首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Autoantibodies (aAbs) to thyroid peroxidase (TPO), the hallmark of autoimmune thyroid disease (AITD), recognize conformational epitopes restricted to an immunodominant region (IDR), divided into two overlapping domains A and B. Despite numerous efforts aimed at localizing the IDR and identifying aAb-interacting residues on TPO, only two critical amino acids, Lys(713) and Tyr(772), have been characterized. Precise and complete delineation of the other residues involved in the IDR remains to be defined. By using a recombinant anti-TPO aAb T13, we demonstrated that four regions on TPO are part of the IDR/B; one of them, located between amino acids 713 and 720, is particularly important for the binding of sera from patients suffering from AITD. To precisely define critical residues implicated in the binding of aAb to human TPO, we used directed mutagenesis and expressed the mutants in stably transfected CHO cells. Then we assessed the kinetic parameters involved in the interactions between anti-TPO aAbs and mutants by real-time analysis. We identified (i) the minimal epitope 713-717 recognized by mAb 47 (a reference antibody) and (ii) the amino acids used as contact points for two IDR-specific human monoclonal aAbs TR1.9 (Pro(715) and Asp(717)) and T13 (Lys(713), Phe(714), Pro(715), and Glu(716)). Using a rational strategy to identify complex epitopes on proteins showing a highly convoluted architecture, this study definitively identifies the amino acids Lys(713)-Asp(717) as being the key residues recognized by IDR/B-specific anti-TPO aAbs in AITD.  相似文献   

2.
Abs can tune the responses of Ag-specific T cells by influencing the nature of the epitope repertoire displayed by APCs. We explored the interaction between human self-reactive T cells and human monoclonal autoantibodies from combinatorial Ig-gene libraries derived from autoimmune thyroiditis patients and specific for the main autoantigen thyroid peroxidase (TPO). All human mAbs extensively influenced the T cell epitope repertoire recognized by different TPO-specific T cell clones. The action of the human mAbs was complex, because sometimes the same Ab suppressed or enhanced the epitopes recognized by the 10 different TPO-specific T cell clones. The human mAbs could modulate the epitope repertoire when TPO was added exogenously and when expressed constitutively on the surface of APCs. However, they could not unmask an immunodominant cryptic TPO epitope. In this study, we show that human autoantibodies influence the activity of self-reactive T cells and prove their relevance in concealing or exposing epitopes recognized by self-reactive T cells. However, our results further stress the biological significance of the immunodominant cryptic epitope we have defined and its potential importance in the evolution of autoimmunity.  相似文献   

3.
The discontinuous immunodominant region (IDR) recognized by autoantibodies directed against the thyroperoxidase (TPO) molecule, a major autoantigen in autoimmune thyroid diseases, has not yet been completely localized. By using peptide phage-displayed technology, we identified three critical motifs, LXPEXD, QSYP, and EX(E/D)PPV, within selected mimotopes which interacted with the human recombinant anti-TPO autoantibody (aAb) T13, derived from an antibody phage-displayed library obtained from thyroid-infiltrating TPO-selected B cells of Graves' disease patients. Mimotope sequence alignment on the TPO molecule, together with the binding analysis of the T13 aAb on TPO mutants expressed by Chinese hamster ovary cells, demonstrated that regions 353-363, 377-386, and 713-720 from the myeloperoxidase-like domain and region 766-775 from the complement control protein-like domain are a part of the IDR recognized by the recombinant aAb T13. Furthermore, we demonstrated that these regions were involved in the binding to TPO of sera containing TPO-specific autoantibodies from patients suffering from Hashimoto's and Graves' autoimmune diseases. Identification of the IDR could lead to improved diagnosis of thyroid autoimmune diseases by engineering "mini-TPO" as a target autoantigen or designing therapeutic peptides able to block undesired autoimmune responses.  相似文献   

