首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined polymorphism at seven microsatellite loci among sea trout (Salmo trutta) (n = 846) collected from three areas in the Limfjord (Denmark). We then assessed their potential population source by comparing, using a mixed stock analysis (MSA) Bayesian framework, their genetic composition to that of brown trout collected from 32 tributaries pooled into nine geographical regions (n = 3801) and two hatcheries (n = 222) used for stocking. For each of the three regional sea trout groups (western, central and eastern Limfjord, n = 91, n = 426, n = 329, respectively), MSA was conducted with (i) all individuals in the group, (ii) with the subset of spawning sea trout only and (iii) with the subset of foraging, nonspawning individuals only, a subset that consisted primarily of sea trout caught during their first year at sea. For all three regional sea trout groups, a higher proportion of individuals (regardless of whether they were foraging or spawning) appear to have originated from the rivers that drain locally, than from the rivers that drain in other parts of the Limfjord. This suggests (1) that sea trout, at least during their first year at sea, undertake limited migrations within the Limfjord system and (2) that sea trout on their spawning run were caught close to their natal rivers. The proportion of sea trout of hatchery origin varied widely among all three Limfjord areas and broadly reflected regional stocking histories, with high proportions of sea trout of domestic origin in the east (39.3%), where stocking with domestic trout was practised intensely at the time of sampling, and in the west (57.2%), where a programme of coastal stocking of post smolts took place over several years in the early 1990s. In contrast, in the central Limfjord, where stocking with domestic trout was largely abandoned in the early 1990s, the proportion of sea trout of domestic origin was only 8.5%. Interestingly, for all three regional sea trout groups, virtually no sea trout of hatchery origin were found among the spawning individuals, which were on average larger than the nonspawning sea trout. These results suggest that stocked domestic brown trout that become anadromous experience high mortality at sea and are therefore largely absent among the larger, spawning individuals. We conclude that sea trout of domestic origin exhibit much reduced ability to reproduce and are unlikely to contribute significantly to the local gene pool largely because of a relatively high mortality at sea before the onset of maturity.  相似文献   

2.
The genetic diversity of Spanish brown trout is currently threatened by stocking with exogenous brown trout from Central and Northern Europe. In the Douro River basin 25% of the analysed populations in the present study showed introgression by genes of hatchery origin. The mean introgression estimated by the single locus approach ( S ) varied from 0 to 22% among populations, with a mean value of 3%. The hatchery allele markers were absent in populations where stocking ceased in 1993. However, the introgression effect was observed in all populations stocked until 1998. It seems that cessation of stocking is a good measure for restoring native populations. A thorough review of published and present data of genetic interactions between wild and stocked brown trout in Spanish rivers indicates different levels of introgression between basins. The absence of a clear geographical pattern in the introgression level suggests that ecological interactions and local stocking programmes may play an important role in stocking success. Finally, several guidelines are provided for conservation and management of native brown trout populations in Spanish rivers.  相似文献   

3.
Declines in the number of anadromous brown trout in the Karup River in Denmark, due to environmental degradation, led to the stocking of large numbers of hatchery trout during the 1980s. This practice was gradually replaced by stocking with the offspring of electrofished local trout The genetic contribution of the hatchery fish to the current population of anadromous trout in the river was estimated by restriction fragment length polymorphism analysis of mitochondrial DNA, using seven restriction endonucleases. Fish from the hatchery strain as well as from five locations in the river system, and from a further unstocked river were screened. Eight haplotypes were observed. The distribution and frequencies of the observed haplotypes revealed little genetic differentiation among stocked populations. The hatchery strain differed significantly from the stocked populations. One haplotype which was found at a high frequency in the hatchery strain was almost absent from the stocked populations. This suggests that the genetic contribution of the hatchery trout to the current population is much less than would be expected from the number of stocked fish. The possible reasons for the failure of the hatchery trout to contribute to the gene pool, and also the implications for conservation biology, are discussed.  相似文献   

4.
Brown trout Salmo trutta is one of the most valuable species inhabiting river drainages in Galicia (northwestern Spain). The influence of man, through overfishing and pollution, is thought to have caused the decline of trout in Galician rivers. To balance the possible population decline, Galician rivers have been stocked extensively with a brown trout stock of German origin during the last 30 years. In this study, the incidence of stocking practices has been investigated by an LDH-5 * genetic marker. A very low number of stocked individuals have been observed within river populations, despite the long period of repopulation. Only eight out of the 44 populations analysed showed a limited number of individuals of hatchery origin. Most stocked individuals detected were 0+ age, and showed a poor condition factor ( K < 1). Environmental factors (muscular stamina and food habits) and genetic factors (different selective conditions in hatchery medium) are invoked to explain the low viability of hatchery fish Observed in this Study.  相似文献   

