentiating thymocytes. Consistent with this, PD98059 inhibited the anti-CD3/CD5-mediated Bcl-2 induction. These results indicate that CD5 down-regulates a branch of TCR signaling, whereas this molecule functions to support the differentiation of CD4+CD8+ thymocytes by up-regulating another branch of TCR signaling that leads to ERK activation.  相似文献   

12.
Human triple-negative (CD4-CD8-CD3-) thymocytes purified from postnatal thymus by the use of magnetic bead columns and cell sorting were cultured in bulk or cloned with a feeder cell mixture of irradiated PBL, irradiated JY cells, and PHA. Triple-negative thymocytes proliferated well under these culture conditions, and after 12 days in bulk culture they remained triple negative. Limiting dilution experiments revealed that the frequency of clonogenic cells in fresh triple-negative thymocytes was less than 1%. Of 40 clones obtained in a representative experiment, 37 were triple negative and 3 were CD4+ TCR-alpha beta+. No TCR-gamma delta+ clones were isolated. Some of the triple-negative clones expressed CD16 and were apparently NK cells. Seven representative CD16-triple-negative clones were expanded and characterized in detail. These clones shared the common cell surface phenotype of CD1-CD2+CD3-CD4--CD8-CD5-CD7+CD16-CD56+. One of them expressed cytoplasmic CD3 delta and CD3 epsilon Ag, but these Ag were not detected in any peripheral blood-derived CD16- NK clones examined for comparison. The seven CD16- thymus-derived clones exhibited significant cytolytic activity against K562. The clone that expressed cytoplasmic CD3 Ag was shown to have the germ-line configuration of the TCR-beta and TCR-gamma genes. Thus, it is suggested that in vitro culture of triple-negative thymocytes can give rise to NK-like cells, including those that express cytoplasmic CD3 Ag. In contrast to previous reports, our results gave no evidence of differentiation of triple-negative thymocytes into TCR-alpha beta+ or TCR-gamma delta+ T cells.  相似文献   

13.
T cell clones were generated from the peripheral blood of rhesus monkeys that had been immunized with a soluble Mr 185,000 Ag (SAI/II) derived from Streptococcus mutans. The clones were CD3+ CD8+ CD4- alpha beta TCR+ and were specifically stimulated to proliferate by SAI/II. The proliferative responses of the cloned cells were class I restricted, as demonstrated by reconstitution of the cloned T cells with APC matched at various MHC class I and II loci, as well as by inhibition with anti-class I and not anti-class II mAb. The function of the CD8+ cloned cells was examined in vitro for their effect on antibody synthesis by Ag-stimulated CD4+ cells and B cells from immunized animals. Indeed, four of the five clones suppressed SAI/II-specific IgG antibody synthesis when activated with SAI/II and the appropriate MHC-matched APC. Although activation of the suppressor clones was Ag specific, the effector function of the suppression of antibody synthesis was Ag nonspecific. The latter was probably mediated by lymphokines and, indeed, the culture supernatant generated by stimulating the cloned CD8+ cells with anti-CD3 mAb suppressed both the specific and nonspecific antibody synthesis. Cytotoxicity studies showed that all five CD8+ clones showed a low level of lectin-dependent cytotoxicity. However, because four of the five clones expressed significant suppression of antibody synthesis, the suppressor activity was unlikely to be a function of the weak cytotoxicity. The results suggest that immunization of rhesus monkeys with a soluble streptococcal Ag induced CD8+ alpha beta TCR+ T cell clones that show SAI/II-specific, MHC class I-restricted proliferative responses and nonspecific down-regulatory function of in vitro antibody synthesis.  相似文献   

