首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Nuclear poly(ADP-ribose) polymerase levels as well as the DNA strand break levels of whole-brain neuronal and astroglial cells were investigated. Three- and 30-month-old rats were used. Low-molecular-weight neurofilaments and glutamine synthetase served as neuronal and astroglial markers, respectively. A large increase in the poly(ADP-ribose) polymerase activity was observed in the neurons (threefold) and astrocytes (3.7-fold) derived from 30-month-old rats. Similarly, the amount of poly(ADP-ribose) polymerase, evaluated per milligram of DNA, increased ∼3.5-fold in neurons and 3.9-fold in astrocytes prepared from 30-month-old rats. Whether the increase in the poly(ADP-ribose) polymerase activity was due to an enhanced rate of DNA strand break was investigated by determining the rate of DNA unwinding. A significant increase in DNA unwinding rate was detected in the neurons (2.7-fold), although a lower increase was observed in the astroglia (1.3-fold) of aged animals.  相似文献   

2.
Rat cells infected with the B77 strain of avian sarcoma virus [R(B77) cells] produced no virus-like particles but contained information for the production of infectious B77 virus. (3)H-labeled deoxyribonucleic acid (DNA) product of the B77 virus endogenous DNA polymerase system was used to determine the relative amounts of B77 virus-specific ribonucleic acid (RNA) in B77 virus-infected chicken and R(B77) cells. R(B77) cells were found to contain much less B77 virus RNA than did B77 virus-infected chicken cells. Ribonuclease-sensitive DNA polymerase activity was present in high-speed pellet fractions from Nonidet extracts of B77 virus-infected rat cells. Similar preparations from some uninfected rat cells contained lesser amounts of a similar ribonuclease-sensitive DNA polymerase activity. The endogenous template for the DNA polymerase activity in high-speed pellet fractions from R(B77) cells was not related to B77 virus RNA or to RNA of a rat C-type virus. The DNA product of the endogenous DNA polymerase in high-speed pellet fractions of R(B77) cells hybridized to a small extent with RNA from the same fraction and to a similar extent with RNA from uninfected rat cells.  相似文献   

3.
Herein, the ribonuclease H (RNase H) activity assay based on the target‐activated DNA polymerase activity is described. In this method, a detection probe composed of two functional sequences, a binding site for DNA polymerase and a catalytic substrate for RNase H, serves as a key component. The detection probe, at its initial state, suppresses the DNA polymerase activity, but it becomes destabilized by RNase H, which specifically hydrolyzes RNA in RNA/DNA hybrid duplexes. As a result, DNA polymerase recovers its activity and initiates multiple primer extension reactions in a separate TaqMan probe‐based signal transduction module, leading to a significantly enhanced fluorescence “turn‐on” signal. This assay can detect RNase H activity as low as 0.016 U mL?1 under optimized conditions. Furthermore, its potential use for evaluating RNase H inhibitors, which have been considered potential therapeutic agents against acquired immune deficiency syndrome (AIDS), is successfully explored. In summary, this approach is quite promising for the sensitive and accurate determination of enzyme activity and inhibitor screening.  相似文献   

4.
5.
Taq DNA聚合酶功能区域的定位   总被引:4,自引:0,他引:4  
通过参U法定点突变产生了TaqDNA聚合酶N端分别缺失3个,235个,287个和443个氨基酸的4个缺失体,利用Bal-31连续缺失法产生了TaqDNA聚合酶的C端分别缺失了2个、16个、29个、32个、34个氨基酸的5个缺失体.经DNA聚合酶活性测定表明N端缺失3个,235个,287个氨基酸后活力和完整的Taq相近,而缺失443个氨基酸后则失去了DNA聚合酶活力;C端的5个缺失体都失去了DNA聚合酶活性.据此TaqDNA聚合酶的功能区域被定位在287~832氨基酸之间.  相似文献   

6.