5.
The effects of stocking hatchery trout into wild populations were studied in a Danish river, using microsatellite and mitochondrial DNA (mtDNA) markers. Baseline samples were taken from hatchery trout and wild trout assumed to be unaffected by previous stocking. Also, samples were taken from resident and sea trout from a stocked section of the river. Genetic differentiation between the hatchery strain and the local wild population was modest (microsatellite FST = 0.06). Using assignment tests, more than 90% of individuals from the baseline samples were classified correctly. Assignment tests involving samples from the stocked river section suggested that the contribution by hatchery trout was low among sea trout (< 7%), but high (46%) among resident trout. Hybrid index analysis and a high percentage of mtDNA haplotypes specific to indigenous trout observed among resident trout that were assigned to the hatchery strain suggested that interbreeding took place between hatchery and wild trout. The latter result also indicated that male hatchery trout contributed more to interbreeding than females. We suggest that stronger selection acts against stocked hatchery trout that become anadromous compared to hatchery trout that become resident. As most resident trout are males this could also explain why gene flow from hatchery to wild trout appeared to be male biased. The results show that even despite modest differentiation at neutral loci domesticated trout may still perform worse than local populations and it is important to be aware of differential survival and reproductive success both between life-history types and between sexes.  相似文献   

6.
Baer  J. 《Journal of fish biology》2004,65(S1):314-314
In spring 2001 and 2002 a small stream was stocked with tagged hatchery‐reared yearling brown trout ( Salmo trutta ), in order to study their influence on the resident brown trout population. The stream was separated into six sections: two sections without stocking, two sections where stocking doubled the trout population and two sections where the fish population was quadrupled. The working hypothesis was that due to food limitation (competition) growth of the wild fish will be negatively influenced by stocking, and wild fish will be displaced by the (possibly more aggressive) hatchery fish. Surprisingly, growth rate of wild and stocked fish of the same age was similar and independent of stocking density. Two main reasons may be responsible for this finding: only a low percentage of the stocked fish remained in the stream, and food was not limited during summer. Only 12–19% of the stocked fish were recaptured after six months, in contrats to 40–70% of one‐year old and up to 100% of older wild trout. The wild fish were not displaced by hatchery‐reared fish: During summer the wild fish remained more or less stationary, whereas most of the stocked trout had left their release site. The results indicate that in a natural stream stocking of hatchery reared brown trout does not influence negatively growth and movement of the wild fish independent of stocking density.  相似文献   

7.
A useful genetic marker exists through the apparent fixation of the LDH-5 * 100 allele in wild populations of brown trout in rivers from Asturias, Spain, contrasted with the near fixation of the LDH-5 * 90 allele in hatchery populations used to stock these rivers. In sampling locations where natural reproduction occurred, the * 100 allele was found exclusively in all areas having no record of hatchery stocking. The * 100 allele also predominated in three stocked areas having natural reproduction; in two of these areas a few individuals of the 0 + age class were homozygous for the * 90 allele. These data indicated that all catchable and reproductive fish originated from indigenous populations and thus the policy of hatchery supplementation was a failure in these areas.  相似文献   

8.
1.  The brown trout ( Salmo trutta ) represents one of the main freshwater resources in Spain, but habitat alterations and overharvesting have contributed to the decline or disappearance of numerous natural populations. In addition, reinforcement programs of wild populations based on releases of hatchery reared fish of exogenous origin compromise the conservation of remnant native trout resources.
2.  We present allozymic data from Central Spain trout populations including stocked and unstocked populations. Although the levels of genetic variation observed were low and affected by hatchery releases (p = 18.23%, Ho= 3.39%), they were within the range observed in other European areas.
3.  The effective introduction of hatchery reared fish is genetically homogenising the populations in the studied area and disturbing the ancestral pattern of genetic variation that distinguishes the Tajo and Duero basins. Within the eight natural populations analysed, seven had alleles assigned to the foreign trout. The introgression in these populations, following the LDH-5 * 90 allele frequency, ranged between 2% and 29.4%, but those values are not in concordance with the respective stocking effort undertaken in each population. Moreover, the release of hatchery-reared fish does not solve the problems related to the reduced size of wild populations and their recruitment instability.  相似文献   