4.
Human thyroperoxidase (TPO) ectodomain is successively made of myeloperoxidase-, complement control protein repeat-, and epidermal growth factor-like gene modules. However, the TPO immunodominant region targeted by autoantibodies from patients with an autoimmune thyroid disease has not been mapped on the molecule. Here, we used two purified recombinant TPO peptides produced in eukaryotic cells, which correspond to the major first and the further two gene modules of TPO. We compared by ELISA their respective immunoreactivity with that of the recombinant soluble TPO containing all the three gene modules. We used well-characterized murine and human TPO monoclonal antibodies and human autoantibodies affinity-purified from a large pool of patients' sera. We found that the TPO immunodominant region was susceptible to denaturation and required the integrity of the molecule to be correctly expressed. We concluded that TPO B-cell autoepitopes are made by amino acids from the three gene modules, which fold in one highly conformational immunodominant region.  相似文献   

5.
Thyroid peroxidase (TPO) autoantibody epitopes are largely restricted to an immunodominant region (IDR) on the extracellular region of the native molecule. Localization of the IDR has been a longstanding and difficult goal. The TPO extracellular region comprises a large myeloperoxidase-like domain, linked to the plasma membrane by two smaller domains with homology to complement control protein (CCP) and epidermal growth factor (EGF), respectively. Recent studies have focused on the CCP- and EGF-like domains as the putative location of the TPO autoantibody IDR. To address this issue, we attempted to express on the surface of transfected cells native TPO in which the CCP- and EGF-like domains were deleted, either together or individually. We used a quartet of human monoclonal autoantibodies that define the TPO IDR, as well as polyclonal TPO autoantibodies in patients' sera, to detect these mutated TPO molecules by flow cytometry. The combined CCP/EGF-like domain deletion did not produce a signal with TPO autoantibodies but did not traffic to the cell surface. In contrast, both monoclonal and polyclonal autoantibodies recognized TPO with the juxtamembrane EGF-like domain deleted equally as well as the wild-type TPO on the cell surface. TPO with the CCP-like domain deleted expressed normally on the cell surface, as determined using the polyclonal mouse antiserum. Nevertheless, this modified TPO molecule was recognized very poorly by both the human monoclonal autoantibodies and the polyclonal autoantibodies in patients' sera. In conclusion, we have clearly excluded the juxtamembrane EGF-like domain as being part of the IDR. In contrast, a component of the CCP-like domain does contribute to the IDR. These data, together with findings from other studies, localize the TPO autoantibody IDR to the junction of the CCP-like domain and the much larger myeloperoxidase-like domain on TPO.  相似文献   

6.
A lambda gt11 cDNA library was constructed from a normal human thyroid and screened with a rabbit anti-porcine thyroperoxidase antibody. A series of thyroperoxidase (TPO) clones were obtained which allowed determination of the complete primary structure of the protein. The library was also screened with serum from a patient with Hashimoto's thyroiditis, an autoimmune disease characterized by the presence in the serum of high titers of autoantibodies directed against the 'microsomal antigen' (McAg). Comparison of the cDNA sequences from TPO clones and McAg clones provides definite proof that the McAg is TPO. A short segment of TPO was characterized as bearing a major epitope involved in autoimmunity. The primary structure of TPO was 42% homologous to myeloperoxidase (MPO). It contains, in addition, a C-terminal extension with a membrane anchor region contiguous to two domains encoded by modules belonging to the EGF and C4b gene families. The existence in TPO of still another domain presenting a significant homology with a putative heme-binding region of cytochrome C oxidase polypeptide I raises the possibility that a mitochondrial gene module has contributed a piece to the evolution of a typical nuclear mosaic gene.  相似文献   

