首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We used in situ hybridization and immunocytochemistry to investigate a possible coexistence of vasopressin and oxytocin in hypothalamic neurons of parturient rats. We found that a fraction of magnocellular neurons in the paraventricular and supraoptic nuclei contained immunostaining for both peptides as well as oxytocin and vasopressin mRNA hybridization. Colocalization of immunoreactive vasopressin and oxytocin could be observed in some of the Herring bodies in the median eminence and the posterior lobe. No coexistence of vasopressin and oxytocin was found in pregnant or in lactating animals, indicating that the observed coexistence is transitory, perhaps mediated through changing hormonal conditions peri partum.  相似文献   

2.
Vasopressin and oxytocin are synthesized by neurons in the paraventricular and supraoptic nuclei of hypothalamus. Dense concentrations of vasopressin binding sites have also been localized in these nuclei. Using a vasopressin anti-idiotypic antiserum, a dual immunocytochemical labeling procedure has been employed to elucidate the distribution of putative vasopressin receptors in anatomical relation to vasopressin and oxytocin immunoreactive cells in rat brain. Putative vasopressin receptors are observed in relation to magnocellular neurons in hypothalamus that are vasopressin immunoreactive. They do not appear to be associated with parvocellular vasopressinergic cells or oxytocin immunoreactive neurons. The presence of these presumed autoreceptors would support evidence that vasopressin may autoregulate the activity of magnocellular vasopressinergic neurons in hypothalamus.  相似文献   

3.
Oxytocin neurons represent one of the major subsets of neurons in the paraventricular hypothalamus (PVH), a critical brain region for energy homeostasis. Despite substantial evidence supporting a role of oxytocin in body weight regulation, it remains controversial whether oxytocin neurons directly regulate body weight homeostasis, feeding or energy expenditure. Pharmacologic doses of oxytocin suppress feeding through a proposed melanocortin responsive projection from the PVH to the hindbrain. In contrast, deficiency in oxytocin or its receptor leads to reduced energy expenditure without feeding abnormalities. To test the physiological function of oxytocin neurons, we specifically ablated oxytocin neurons in adult mice. Our results show that oxytocin neuron ablation in adult animals has no effect on body weight, food intake or energy expenditure on a regular diet. Interestingly, male mice lacking oxytocin neurons are more sensitive to high fat diet-induced obesity due solely to reduced energy expenditure. In addition, despite a normal food intake, these mice exhibit a blunted food intake response to leptin administration. Thus, our study suggests that oxytocin neurons are required to resist the obesity associated with a high fat diet; but their role in feeding is permissive and can be compensated for by redundant pathways.  相似文献   

4.
本实验应用地高辛标记cRNA探针原位杂交组化和免疫组化联合法在同一切片上先后显示了生长抑素mRNA神经元和催产素神经元,生长抑素mRNA神经元和神经肽Y神经元。结果表明生长抑素mRNA及神经肽Y广泛地共存于大鼠的大脑新皮质,尾壳核,以及海马等处的神经元中。所有位于大脑新皮质,尾壳核处的神经肽Y神经元均含有生长抑素mRNA,部分位于海马的神经肽Y神经元含有生长抑素mRNA,而所有位于下丘脑弓状核,室周核的神经肽Y神经元均不含有生长抑素mRNA;生长抑素mRNA与催产素虽然共同分布于下丘脑许多核区,但未见共存于同一神经元。本文对地高辛标记cRNA探针原位杂交组化以及它与免疫组化联合法的技术问题进行了讨论。  相似文献   