DNA polymerase activities were scanned in a Pyrococcus furiosus cell extract to identify all of the DNA polymerases in this organism. Three main fractions containing DNA polymerizing activity were subjected to Western blot analyses, which revealed that the main activities in each fraction were derived from three previously identified DNA polymerases. PCNA (proliferating cell nuclear antigen), the sliding clamp of DNA polymerases, did not bind tightly to any of the three DNA polymerases. A primer usage preference was also shown for each purified DNA polymerase. Considering their biochemical properties, the roles of the three DNA polymerases during DNA replication in the cells are discussed.  相似文献   

7.
8.
The RNA world hypothesis states that the early evolution of life went through a stage where RNA served as genome and as catalyst. The replication of RNA world organisms would have been facilitated by ribozymes that catalyze RNA polymerization. To recapitulate an RNA world in the laboratory, a series of RNA polymerase ribozymes was developed previously. However, these ribozymes have a polymerization efficiency that is too low for self-replication, and the most efficient ribozymes prefer one specific template sequence. The limiting factor for polymerization efficiency is the weak sequence-independent binding to its primer/template substrate. Most of the known polymerase ribozymes bind an RNA heptanucleotide to form the P2 duplex on the ribozyme. By modifying this heptanucleotide, we were able to significantly increase polymerization efficiency. Truncations at the 3'-terminus of this heptanucleotide increased full-length primer extension by 10-fold, on a specific template sequence. In contrast, polymerization on several different template sequences was improved dramatically by replacing the RNA heptanucleotide with DNA oligomers containing randomized sequences of 15 nt. The presence of G and T in the random sequences was sufficient for this effect, with an optimal composition of 60% G and 40% T. Our results indicate that these DNA sequences function by establishing many weak and nonspecific base-pairing interactions to the single-stranded portion of the template. Such low-specificity interactions could have had important functions in an RNA world.  相似文献   

9.
10.
The time course of vaccinia deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase synthesis and its intracellular localization were studied with virus-infected HeLa cells. Viral RNA polymerase activity could be meassured shortly after viral infection in the cytoplasmic fraction of infected cells in vitro. However, unless the cells were broken in the presence of the nonionic detergent Triton-X-100, no significant synthesis of new RNA polymerase was detected during the viral growth cycle. When cells were broken in the presence of this detergent, extensive increases in viral RNA polymerase activity were observed late in the infection cycle. The onset of new RNA polymerase synthesis was dependent on prior viral DNA replication. Fluorodeoxyuridine (5 x 10(-5)m) prevented the onset of viral polymerase synthesis. Streptovitacin A, a specific and complete inhibitor of protein synthesis in HeLa cells, prevented the synthesis of RNA polymerase. Thus, the synthesis of RNA polymerase is a "late" function of the virus. The newly synthesized RNA polymerase activity was primarily bound to particles which sedimented during high-speed centrifugation. These particles have been characterized by sucrose gradient centrifugation. A major class of active RNA polymerase particles were considerably "lighter" than whole virus in sucrose gradients. These particles were entirely resistant to the action of added pancreatic deoxyribonuclease, and they were not stimulated by added calf thymus primer DNA. It is concluded that these particles are not active in RNA synthesis in vivo, and that activation occurs as a result of detergent treatment in vitro.  相似文献   

11.
Neuronal membranes from rat dorsal root ganglia provide a mitogenic signal to cultured Schwann cells and it has been suggested this is an important factor in regulating Schwann cell numbers during development. In this study, the influence of enteric neurons on the DNA synthesis of both Schwann cells and enteric glia has been investigated as well as the effect of axonal membrane fractions (axolemma) on enteric glia. The proliferation rate of rat Schwann cells and enteric glia was assessed in culture using [3H]thymidine uptake and autoradiography in combination with immunolabelling to identify cell types. When purified rat Schwann cells were co-cultured with guinea pig enteric neurons, their DNA synthesis rate was reduced compared with control cultures of pure Schwann cells or Schwann cells not close to neurites or neuronal cell bodies. Nevertheless, in accordance with previous findings that sensory neurons stimulate Schwann cell division, these Schwann cells increased their DNA synthesis rate when in contact with neurites from purified guinea pig or adult rat dorsal root ganglion neurons and on exposure to bovine axolemmal fractions. The enteric neurons also suppressed the DNA synthesis of enteric glia in co-cultures of purified enteric neurons and enteric glia, while bovine axolemma stimulated their DNA synthesis. These results indicate that a mitotic inhibitory signal is associated with enteric neurons and can exert its effect on both Schwann cells and enteric glia, and that enteric glia, like Schwann cells, are stimulated to divide by axolemmal fractions. It thus seems possible that during development glial cell numbers in the peripheral nervous system may be controlled by both positive and negative regulators of cell growth.  相似文献   