7.
The BALB/cByJ mouse strain displays an immunodominant T cell response directed at the same CD4(+) T cell epitope peptide region in human IFN-beta, as detected in a human population-based assay. BALB/cByJ mice also recognize a second region of the protein with a lesser magnitude proliferative response. Critical residue testing of the immunodominant peptide showed that both BALB/cByJ mice and the human population response were dependent on an isoleucine residue at position 129. A variant IFN-beta molecule was constructed containing the single amino acid modification, I129V, in the immunodominant epitope. The variant displayed 100% of control antiproliferation activity. Mice immunized with unmodified IFN-beta responded weakly in vitro to the I129V variant. However, BALB/cByJ mice immunized with the I129V variant were unable to respond to either the I129V variant or the unmodified IFN-beta molecule by either T cell proliferation or Ag-specific IgG1 Ab production. This demonstrates that a single amino acid change in an immunodominant epitope can eliminate an immune response to an otherwise intact therapeutic protein. The elimination of the immunodominant epitope response also eliminated the response to the subdominant epitope in the protein. Modifying functionally immunodominant T cell epitopes within proteins may obviate the need for additional subdominant epitope modifications.  相似文献   

8.
Myosin contains reactive lysine residues which are trinitrophenylated by 2,4,6-trinitrobenzene sulfonate much faster than the rest of the lysines. Here we find the location of these residues in the primary and spatial structure of myosin with the help of an anti-trinitrophenyl antibody. This antibody was raised against trinitrophenyl hemocyanin in rabbits. It reacted with trinitrophenylated myosin, and with some of the tryptic fragments of trinitrophenylated myosin. By analyzing the reaction with Western blots, it was found that the antibody preferentially reacts with the 27 kDa N-terminal fragment of the myosin head, and more weakly with the light meromyosin region of the myosin rod. The 27 kDa fragment contains the most reactive lysine residue, while the intermediate lysine residue is located in the light meromyosin region. The locations of the epitopes of the antibody were visualized on electron microscope images of rotary-shadowed trinitrophenylated myosin-antibody complexes. The distances of the epitopes to the head-rod junction of myosin were measured as 13 and 113 nm for the epitope on the head (reactive lysine residue) and for that on the rod (intermediary reactive lysine residue), respectively.  相似文献   

9.
Two types of monoclonal antibodies (MABs) against human thyroid peroxidase (TPO) have been obtained, which interact with spatially separated conformational epitopes of the antigen (Ka values are in the range 10(8)-10(9) M(-1)). The binding site of MAB F8 is in the immunodominant region of the TPO molecule, in the vicinity of the autoantigenic determinants, whereas the epitope specific for MAB A1 lies outside this location. Both MABs retain the ability to form immune complexes after solid-phase immobilization and chemical modification with a biotin derivative. The above properties suggest that MABs A1 and F8 may be used in immunoaffinity chromatography (isolation and purification of TPO from natural sources) and immunoassays for determinations of TPO (in biological fluids) and TPO autoantibodies (in human blood serum).  相似文献   

10.
Mutant forms of human serum albumin have been detected on the basis of their abnormal electrophoretic mobility which is either faster or slower than that of normal albumin. In the present work we have studied the structure of a slow variant, referred to as albumin Ge/Ct, in order to define the cause of its genetic abnormality. The protein was isolated from the serum of a young healthy woman homozygous for the variant. Analysis of CNBr fragments by isoelectric focusing allowed us to localize the mutation to the COOH-terminal region of the molecule (residues 549-585). This fragment was isolated on a preparative scale and subjected to tryptic digestion. All tryptic peptides were purified by reverse-phase high performance liquid chromatography and characterized. Sequential analysis of three abnormal peptides revealed that albumin Ge/Ct has a shortened chain with the following COOH-terminal sequence: Leu-Val-Ala-Ala-Ser-Lys580-Leu-Pro. The presence of an additional lysine residue accounts for the electrophoretic behavior of the variant. It is likely that the variant may be caused by a single base deletion in the structural gene, a Cyt in mRNA codon 580, and the consequent shift in reading frame.  相似文献   