5.
Human intestinal trefoil factor hITF, a polypeptide of the P-domain family, was found to occur in hypothalamic neurons. With combined immunofluorescence and immunoperoxidase technique we investigated the coexistence of hITF with the neurohypophysial peptide oxytocin and the associated neurophysin I in sections of the human hypothalamus. In the supraoptic nucleus, 39.2% of magnocellular oxytocinergic perikarya show hITF immunoreactivity. A similar distribution was observed in perivascular hypothalamic oxytocinergic neurons, whereas in the paraventricular nucleus, 99% of the oxytocinergic neurons show hITF coexpression. In the periventricular nucleus (PEV), single, scattered neurons with both immunoreactivities occur. Our findings indicate that hITF and oxytocin are coexpressed in a portion of the magnocellular neurons in the human hypothalamus, and that hITF is among the neurohypophysial peptides.  相似文献   

6.
Magnocellular neurons of the supraoptic (SON) and paraventricular nuclei (PVN) show considerable plasticity during pregnancy and lactation. Prolactin receptors (PRL-R) have been identified in both these nuclei. The aim of this study was to investigate the cell type(s) expressing mRNA for the long form of prolactin receptor (PRL-R(L)) and to determine whether patterns of expression change during pregnancy and lactation. In addition, we examined effects of prolactin on excitability of oxytocin and vasopressin neurons. Sections from brains of nonpregnant, pregnant, and lactating rats were hybridized with an 35S-labeled probe to label PRL-R(L) mRNA together with digoxigenin-labeled probes to detect either oxytocin or vasopressin mRNA. In the SON, PRL-R(L) mRNA was predominantly colocalized with oxytocin mRNA, with over 80% of oxytocin neurons positive for PRL-R(L) mRNA. Very few (<10%) vasopressin neurons expressed PRL-R(L) mRNA. In the PVN, PRL-R(L) mRNA was also predominantly found in oxytocin neurons, and the proportion of PRL-R(L)-positive oxytocin neurons increased significantly during pregnancy and lactation. As in the SON, relatively few vasopressin cells contained PRL-R(L) mRNA. For in vivo electrophysiology, nonpregnant rats were anesthetized, and then extracellular single neuron activity was recorded in identified oxytocin and vasopressin neurons. After a period of baseline recording, the effect of prolactin (1 microg i.c.v.) on firing rate was examined. Prolactin treatment of nonpregnant rats induced a significant decrease in firing rates of oxytocin neurons. There was no effect of prolactin on the activity of vasopressin neurons. Together, these data provide strong evidence that prolactin directly and specifically regulates activity of oxytocin neurons.  相似文献   

7.
Summary The location, cytology and projections of vasopressin-, oxytocin-, and neurophysin-producing neurons in the guinea pig were investigated using specific antisera against vasopressin, oxytocin or neurophysin in the unlabeled antibody enzyme immunoperoxidase method. Light microscopic examination of the neurons of the supraoptic and paraventricular nuclei shows that hormone is transported not only in axons, but also in processes having the characteristics of dendrites. Neurons were found to contain only vasopressin or oxytocin; all neurons containing neurophysin appear to contain either vasopressin or oxytocin. In the neural lobe, vasopressin and oxytocin terminals are intermingled. In the median eminence, vasopressin and oxytocin fibers are intermingled in the internal zone. In a caudal portion of the median eminence, a number of vasopressin and neurophysin (but few oxytocin) axons enter the external zone from the internal zone, and surround portal capillaries. In the supraoptic nucleus, vasopressin neurons outnumber oxytocin neurons with a ratio of at least 5:1. The paraventricular nucleus is separated into two distinct groups of neurons, a lateral group consisting of only vasopressin neurons, and a medial group consisting of only oxytocin neurons. In addition to axons passing to the neurohypophysis, a number of axons appear to interconnect the supraoptic and paraventricular nuclei.Supported by the Deutsche Forschungsgemeinschaft (SFB 51, C/21 and C/27), (We 608/3)Acknowledgements. The authors are greatly indebted to Mmes. R. Köpp-Eckmann, B. Reijerman, A. Scheiber, I. Wild and Mr. U. Schrell for technical assistance, to Mmes. P. Campbell and U. Wolf for editorial assistance, and to Dr. R.R. Dries and Ferring Pharmaceuticals, Kiel, for the generous provision of high quality peptides  相似文献   