12.
Polymerase Activity of Pichinde Virus   总被引:5,自引:5,他引:0       下载免费PDF全文
Pichinde virus, a member of the arenavirus group, was examined for polymerase activity. Purified virus was found to contain RNA-dependent RNA polymerase but not RNA-dependent DNA polymerase activity. Since RNase but neither DNase nor actinomycin D inhibited the endogenous polymerase reaction, RNA of the virus appeared to be used as the template. The divalent cations Mg(2+) and Mn(2+) were required for optimal reactivity. The RNA product was partially resistant to RNase and the resistant portion had a sedimentation coefficient of 22 to 26S in sucrose gradients.  相似文献   

13.
Nuclei purified from chicken embryo fibroblast cells infected with influenza (fowl plague) virus contain an RNA-dependent RNA polymerase. The in vitro activity of this enzyme is insensitive to actinomycin D, and is completely destroyed by preincubation with ribonuclease. Enzyme induction is prevented if cells are treated with actinomycin D or cycloheximide at the time of infection. RNA-dependent RNA polymerase activity increases rapidly in cell nuclei from 1 h postinfection, reaches a maximum at 3 to 4 h, then declines; a similar RNA polymerase activity in the microsomal cell fraction increases from 2 h postinfection and reaches a maximum at 5 to 6 h. The characteristics of the nuclear and microsomal enzymes in vitro are similar with respect to pH and divalent cation requirements. The in vitro products of enzyme activity present in the nuclear and microsomal fractions of cells infected for 3 and 5 h were characterized by sucrose density gradient analysis, and annealing to virion RNA. The microsomal RNA polymerase product contained 67 and 93% RNA complementary to virion RNA at 3 and 5 h, respectively; for the nuclear RNA polymerase product these values were 40% in each case.  相似文献   

14.
RNA Polymerase Binding Sites of Phage fd Replicative Form DNA   总被引:3,自引:0,他引:3  
  相似文献   

15.
We have investigated the role of poly(ADP-ribose) polymerase (PARP) activation in rat brain in a model of sublethal transient global ischemia. Adult male rats were subjected to 15 min of ischemia with brain temperature reduced to 34 degrees C, followed by 1, 2, 4, 8, 16, 24, and 72 h of reperfusion. PARP mRNA expression was examined in the hippocampus using quantitative RT-PCR, northern blot analysis, and in situ hybridization. Protein expression was assessed using western blot analysis. PARP enzymatic activity was investigated by measuring nuclear [3H]NAD incorporation. The presence of poly(ADP-ribose) polymers was assessed immunocytochemically. Although PARP mRNA and protein expressions were not altered after ischemia, enzymatic activity was increased 4.37-fold at 1 h (p < 0.05 vs. sham) and 1.73-fold (p < 0.05 vs. sham) at 24 h of reperfusion. Immunostaining demonstrated the presence of poly(ADP-ribose) polymers in CA1 neurons. Cellular NAD+ levels were not significantly altered at any time point. Furthermore, systemic administration of 3-aminobenzamide (30 mg/kg), a PARP inhibitor, prevented the increase in PARP activity at 1 and 24 h of reperfusion, significantly decreased the number of surviving neurons in the hippocampal CA1 region 72 h after ischemia (p < 0.01 vs. sham), and increased DNA single-strand breaks assessed as DNA polymerase I-mediated biotin-dATP nick-translation (PANT)-positive cells (p < 0.01 vs. sham). Furthermore, using an in vitro DNA repair assay, 3-aminobenzamide (30 mg/kg) was shown to block DNA base excision repair activity. These data suggest that the activation of PARP, without subsequent NAD+ depletion, following mild transient ischemia may be neuroprotective in the brain.  相似文献   