11.
Behavior of a short preS1 epitope on the surface of hepatitis B core particles   总被引:12,自引:0,他引:12  
The major immunodominant region of hepatitis B core particles is widely recognized as the most prospective target for the insertion of foreign epitopes, ensuring their maximal antigenicity and immunogenicity. This region was mapped around amino acid residues 79-81, which were shown by electron cryo-microscopy to be located on the tips of the spikes protruding from the surface of hepatitis B core shells. Here we tried to expose a model sequence, the short immunodominant hepatitis B preS1 epitope 31-DPAFR-35, onto the tip of the spike, with simultaneous deletion of varying stretches from the major immunodominant region of the HBc molecule. Accessibility to the monoclonal anti-preS1 antibody MA18/7 and specific immunogenicity of the preS1 epitope depended on the location and length of the deletion. While chimeras with deletions within the stretch 79-88 presented the preS1 epitope on their surface and demonstrated remarkable preS1 immunogenicity, the corresponding chimeras without any deletion or with a more prolonged deletion (79-93) were unable to provide such presentation and possessed a lower specific preS1 immunogenicity. Deletion of the stretch 79-81 was sufficient to avoid the intrinsic HBc immunogenicity of the core particles, although chimeras with deleted major immunodominant region retained their property to be recognized by human polyclonal or hyperimmune anti-HBc antibodies.  相似文献   

12.
Two types of monoclonal antibodies (MABs) against human thyroid peroxidase (TPO) have been obtained, which interact with spatially separated conformational epitopes of the antigen (K a values are in the range 108–109 M?1). The binding site of MAB F8 is in the immunodominant region of the TPO molecule, in the vicinity of the autoantigenic determinants, whereas the epitope specific for MAB A1 lies outside this location. Both MABs retain the ability to form immune complexes after solid-phase immobilization and chemical modification with a biotin derivative. The above properties suggest that MABs A1 and F8 may be used in immunoaffinity chromatography (isolation and purification of TPO from natural sources) and immunoassays for determinations of TPO (in biological fluids) and TPO autoantibodies (in human blood serum).  相似文献   

13.
Thyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto’s disease—the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B). TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined. We have used a molecular modelling approach to investigate plausible modes of TPO structure and dimer organisation. Sequence features of the C-terminus are consistent with a coiled-coil dimerization motif that most likely anchors the TPO dimer in the apical membrane of thyroid follicular cells. Two contrasting models of TPO were produced, differing in the orientation and exposure of their active sites relative to the membrane. Both models are equally plausible based upon the known enzymatic function of TPO. The “trans” model places IDR-B on the membrane-facing side of the myeloperoxidase (MPO)-like domain, potentially hindering access of autoantibodies, necessitating considerable conformational change, and perhaps even dissociation of the dimer into monomers. IDR-A spans MPO- and CCP-like domains and is relatively fragmented compared to IDR-B, therefore most likely requiring domain rearrangements in order to coalesce into one compact epitope. Less epitope fragmentation and higher solvent accessibility of the “cis” model favours it slightly over the “trans” model. Here, IDR-B clusters towards the surface of the MPO-like domain facing the thyroid follicular lumen preventing steric hindrance of autoantibodies. However, conformational rearrangements may still be necessary to allow full engagement with autoantibodies, with IDR-B on both models being close to the dimer interface. Taken together, the modelling highlights the need to consider the oligomeric state of TPO, its conformational properties, and its proximity to the membrane, when interpreting epitope-mapping data.  相似文献   

14.
Type 1 diabetes is a T cell-mediated disease in which B cells serve critical Ag-presenting functions. In >95% of type 1 diabetic patients the B cell response to the glutamic acid decarboxylase 65 (GAD65) autoantigen is exclusively directed at conformational epitopes residing on the surface of the native molecule. We have examined how the epitope specificity of Ag-presenting autoimmune B cell lines, derived from a type 1 diabetic patient, affects the repertoire of peptides presented to DRB1*0401-restricted T cell hybridomas. The general effect of GAD65-specific B cells was to enhance Ag capture and therefore Ag presentation. The enhancing effect was, however, restricted to T cell determinants located outside the B cell epitope region, because processing/presentation of T cell epitopes located within the autoimmune B cell epitope were suppressed in a dominant fashion. A similar effect was observed when soluble Abs formed immune complexes with GAD65 before uptake and processing by splenocytes. Thus, GAD65-specific B cells and the Abs they secrete appear to modulate the autoimmune T cell repertoire by down-regulating T cell epitopes in an immunodominant area while boosting epitopes in distant or cryptic regions.  相似文献   