8.
Derbyshire A  Ludwig M 《Peptides》2004,25(5):833-838
TFF3 is synthesized in magnocellular oxytocin neurons of the supraoptic (SON) and paraventricular nuclei (PVN) of the rat and human hypothalamus. Here we investigated whether intracerebroventricular (i.c.v.) injection of TFF3 stimulates oxytocin release into the blood and activates Fos protein immunoreactivity in oxytocin neurons of the SON and PVN in rats. The results show that plasma oxytocin concentrations were not altered after i.c.v. injection of TFF3 or vehicle. Fos protein expression was significantly increased in both the SON and PVN after TFF3 injections and double labeling studies showed that the Fos signal was predominantly in oxytocin neurons.  相似文献   

9.
Summary Sexual stimulation of males has been reported to affect hypothalamic oxytocinergic systems. In the present study we used radioimmunoassays of micro-dissected forebrain regions and immunocytochemical analysis of Vibratome sections to study the oxytocin systems of naive males, males killed after one mating, and males mated daily with different receptive females for 3 weeks. In males that had mated once, less oxytocin-immunoreactive neurons were observed in the paraventricular (PVN), supraoptic (SON) and periventricular (NPE) nuclei than in naive males. However, after repeated matings, the number of immunoreactive neurons and their staining intensity was increased in these regions. Furthermore, additional oxytocinergic neurons could be found in the lateral subcommissural nucleus, the zona incerta and the ansa lenticularis of repeatedly mated males. Oxytocin-immunoreactive neurons were only occasionally seen in these areas in unmated males or in animals that had been killed after initial mating. Radio-immunoassays of microdissected PVN, SON, NPE and the lateral hypothalamus confirmed the reduction in oxytocin-immunoreactive levels after a first mating by a male and the increase after repeated matings. It is likely that oxytocin secretion into peripheral and portal circulation is stimulated by the endocrine conditions associated with initial mating. These immediate effects may be followed by the activation of synthesis in oxytocin neurons in several sites of the basal forebrain.  相似文献   

10.
Summary Vasopressin and oxytocin are synthesized by neurons in the paraventricular and supraoptic nuclei of hypothalamus. Dense concentrations of vasopressin binding sites have also been localized in these nuclei. Using a vasopressin anti-idiotypic antiserum, a dual immunocytochemical labeling procedure has been employed to elucidate the distribution of putative vasopressin receptors in anatomical relation to vasopressin and oxytocin immunoreactive cells in rat brain. Putative vasopressin receptors are observed in relation to magnocellular neurons in hypothalamus that are vasopressin immunoreactive. They do not appear to be associated with parvocellular vasopressinergic cells or oxytocin immunoreactive neurons. The presence of these presumed autoreceptors would support evidence that vasopressin may autoregulate the activity of magnocellular vasopressinergic neurons in hypothalamus.  相似文献   

11.
Caligioni CS  Franci CR 《Life sciences》2002,71(24):2821-2831
Hyperosmolality is a potent stimulus for the secretion of oxytocin. Oxytocinergic neurons are modulated by estrogen and oxytocin secretion in rats varies according to the phase of the estrous cycle, with higher activity during proestrus. We investigated the oxytocin secretion induced by an osmotic stimulus (0.5 M NaCl) in female rats. Plasma oxytocin and the oxytocin contents in the neurohypophysis and the paraventricular and supraoptic nuclei were determined during the morning (8-9 h) and afternoon (17-18 h) of the estrous cycle and after ovariectomy followed or not by hormone replacement. Plasma oxytocin peaked in control animals during proestrus. Oxytocin content decreased in the paraventricular and supraoptic nuclei during proestrus and estrus compared to diestrus and increased in the neurohypophysis during proestrus morning. No significant difference was observed in the oxytocin content of the neurohypophysis, nuclei or plasma between ovariectomized animals and ovariectomized animals treated with estrogen or estrogen plus progesterone. Therefore, any ovarian factor other than estrogen or progesterone seems to play a direct or indirect role in the increase in oxytocin secretion. The osmotic stimulus caused an increase in plasma oxytocin throughout the estrous cycle. A reduction in oxytocin content during diestrus and an increase during proestrus were observed in the paraventricular nuclei. In ovariectomized animals, the treatment with estrogen potentiated the response of oxytocin to the osmotic stimulus, with the response being even stronger in the case of estrogen plus progesterone. In conclusion, the ovarian steroids estrogen plus progesterone could modulate the osmoreceptor mechanisms related to oxytocin secretion.  相似文献   