16.
Yeast mitochondrial RNA polymerase was purified and resolved into 2 distinct fractions. Peak A was found to be nonspecific and exhibited characteristics of the core polymerase, whereas peak B exhibited characteristics of the holoenzyme.In vitro replication assays were carried out, using the peak B enzyme, the clonedori sequences and other DNA templates. It was found thatori 2 was the most efficient template for RNA polymerase primed DNA synthesis, as compared to all the other templates studied.  相似文献   

17.
The synthesis of cell-specific ribonucleic acid (RNA) appeared to be stimulated in human embryonic kidney (HEK) cultures infected with adenovirus 2 or 12. Deoxyribonucleic acid (DNA)-RNA hybridization experiments revealed that by 44 to 70 hr after infection with either virus, the relative amount of pulse-labeled RNA capable of hybridizing with HEK cell DNA increased considerably; such RNA was detected in both nuclear and cytoplasmic fractions. The main increase in apparent host RNA synthesis was preceded by (i) a relatively early transient stimulation of the DNA-dependent RNA polymerase activity in isolated nuclei, and (ii) a small but consistently observed increase in the rate of acetylation of lysine-rich and arginine-rich histone fractions. The Mn2+-(NH4)2SO4 and Mg2+-activated RNA polymerase reactions measured in nuclei isolated from cells infected with adenovirus 2 or 12 were stimulated at about the same time; a rapid loss of polymerase activity followed. The augmentation of the two RNA polymerase reactions found in adenovirus 12-infected cells was independent of protein synthesis. After the initial increase, the acetylation rate of histones of cells infected with adenovirus 2 or 12 declined, until late in infection it was approximately 40 to 70% of the control cell rate.  相似文献   

18.
19.
Taq DNA聚合酶具有反应速度快、温度作用范围广及良好的续进性等特点,可视为一种理想的DNA顺序分析酶。本文首先对非对称性PCR扩增过程中单、双链DNA产物的积累情况进行了分析,然后采用标记延伸二步法,对Taq DNA聚合酶的性质及影响因素进行分析。为进一步改进Taq DNA聚合酶测序的方法,本反应建立了“Klenow-型”的直接掺入标记同位素测序法,即在反应液中加入与标记核苷酸相应的一定浓度的冷dNTP。此法不但解决了二步法中引物后部分DNA顺序无法读出的缺点,而且简化了反应步骤,亦能得到令人满意的顺序分析结果,每次可读出至少400碱基的序列。  相似文献   

20.
Bst DNA聚合酶具有热稳定性、链置换活性及聚合酶活性,在体外DNA等温扩增反应中起重要作用. 本文利用Bst DNA聚合酶的5′→3′聚合酶、核苷酸(末端)转移酶及链置换酶活性发展了一种新的体外环式DNA扩增技术跨越式滚环等温扩增(saltatory rolling circle amplification,SRCA).在SRCA反应中,Bst DNA聚合酶以上游引物P1为模板合成其互补链RcP1,并和P1形成双链DNA|之后,Bst DNA聚合酶用其核苷酸转移酶活性在其P1的3′末端沿5′→3′方向随机掺入脱氧核糖核苷酸聚合形成寡聚核苷酸(dNMP)m序列,即DNA的合成反应跨越了RcP1 与下游引物P2之间的缺口|然后,以下游引物P2为模板形成互补序列(RcP2);接着,Bst DNA聚合酶继续将脱氧核糖核苷酸随机添加到RcP2的3′末端,形成(dNMP)n序列.继而,Bst DNA聚合酶以RcP1为模板,继续催化聚合反应合成互补新链,并通过其链置换酶活性替换P1|如此往复,形成[P1-(dNMP)m-RcP2-(dNMP)n …]序列.本文通过电泳、酶切、测序等方法对扩增产物进行分析,演绎出上述扩增过程,并就工作原理进行了讨论.该反应可能对开发等温扩增技术检测微生物有一定助益,也为解释环介导等温扩增技术中假阳性反应和滚环等温扩增反应中的背景信号提供了线索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号