14.
T cell activation requires Ag-specific stimulation mediated by the TCR as well as an additional stimulus provided by Ag presenting cells. On human T cells, it has been shown that antibodies to the Ag CD28 can provide a potent amplification signal for cytokine production and proliferation. Here we describe the production of a mAb to the murine homologue of CD28, and the use of this antibody to examine the function and distribution of CD28 in the mouse. Anti-murine CD28 synergizes with TCR-mediated signals to greatly enhance lymphokine production and proliferation of T cells, and the CD28 signal is not blocked by cyclosporin A. In the peripheral lymphoid organs and in the blood of the mouse, all CD4+ and CD8+ T cells express CD28. In the thymus, CD28 expression is highest on immature CD3-, CD8+ and CD4+8+ cells, and on CD4-8- cells that express alpha beta and tau delta TCR. The level of CD28 on mature CD4+ and CD8+ alpha beta TCR+ thymocytes is two- to fourfold lower than on the immature cells. The potent costimulatory function of CD28 on mature T cells, together with the high level of expression on CD4+8+ thymocytes, suggest that this costimulatory receptor might play an important role in T cell development and activation.  相似文献   

15.
CD83 expression influences CD4+ T cell development in the thymus   总被引:10,自引:0,他引:10  
Fujimoto Y  Tu L  Miller AS  Bock C  Fujimoto M  Doyle C  Steeber DA  Tedder TF 《Cell》2002,108(6):755-767
T lymphocyte selection and lineage commitment in the thymus requires multiple signals. Herein, CD4+ T cell generation required engagement of CD83, a surface molecule expressed by thymic epithelial and dendritic cells. CD83-deficient (CD83-/-) mice had a specific block in CD4+ single-positive thymocyte development without increased CD4+CD8+ double- or CD8+ single-positive thymocytes. This resulted in a selective 75%-90% reduction in peripheral CD4+ T cells, predominantly within the naive subset. Wild-type thymocytes and bone marrow stem cells failed to differentiate into mature CD4+ T cells when transferred into CD83-/- mice, while CD83-/- thymocytes and stem cells developed normally in wild-type mice. Thereby, CD83 expression represents an additional regulatory component for CD4+ T cell development in the thymus.  相似文献   

16.
The aim of this study was to describe the effects of training (running) on thymus and spleen cells in the rat. Young Wistar control rats (n = 6), rats trained for 4 wk (n = 5), and rats trained for 4 wk followed by 1 wk of intensive training (3 h/day, n = 6) were studied. Various lymphocyte surface and nuclear markers were determined by immunocytochemistry. The results show that 4 wk of training 1) decreased the percentage of bromodeoxyuridine (BrdU+) thymocytes (cell in phase S of the cycle, immature thymocytes; P less than 0.05) and the viability of thymocytes stimulated with concanavalin A (Con A; P less than 0.05) and 2) increased the absolute number of CD8+ (suppressor/cytotoxic T cells; 29%) and the percentage of CD8+ splenocytes (P less than 0.01). An additional week of intensive training in the 4-wk trained rats induced 1) a decrease in the absolute number of thymocytes (25%, P less than 0.05), TCR+ thymocytes, splenocytes (28%, P less than 0.01), T, CD4+ (helper T cells; 34%), and CD8+ (31%) splenocytes (P less than 0.01) and 2) an increase in the viability of splenocytes after stimulation with Con A for 72 h (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In this paper we describe the avian homolog of mammalian CD45. We show that this Ag is expressed on all leukocytes but not on erythroid cells or their immediate precursors. Immunoprecipitations demonstrated that B lineage cells from the bursa of Fabricius expressed a higher molecular mass variant (215 kDa) than did T lineage cells from the thymus (190 kDa), and crucially, these high molecular mass molecules had intrinsic phosphotyrosine phosphatase activity characteristic of mammalian CD45. We show that levels of CD45 expression as detected by mAb LT40 in the avian thymus are heterogeneous and further that mAb LT40 can deplete all phosphotyrosine phosphatase activity from thymocyte membrane preparations. Therefore total levels of CD45 are heterogeneous among avian thymocytes. Specifically, 87 to 89% of thymocytes expressed fourfold higher levels of surface CD45 (CD45hi) than the remaining 11 to 13% (CD45lo). The CD45lo population contained exclusively thymocytes with the phenotype CD3-4-8lo, characteristic of the immediate precursors to the CD3-4+8+ thymic population which are CD45hi. The shift from low to high levels of surface CD45 expression therefore occurred at the same stage as the transition from CD4-8lo to CD4+8+ and before the expression of CD3. The protein tyrosine kinase activity associated with CD4 and CD8 (p56lck) and the phosphatase activity of CD45 have been implicated elsewhere in jointly regulating peripheral T cell signal transduction and subsequent cellular responses. The coordinated expression of high levels of CD45 with both CD4 and CD8 in the avian thymus supports the possibility that these molecules may function together in regulating thymocyte growth and/or differentiation.  相似文献   