12.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   

13.
Paulin  C.  Dubois  P. M.  Czernichow  P.  Dubois  M. P. 《Cell and tissue research》1978,188(2):259-264
Summary The use of antibodies against oxytocin or neurophysin enabled the detection by immunocytochemistry of oxytocin-neurophysin neurons in the hypothalamus in the human fetus. The perikarya of these neurons are located in the paraventricular and supraoptic nuclei. Immunoreactive neurons occur in the median eminence. The neurophysin immunoreactive neurons were more numerous than the oxytocin immunoreactive neurons. The specificity of the immunocytological reaction was controlled. The first oxytocin-neurophysin neurons are seen as early as the 14th week of gestation.  相似文献   

14.
At proestrous, the sensitivity of gonadotrophs to gonadotrophin-releasing hormone (GnRH) increases with repeated exposure to GnRH, a process known as self-priming. An apparently similar phenomenon can also occur in peptidergic neurons; activity-dependent oxytocin release from dendrites can be potentiated by oxytocin itself. In the brain, such priming actions have the potential to alter the strength of communication between neuronal populations for a very prolonged period. In the case of both oxytocin neurons and gonadotrophs, priming appears to involve an augmentation of a readily releasable pool of vesicles. Special issue article in honor of George Fink.  相似文献   

15.
1. The effect of external application of oxytocin on inward calcium current in dialyzed snail neurons has been investigated under clamp conditions. 2. External application of oxytocin in a dose-dependent manner (Kd 0.9 microM) inhibits inward calcium current in dialyzed neurons of the snail, Helix pomatia. 3. Inhibition of calcium current developed with the time constant of about 2 min. The degree of restoration of calcium current after oxytocin washout depends on duration of oxytocin action. 4. It has been suggested that inhibition of calcium current by oxytocin occurs in two stages, the initial one is more fast and reversible and the second one--more slow and irreversible. The participation of soluble second messengers in the inhibitory effect of oxytocin on calcium current is discussed.  相似文献   

16.
In this study, we determined the projections of oxytocin-containing neurons of the paraventricular nucleus (PVN) to phrenic nuclei and to the rostral ventrolateral medullary (RVLM) region, which is known to be involved in respiratory rhythm generation. Studies were also designed to determine oxytocin-receptor expression within the RVLM and the physiological effects of their activation on respiratory drive and arterial blood pressure. Oxytocin immunohistochemistry combined with cholera toxin B, a retrograde tracer, showed that a subpopulation of oxytocin-containing parvocellular neurons in the dorsal and medial ventral regions of the PVN projects to phrenic nuclei. Similarly, a subpopulation of pseudorabies virus-labeled neurons in the PVN coexpressed oxytocin after injection of pseudorabies virus, a transynaptic retrograde marker, into the costal region of the diaphragm. A subpopulation of oxytocin expressing neurons was also found to project to the RVLM. Activation of this site by microinjection of oxytocin into the RVLM (0.2 nmol/200 nl) significantly increased diaphragm electromyographic activity and frequency discharge (P < 0.05). In addition, oxytocin increased blood pressure and heart rate (P < 0.05). These data indicate that oxytocin participates in the regulation of respiratory and cardiovascular activity, partly via projections to the RVLM and phrenic nuclei.  相似文献   

17.

Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC’s ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.

