首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
4.
5.
6.
7.
Polymorphic X-chromosome inactivation of the human TIMP1 gene.   总被引:4,自引:0,他引:4       下载免费PDF全文
X inactivation silences most but not all of the genes on one of the two X chromosomes in mammalian females. The human X chromosome preserves its activation status when isolated in rodent/human somatic-cell hybrids, and hybrids retaining either the active or inactive X chromosome have been used to assess the inactivation status of many X-linked genes. Surprisingly, the X-linked gene for human tissue inhibitor of metalloproteinases (TIMP1) is expressed in some but not all inactive X-containing somatic-cell hybrids, suggesting that this gene is either prone to reactivation or variable in its inactivation. Since many genes that escape X inactivation are clustered, we examined the expression of four genes (ARAF1, ELK1, ZNF41, and ZNF157) within approximately 100 kb of TIMP1. All four genes were expressed only from the active X chromosome, demonstrating that the factors allowing TIMP1 expression from the inactive X chromosome are specific to the TIMP1 gene. To determine if this variable inactivation of TIMP1 is a function of the hybrid-cell environment or also is observed in human cells, we developed an allele-specific assay to assess TIMP1 expression in human females. Expression of two alleles was detected in some female cells with previously demonstrated extreme skewing of X inactivation, indicating TIMP1 expression from the inactive chromosome. However, in other cells, no expression of TIMP1 was observed from the inactive X chromosome, suggesting that TIMP1 inactivation is polymorphic in human females.  相似文献   

8.
X chromosome inactivation of the human TIMP gene.   总被引:12,自引:0,他引:12       下载免费PDF全文
  相似文献   

9.
10.
We investigated the conformation of the X-linked mouse hypoxanthine-guanine phosphoribosyltransferase gene (HPRT) promoter region both in chromatin from the active and inactive X chromosomes with DNase I and in naked supercoiled DNA with S1 nuclease. A direct comparison of the chromatin structures of the active and inactive mouse HPRT promoter regions was performed by simultaneous DNase I treatment of the active and inactive X chromosomes in the nucleus of interspecies hybrid cells from Mus musculus and Mus caroli. Using a restriction fragment length polymorphism to distinguish between the active and inactive HPRT promoters, we found a small but very distinct difference in the DNase I sensitivity of active versus inactive chromatin. We also observed a single DNase I-hypersensitive site in the immediate area of the promoter which was present only on the active X chromosome. Analysis of the promoter region by S1 nuclease digestion of supercoiled plasmid DNA showed an S1-sensitive site which maps adjacent to or within the DNase I-hypersensitive site found in chromatin but upstream of the region minimally required for normal HPRT gene expression.  相似文献   

11.
12.
Early in female mammalian embryogenesis, one of the two X chromosomes is inactivated to compensate the gene dosage between males and females. One of the features of X chromosome inactivation (XCI) is the late replication of the inactivated X chromosome. This study reports the identification, by competitive PCR of nascent DNA, of a replication origin in intron 2 of the human X-linked HPRT gene, that is functional only on the inactive X. Features frequently associated with replication origins, including a peak of enhanced DNA flexibility, a perfect match to the yeast ACS sequence, a 14/15 match to the Drosophila topoisomerase II consensus, and a 20/21 match to an initiation region consensus sequence, were identified close to the replication origin. The origin is located approximately 2 kb upstream of a matrix attachment region (MAR) and also contains two A:T-rich elements, thought to facilitate DNA unwinding.  相似文献   

13.
14.
15.
Anderson CL  Brown CJ 《Human genetics》2002,110(3):271-278
X chromosome inactivation results in dosage equivalency for X-linked gene expression between males and females. However, some X-linked genes show variable X inactivation, being expressed from the inactive X in some females but subject to inactivation in other women. The human tissue inhibitor of metalloproteinases-1 ( TIMP1) gene falls into this category. As TIMP1 and its target metalloproteinases are involved in many biological processes, women with elevated TIMP1 expression may exhibit different disease susceptibilities. To address the potential impact of variable X inactivation, we analyzed TIMP1 expression levels by using an RNase protection assay. The substantial variation of TIMP1 expression observed in cells with monoallelic TIMP1 expression precluded analysis of the contribution of the inactive X to total TIMP1 RNA levels in females, so we examined expression in rodent/human somatic cell hybrids. TIMP1 expression levels varied more widely in hybrids retaining an inactive X than in those with an active X chromosome, suggesting variable retention of the epigenetic silencing mechanisms associated with X inactivation. Therefore, we investigated the contribution of methylation at the promoter to expression level variation and found that methylation of the TIMP1 promoter correlated with instability and low level expression, whereas stable TIMP1expression from the inactive X equivalent to that seen from the active X chromosome was observed when the promoter was unmethylated. Since all female cell lines examined showed methylation of the TIMP1 promoter, the contribution of expression from the inactive X appears minimal. However, as women age, they may accumulate cells stably expressing TIMP1 from the inactive X, with a resulting increase of TIMP1, which may explain some sex differences in various late-onset disorders.  相似文献   

16.
17.
18.
The human androgen-receptor gene (HUMARA; GenBank) contains a highly polymorphic trinucleotide repeat in the first exon. We have found that the methylation of HpaII and HhaI sites less than 100 bp away from this polymorphic short tandem repeat (STR) correlates with X inactivation. The close proximity of the restriction-enzyme sites to the STR allows the development of a PCR assay that distinguishes between the maternal and paternal alleles and identifies their methylation status. The accuracy of this assay was tested on (a) DNA from hamster/human hybrid cell lines containing either an active or inactive human X chromosome; (b) DNA from normal males and females; and (c) DNA from females showing nonrandom patterns of X inactivation. Data obtained using this assay correlated substantially with those obtained using the PGK, HPRT, and M27 beta probes, which detect X inactivation patterns by Southern blot analysis. In order to demonstrate one application of this assay, we examined X inactivation patterns in the B lymphocytes of potential and obligate carriers of X-linked agammaglobulinemia.  相似文献   

19.
Kutsche R  Brown CJ 《Genomics》2000,65(1):9-15
The large number of redundant sequences available in nucleotide databases provides a resource for the identification of polymorphisms. Expressed polymorphisms in X-linked genes can be used to determine the inactivation status of the genes, and polymorphisms in genes that are subject to inactivation can then be used as tools to examine X-chromosome inactivation status in heterozygous females. In this study, we have identified six new X-linked single-nucleotide polymorphisms and determined the inactivation status of these genes by examination of expression patterns in female cells previously demonstrated to have skewed inactivation, as well as by analysis of somatic cell hybrids retaining the inactive human X chromosome. Expression was seen from both alleles in females heterozygous for the RPS4X gene, confirming the previously reported expression from the inactive X chromosome. Expression of only a single allele was seen in females heterozygous for polymorphisms in the BGN, TM4SF2, ATP6S1, VBP1, and PDHA1 genes, suggesting that these genes are subject to X-chromosome inactivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号