9.
The release of hatchery-origin fish into streams with endemics can degrade the genetics of wild populations if interbreeding occurs. Starting in the 1800s, brook trout descendent from wild populations in the northeastern United States were stocked from hatcheries into streams across broad areas of North America to create and enhance fishery resources. Across the southeastern United States, many millions of hatchery-origin brook trout have been released into hundreds of streams, but the extent of introgression with native populations is not well resolved despite large phylogeographic distances between these groups. We used three assessment approaches based on 12 microsatellite loci to examine the extent of hatchery introgression in 406 wild brook trout populations in North Carolina. We found high levels of differentiation among most collections (mean FST = 0.718), and among most wild collections and hatchery strains (mean FST = 0.732). Our assessment of hatchery introgression was consistent across the three metrics, and indicated that most wild populations have not been strongly influenced by supplemental stocking. However, a small proportion of wild populations in North Carolina appear to have been strongly influenced by stocked conspecifics, or in some cases, may have been founded entirely by hatchery lineages. In addition, we found significant differences in the apparent extent of hatchery introgression among major watersheds, with the Savannah River being the most strongly impacted. Conversely, populations in the Pee Dee River watershed showed little to no evidence of hatchery introgression. Our study represents the first large-scale effort to quantify the extent of hatchery introgression across brook trout populations in the southern Appalachians using highly polymorphic microsatellite markers.  相似文献   

10.
Brown trout is a cold-adapted freshwater species with restricted distribution to headwater streams in rivers of the South European peninsulas, where populations are highly vulnerable because Mediterranean regions are highly sensitive to the global climatic warming. Moreover, these populations are endangered due to the introgressive hybridization with cultured stocks. Individuals from six remnant populations in Western Mediterranean rivers were sequenced for the complete mitochondrial DNA control region and genotyped for 11 nuclear markers. Three different brown trout lineages were present in the studied region. Significant genetic divergence was observed among locations and a strong effect of genetic drift was suggested. An important stocking impact (close to 25%) was detected in the zone. Significant correlations between mitochondrial-based rates of hatchery introgression and water flow variation suggested a higher impact of stocked females in unstable habitats. In spite of hatchery introgression, all populations remained highly differentiated, suggesting that native genetic resources are still abundant. However, climatic predictions indicated that suitable habitats for the species in these rivers will be reduced and hence trout populations are highly endangered and vulnerable. Thus, management policies should take into account these predictions to design upstream refuge areas to protect remnant native trout in the region.  相似文献   

11.
Wild and hatchery-reared 8–12-month-old (5–8 cm) trout, Salmo frurta L., were stocked in tributaries of the River Gudenb. Mortality was examined by means of electrofishing. Repeated electrofishing and handling caused a small increase in mortality. The daily instantaneous mortality rate Z was high during the first 2 months after stocking, ranging from 0.0070 for wild trout to 0.0326 for domestic trout at a stocking density of one trout per m2 and from 0.0206 (wild trout) to 0.0888 (domestic trout) at a stocking density of two trout per m2. Two months after stocking, Z decreased drastically ranging from 0.0007 (wild trout) to 0.0067 (domestic trout). When stocked, first-generation hatchery trout showed Z equal to domestic trout. Wild trout resident in the experimental stream were negatively affected by the introduction of domestic trout and wild trout from another stream. at a stocking density above the carrying capacity. It is concluded that the higher mortality of domestic trout was caused by changes in food, feeding and exercise, possibly combined with the lack of selection in the hatchery. Smolt yield at age 2+ was 3.2% (0+ trout stocked in the fall)-7.0% (1 + trout stocked in the spring) of the domestic trout stocked (approx. one-sixth to one-third of natural populations) and 65.2–68.7% of the domestic trout present before the smolt run. For first generation hatchery trout of wild origin the corresponding figures were 7.3% (age 0 +) and 93.4%, and for wild trout introduced to the experimental stream they were 11.1% (age0 +)and39.8%.  相似文献   

12.
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout ( Salmo trutta ) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.  相似文献   