  相似文献   

18.
Hindbrain projections of oxytocin neurons in the parvocellular paraventricular nucleus (pPVN) are hypothesized to transmit leptin signaling from the hypothalamus to the nucleus of the solitary tract (NTS), where satiety signals from the gastrointestinal tract are received. Using immunocytochemistry, we found that an anorectic dose of leptin administered into the third ventricle (3V) increased twofold the number of pPVN oxytocin neurons that expressed Fos. Injections of fluorescent cholera toxin B into the NTS labeled a subset of pPVN oxytocin neurons that expressed Fos in response to 3V leptin. Moreover, 3V administration of an oxytocin receptor antagonist, [d-(CH2)5,Tyr(Me)2,Orn8]-vasotocin (OVT), attenuated the effect of leptin on food intake over a 0.5- to 4-h period (P < 0.05). Furthermore, to determine whether oxytocin contributes to leptin's potentiation of Fos activation within NTS neurons in response to CCK, we counted the number of Fos-positive neurons in the medial NTS (mNTS) after 3V administration of OVT before 3V leptin and intraperitoneal CCK-8 administration. OVT resulted in a significant 37% decrease (P < 0.05) in the potentiating effect of leptin on CCK activation of mNTS neuronal Fos expression. Furthermore, 4V OVT stimulated 2-h food intake by 43% (P < 0.01), whereas 3V OVT at the same dose was ineffective. These findings suggest that release of oxytocin from a descending pPVN-to-NTS pathway contributes to leptin's attenuation of food intake by a mechanism that involves the activation of pPVN oxytocin neurons by leptin, resulting in increased sensitivity of NTS neurons to satiety signals.  相似文献   

19.
Zhang G  Bai H  Zhang H  Dean C  Wu Q  Li J  Guariglia S  Meng Q  Cai D 《Neuron》2011,69(3):523-535
Hypothalamic neuropeptides play essential roles in regulating energy and body weight balance. Energy imbalance and obesity have been linked to hypothalamic signaling defects in regulating neuropeptide genes; however, it is unknown whether dysregulation of neuropeptide exocytosis could be critically involved. This study discovered that synaptotagmin-4, an atypical modulator of synaptic exocytosis, is expressed most abundantly in oxytocin neurons of the hypothalamus. Synaptotagmin-4 negatively regulates oxytocin exocytosis, and dietary obesity is associated with increased vesicle binding of synaptotagmin-4 and thus enhanced negative regulation of oxytocin release. Overexpressing synaptotagmin-4 in hypothalamic oxytocin neurons and centrally antagonizing oxytocin in mice are similarly obesogenic. Synaptotagmin-4 inhibition prevents against dietary obesity by normalizing oxytocin release and energy balance under chronic nutritional excess. In conclusion, the negative regulation of synaptotagmin-4 on oxytocin release represents a hypothalamic basis of neuropeptide exocytosis in controlling obesity and related diseases.  相似文献   

20.
During pregnancy, emergence of endogenous opioid inhibition of oxytocin neurons is revealed by increased oxytocin secretion after administration of the opioid receptor antagonist, naloxone. Here we show that prolonged estradiol-17β and progesterone treatment (mimicking pregnancy levels) potentiates naloxone-induced oxytocin secretion in urethane-anesthetized virgin female rats. We further show that estradiol-17β alone rapidly modifies opioid interactions with oxytocin neurons, by recording their firing rate in anesthetized rats sensitized to naloxone by morphine dependence. Naloxone-induced morphine withdrawal strongly increased the firing rate of oxytocin neurons in morphine dependent rats. Estradiol-17β did not alter basal oxytocin neuron firing rate over 30 min, but amplified naloxone-induced increases in firing rate. Firing pattern analysis indicated that acute estradiol-17β increased oxytocin secretion in dependent rats by increasing action potential clustering without an overall increase in firing rate. Hence, rapid estradiol-17β actions might underpin enhanced oxytocin neuron responses to naloxone in pregnancy. Special issue article in honor of George Fink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号