18.
A novel thymocyte subpopulation expressing an unusual TCR repertoire was identified by high surface expression of the Ly-6C Ag. Ly-6C+ thymocytes were distributed among all four CD4/CD8 thymocyte subsets, and represented a readily identifiable subpopulation within each one. Ly-6C+ thymocytes express TCR-alpha beta, arise late in ontogeny, and appear in the CD4/CD8 developmental pathway after birth in a sequence that resembles that followed by conventional Ly-6C- cells during fetal ontogeny. Most interestingly, adult Ly-6C+ thymocytes express an unusual TCR-V beta repertoire that is identical to that expressed by CD4-CD8-TCR-alpha beta+ thymocytes in its overexpression of TCR-V beta 8 and in its expression of some potentially autoreactive TCR-V beta specificities. This unusual TCR-V beta repertoire was even expressed by Ly-6C+ thymocytes contained within the CD4+ CD8- 'single positive' thymocyte subset. Thus, expression of this unusual TCR-V beta repertoire is not limited to CD4-CD8-thymocytes, and is unlikely to be a consequence of their double negative phenotype. Rather, we think that Ly-6C+TCR-alpha beta+ thymocytes and CD4-CD8-TCR-alpha beta+ are developmentally interrelated, a conclusion supported by several lines of evidence including the selective failure of both Ly-6C+ and CD4-CD8-TCR-alpha beta+ thymocyte subsets to appear in TCR-beta transgenic mice. In contrast, peripheral Ly-6C+ T cells are developmentally distinct from Ly-6C+ thymocytes in that peripheral Ly-6C+ T cells expressed a conventional TCR-V beta repertoire and developed normally in TCR-beta transgenic mice in which Ly-6C+ thymocytes failed to arise. We conclude that: 1) expression of a skewed TCR-V beta repertoire is a characteristic of Ly-6C+TCR-alpha beta+ thymocytes as well as CD4-CD8-TCR-alpha beta+ thymocytes, and is not unique to thymocytes expressing neither CD4 nor CD8 accessory molecules; and 2) Ly-6C+ thymocytes are developmentally linked to CD4-CD8-TCR-alpha beta+ thymocytes, but not to Ly-6C+ peripheral T cells. We suggest that Ly-6C+TCR-alpha beta+ thymocytes are not the developmental precursors of Ly-6C+ peripheral T cells, but rather may be the developmental precursors of CD4-CD8-TCR-alpha beta+ thymocytes.  相似文献   

19.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

20.
A monoclonal antibody, FT2 (IgG1 kappa) prepared against cat thymocytes, was found to be reactive with an antigenic determinant expressed by approximately 76% of thymocytes, 15% of blood mononuclear cells, 14% of splenocytes, and 1% of bone marrow cells. The FT2-reactive determinant was not expressed on B cells, macrophages, granulocytes, or erythrocytes. Both FT2+ and FT2- populations of peripheral blood mononuclear cells were capable of proliferative responses to the T cell mitogens Con A and PHA. When splenocytes were sensitized to the lymphoblastoid cell line, 79p90, cytotoxic T cells were found in the FT2+ population and were absent from the FT2- population. Conversely, the FT2- population contained the helper T cell activity required for pokeweed mitogen-induced B cell differentiation. Under nonreducing conditions, the FT2 antigen had an apparent m.w. of 71,000. When reduced, subunits of 31,000 and 38,000 apparent m.w. were observed. The data suggest that the FT2 antibody identifies the feline analog of the human T8/Leu-2, murine Ly-2 molecules expressed by cytotoxic/suppressor T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号