13.
1. A comprehensive analysis was carried out on the effects of stocking on the genetic structure of Iberian brown trout evolutionary lineages. Introgression and genetic diversity were estimated from allozyme results of 307 populations based on own data (180) and available literature (127). Stocking records, angling regulations and environmental features related to hatchery trout performance were also analysed to determine the underlying mechanisms of the introgression effects. 2. Fifty per cent of analysed populations showed introgression by genes of hatchery origin. The mean introgression estimated by the single locus approach was 0.134. An increment of both heterozygosity and polymorphism was observed when introgression increased in stream‐dwelling populations, which could finally produce a homogenisation of the genetic structure of populations and a decrease of the species’ genetic diversity. 3. Introgression rate varied among Iberian evolutionary lineages (Evolutionary Significant Units), and was correlated with the stocking effort, except for the North Atlantic basins. The lack of adaptations for migratory behaviour in hatchery trout could explain the low impact of stocking in North Atlantic rivers where anadromous populations occur. 4. Angling regulation did not seem to influence the survival of hatchery trout. Introgression tends to be higher in heavily stocked localities with fertile waters and stable discharge, which may favour the performance of hatchery trout. 5. Trout management must be based on increasing population size by means of habitat improvement and sustainability of naturally reproducing wild stocks through appropriate angling regulations.  相似文献   

14.
Preserving of fish species and populations is important whether it is for exploitation or just for conservation. Management of fisheries aim to maintain fishable stocks that are attractive to anglers, and different means are performed. In this study from the River South Rena in southeastern Norway, conducted during 1991–2005, the effects of supportive stocking of hatchery reared brown trout (Salmo trutta L.) from 1996, and bag limit (BL) and catch‐release (CR) practice for the target species brown trout, from 2002, were explored. Effects of supplemental brown trout stocking was not noticeable, except from one year following a year of exceptional high number of stocked fish, actually 41% of the catches, whereas in the following years this proportion remained constant about 10%, and the catches remained high in 2003 and 2004, mainly due to increased angling success rate after BL‐CR introduction.  相似文献   

15.
In an experiment to investigate genetic consequences of hatchery rearing in salmon, allozyme variation at five polymorphic loci was examined in Atlantic salmon of known initial genetic composition, which were reared throughout freshwater life in the hatchery or stocked into the wild as swim-up fry. The genetic composition of the juveniles in the hatchery remained homogeneous from fertilization up to stocking, and from stocking to 2+ in the wild, however, those remaining at the hatchery developed genetic differences among smolting and nonsmolting 1+ parr. These differences were attributed to conditions leading to early smolting at 1+ among the hatchery fish, with 1+ smolts diverging from the gene pool from which they were derived, whereas those stocked into the wild did not smolt until a year later and retained the original genetic composition. The results are discussed in relation to hatchery rearing of salmon and implications for the use of reared fish in stocking and enhancement programmes.  相似文献   

16.
Steelhead, Oncorhynchus mykiss, were first introduced into the Great Lakes in the late 1800s. Subsequently, natural recruitment across the Lake Michigan basin has been regularly supplemented by primarily one hatchery strain. Recently, multiple strains derived from locations across the species native range along the west coast of the United States have also been stocked by different management agencies. Prior to 1983, hatchery supplementation of Lake Michigan steelhead populations in Michigan was largely unsuccessful due to low smolting rates of small (<120 mm) hatchery yearlings (estimated survival 0.01%). Accordingly, contributions of hatchery fish to historical adult spawning runs in Michigan tributaries were low (0–30%) across six major drainages. Large yearlings of different hatchery strains (>150 mm) have been stocked exclusively since 1983, increasing estimates of survival to smolting (90%). Consequently, the proportion of hatchery adults in spawning runs increased to 13–79%. We examined the effects of changes in stocking practices on straying rates of hatchery steelhead and to temporal changes in levels of genetic diversity and relationships among populations. We used microsatellite loci to estimate allele frequencies for six populations sampled for two time periods (1983–1984 and 1998–1999). Measures of inter-population divergence (mean FST) were not significant for either time period. However, spatial genetic relationships among historical and contemporary populations were significantly correlated with geographic distance; a result not expected if gene flow (natural straying) among populations was mediated solely by hatchery supplementation. Increased numbers of alleles in spawning adults from populations can be attributed to alleles specific to recently introduced hatchery strains.  相似文献   