15.
Autoantibodies to thyroglobulin (Tg) are a prominent feature of the two autoimmune thyroid diseases, chronic lymphocytic (Hashimoto's) thyroiditis and Graves' disease. Similar autoantibodies are found in the serum of many normal individuals without evidence of thyroid disease. Previous studies have indicated that patients with autoimmune thyroid disease recognize epitopes of Tg which are not usually recognized by normal individuals. The goal of this investigation was to identify peptide fragments of Tg bearing these disease-associated epitopes. For this purpose, we utilized a panel of mAbs that bind to different epitopes of the Tg molecule. One of these mAbs (137C1) reacted with an epitope that was also recognized by the sera of patients with autoimmune thyroiditis. In the present study, we show that two peptides (15 and 23 kDa) that reacted with mAb 137C1 are located in different parts of the Tg molecule. Each peptide inhibited the binding of mAb 137C1 to the other peptide and to the intact Tg, indicating that the same epitope was represented on the two peptides. Loops and helices of the secondary structure of the two peptides might be involved in the conformational epitope recognized by mAb 137C1. A striking finding of this study is that two apparently unrelated fragments of the Tg molecule bind to the same mAb. These findings may have important ramifications with regard to epitope spread and the progression of the autoimmune response to disease.  相似文献   

16.
Conformational epitopes of myelin oligodendrocyte glycoprotein (MOG) provide a major target for demyelinating autoantibodies in experimental autoimmune encephalomyelitis and recent studies indicate that a similar situation may exist in multiple sclerosis. We recently solved the crystal structure of the extracellular domain of MOG (MOG(ex)) in complex with a Fab derived from the demyelinating mAb 8-18C5 and identified the conformational 8-18C5 epitope on MOG that is dominated by the surface exposed FG loop of MOG. To determine the importance of this epitope with regard to the polyclonal Ab response to MOG(ex) we investigated the effects of mutating His(103) and Ser(104), the two central amino acids of the FG loop, on Ab binding. Mutation of these two residues reduced binding of a panel of eight demyelinating conformation-dependent mAbs to <20% compared with binding to wild-type MOG(ex), whereas substitution of amino acids that do not contribute to the 8-18C5 epitope had only a minor effect on Ab binding. The same restriction was observed for the polyclonal MOG-specific Ab response of MOG DNA-vaccinated BALB/c and SJL/J mice. Our data demonstrate that the pathogenic anti-MOG Ab response primarily targets one immunodominant region centered at the FG loop of MOG. Comparison of the structure of MOG(ex) with the structures of related IgV-like domains yields a possible explanation for the focused Ab response.  相似文献   

17.
Autoantibodies directed against the thyroid peroxidase (TPO), the thyroid microsomal antigen, are widely used to diagnose human autoimmune thyroid disease. A cloned 3.088 kb cDNA coding for the entire mature human TPO was isolated from a cDNA library derived from a pathological thyroid gland of a Graves' disease patient and used further to generate a so-called TPO epitope cDNA library in order to map linear autoantigenic epitopes involving a recombinant molecular biology approach. The TPO epitope cDNA library consisting of randomly fragmented cDNA sequences inserted in the expression vector pGEX-2T was expressed in Escherichia coli and screened with characterized anti-TPO autoantisera from Hashimoto's disease patients. All the sera were positively tested with a purified thyroid microsomal antigen fraction (TMA/TPO). Only about 1% of examined autoantisera were able to recognize bacterial expressed recombinant TPO representing sequential antigenic determinants. A corresponding autoantigenic epitope with 61 amino acids in length was located at the C-terminus of human TPO.  相似文献   