17.
Comparisons of the genetic composition of brown trout Salmo trutta captured by anglers and by electrofishing based on three diagnostic microsatellite loci provided strong evidence that angling is selective in a stocked brown trout population. At two sites, anglers caught significantly younger trout and proportionally more introduced hatchery trout and hybrids than were observed in electrofishing surveys. Selective angling, in combination with a small legal catch size, may have considerably eliminated introduced trout and hybrids before spawning at the study sites, and thus may have reduced the introgression of alien genes into the local gene pool. Angling can be an important factor influencing the genetic structure of fish populations and should be taken into account in studies of introgressive hybridization in stocked fish populations and their management. In this study, demographic consequences of stocking were not assessed. Thus, even though the genetic consequences of stocking may be minimal or largely reversible through angling, resource competition between native and introduced trout, until they reach legal catch size, is expected to have a negative effect on the productivity of the indigenous trout population.  相似文献   

18.
The expression of colour marks (parr marks, red and black spots) of the amago salmon Oncorhynchus masou ishikawae was compared with microsatellite information, to see the effects of stocking hatchery fish on the phenotype of indigenous populations, which face extinction through extensive stocking. A Bayesian-based assignment test suggested introgression of two exotic clusters into one indigenous cluster in the stocked area and its vicinity. The number of parr marks was significantly higher in one hatchery-origin population, which exclusively comprised one exotic cluster. An increased number of red spots in stocked hatchery fish was probably a consequence of hatchery feeding conditions. The number of black spots was correlated with body size in many populations, except for hatchery and heavily introgressed populations. Coefficients of correlation and regression of black spots with body size, which were largest in indigenous populations, decreased with an increase of introgression by hatchery fish. As indigenous populations have low genetic diversity with high relatedness, it was inferred that the height of correlation and regression coefficients in black spots is caused by high genetic homogeneity and fixation of alleles in loci related to the increase of black spots, both of which might have collapsed with introgression by hatchery fish. These results suggest the possibility that introgression by stocked fish causes a change of phenotype in indigenous populations.  相似文献   

19.
The stocking of hatchery-origin fish into rivers and lakes has long been used in fisheries management to try to enhance catches, especially for trout and salmon species. Frequently, however, the long-term impacts of stocking programmes have not been evaluated. In this study, the authors investigate the contribution of a stocking programme undertaken to support the rod catch of sea trout in the Shetland Islands, UK. Once a highly productive recreational fishery, Shetland sea trout catches crashed in the mid-1990s. Around the time that stocking began, increases in rod catches were also reported, with advocates of the stocking highlighting the apparent success of the programme. Using a suite of genetic markers (microsatellites), this study explores the contribution of the stocking programme to the Shetland sea trout population. The authors found that the domesticated broodstock and wild spawned brown trout from seven streams were genetically distinct. Despite extensive stocking, wild spawned brown trout dominated, even in those streams with a long history of supplementation. The majority of sea trout caught and analysed were of wild origin – only a single individual was of pure stocked origin, with a small number of fish being of wild × stocked origins. This study suggests that stocking with a domesticated strain of brown trout has made only a very limited contribution to the Shetland Islands rod catch, and that the revival of sea trout numbers appears to be driven almost exclusively by recovery of trout spawned in the wild.  相似文献   

20.
Studies of interactions between farmed and wild salmonid fishes have suggested reduced fitness of farmed strains in the wild, but evidence for selection at the genic level is lacking. We studied three brown trout populations in Denmark which have been significantly admixed with stocked hatchery trout (19–64%), along with two hatchery strains used for stocking. The wild populations were represented by contemporary samples (2000–2006) and two of them by historical samples (1943–1956). We analysed 61 microsatellite loci, nine of which showed putative functional relationships [expressed sequence tag (EST)‐linked or quantitative trait loci]. FST‐based outlier tests provided support for diversifying selection at chromosome regions marked by three loci, two anonymous and one EST‐linked. Patterns of differentiation suggested that the loci were candidates for being under diversifying hitch‐hiking selection in hatchery vs. wild environments. Analysis of hatchery strain admixture proportions showed that in one wild population, two of the loci showed significantly lower admixture proportions than the putatively neutral loci, implying contemporary selection against alleles introduced by hatchery strain trout. In the most strongly admixed population, however, there was no evidence for selection, possibly because of immigration by stocked trout overcoming selection against hatchery‐derived alleles or supportive breeding practices allowing hatchery strain trout to escape natural selection. To our knowledge, this is the first study demonstrating footprints of selection in wild salmonid populations subject to spawning intrusion by farmed fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号