18.
Goodpasture disease is a prototype autoimmune disease characterized by the formation of autoantibodies against the heterotrimeric basement membrane collagen type IV, which causes a rapidly progressive glomerulonephritis. The pathogenic antibody response is directed to the non-collagenous (NC1) domain of the alpha3 chain of type IV collagen (alpha3(IV)NC1), but not to the homologous region of the alpha1(IV)NC1. To identify the conformation-dependent immunodominant epitope on the alpha3(IV)NC1, a variety of recombinant NC1 domains were constructed by replacing single residues of alpha3(IV) with the corresponding amino acids from the nonreactive alpha1(IV) chain. Replacement mutations were identified that completely destroyed the Goodpasture epitope in the alpha3(IV) chain. Based on the identification of these critical positions, the epitope was finally reconstructed within the frame of the alpha1(IV) chain. The substitution of nine discontinuous positions in the alpha1(IV)NC1 with amino acid residues from the alpha3 chain resulted in a recombinant construct that was recognized by all patients' sera (n = 20) but by none of the sera from healthy controls (n = 10). This provides, for the first time, the molecular characterization of a single immunodominant conformational epitope recognized by pathogenic autoantibodies in a human autoimmune disease, representing the basis for the development of new epitope-specific strategies in the treatment of Goodpasture disease.  相似文献   

19.
Human anti-thyroid peroxidase (TPO) autoantibodies (aAb) are generated during autoimmune thyroid diseases (AITD). Within recent years, increasing knowledge of the TPO-specific aAb repertoire, gained mainly by the use of combinatorial library methodology, has led to the cloning and sequencing of around 180 human anti-TPO aAb. Analysis of the immunoglobulin (Ig) variable (V) genes encoding the TPO aAb in the ImMunoGeneTics database (IMGT) (http://imgt.cines.fr) reveals major features of the TPO-directed aAb repertoire during AITD. Heavy chain VH domains of TPO-specific aAb from Graves' disease patients preferentially use D proximal IGHV1 genes, whereas those from Hashimoto's thyroiditis are characterized more frequently by IGHV3 genes, mainly located in the middle of the IGH locus. A large proportion of the anti-TPO heavy chain VH domains is obtained following a VDJ recombination process that uses inverted D genes. J distal IGKV1 and IGLV1 genes are predominantly used in TPO aAb. In contrast to the numerous somatic hypermutations in the TPO-specific heavy chains, there is only limited amino acid replacement in most of the TPO-specific light chains, particularly in those encoded by J proximal IGLV or IGKV genes, suggesting that a defect in receptor editing can occur during aAb generation in AITD. Among the predominant IGHV1 or IGKV1 TPO aAb, conserved somatic mutations are the hallmark of the TPO aAb repertoire. The aim of this review is to provide new insights into aAb generation against TPO, a major autoantigen involved in AITD.  相似文献   

20.
T-cell epitopes within viral polypeptide VP4 of the capsid protein of foot-and-mouth disease virus were analyzed using 15-mer peptides and peripheral blood mononuclear cells (PBMC) from vaccinated outbred pigs. An immunodominant region between VP4 residues 16 and 35 was identified, with peptide residues 20 to 34 (VP4-0) and 21 to 35 (VP4-5) particularly immunostimulatory for PBMC from all of the vaccinated pigs. CD25 upregulation on peptide-stimulated CD4(+) CD8(+) cells-dominated by Th memory cells in the pig-and inhibition using anti-major histocompatibility complex class II monoclonal antibodies indicated recognition by Th lymphocytes. VP4-0 immunogenicity was retained in a tandem peptide with the VP1 residue 137 to 156 sequential B-cell epitope. This B-cell site also retained immunogenicity, but evidence is presented that specific antibody induction in vitro required both this and the T-cell site. Heterotypic recognition of the residue 20 to 35 region was also noted. Consequently, the VP4 residue 20 to 35 region is a promiscuous, immunodominant and heterotypic T-cell antigenic site for pigs that is capable of providing help for a B-cell epitope when in tandem, thus extending the possible immunogenic repertoire of peptide vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号