首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
infrastructurel techniques have shown that an early event in the exocytotic fusion of a secretory vesicle is the formation of a narrow, water-filled pore spanning both the vesicle and plasma membranes and connecting the lumen of the secretory vesicle to the extracellular environment. Smaller precursors of the exocytotic fusion pore have been detected using electrophysio-logical techniques, which reveal a dynamic fusion pore that quickly expands to the size of the pores seen with electron microscopy. While it is clear that in the latter stages of expansion, when the size of the fusion pore is several orders of magnitude bigger than any known macromolecule, the fusion pore must be mainly made of lipids, the structure of the smaller precursors is unknown. Patch-clamp measurements of the activity of individual fusion pores in mast cells have shown that the fusion pore has some unusual and unexpected properties, namely that there is a large flux of lipid through the pore and the rate of pore closure has a discontinuous temperature dependency, suggesting a purely lipidic fusion pore. Moreover, comparisons of experimental data with theoretical fusion pores and with breakdown pores support the view that the fusion pore is initially a pore through a single bilayer, as would be expected for membrane fusion proceeding through a hemifusion mechanism. Based on these observations we present a model where the fusion pore is initially a pore through a single bilayer. Fusion pore formation is regulated by a macromolecular scaffold of proteins that is responsible for bringing the plasma membrane into a highly curved dimple very close to a tense secretory granule membrane, creating the architecture where the strongly attractive hydrophobic force causes the membranes to form a ‘hemifusion’ intermediate. Membrane fusion is completed by the formation of an aqueous pore after rupture of the shared bilayer. We also propose that the microenvironment of the interface when the pore first opens, dominated by the charged groups on the secretory vesicle matrix and phospholipids, will greatly influence the release of secretory products.  相似文献   

2.
Patch clamp studies of single intact secretory granules.   总被引:1,自引:0,他引:1       下载免费PDF全文
The membrane of secretory granules is involved in the molecular events that cause exocytotic fusion. Several of the proteins that have been purified from the membrane of secretory granules form ion channels when they are reconstituted in lipid bilayers and, therefore, have been thought to form part of the molecular structure of the exocytotic fusion pore. We have used the patch clamp technique to study ion conductances in single isolated secretory granules from beige mouse mast cells. We found that the membrane of the intact granule had a conductance of < 50 pS. No abrupt changes in current corresponding to the opening and closing of ion channels were observed, even under conditions where exocytotic fusion occurred. However, mechanical tension or a large voltage pulse caused the breakdown of the granule membrane resulting in the abrupt opening of a pore with an ion conductance of about 1 nS that fluctuated rapidly and could expand to an immeasurably large conductance or close completely. Surprisingly, the behavior of these pores resembled the pattern of conductance changes of exocytotic fusion pores observed in degranulating beige mast cells. This similarity supports the view that the earliest fusion pore is formed upon the breakdown of a bilayer such as that formed during hemifusion.  相似文献   

3.
The release of vesicle contents following exocytotic fusion is limited by various factors including the size of the fusion pore. Fusion pores are channel-like, narrow structures after formation and proceed through semi-stable states ('fusion pore flickering'), unless they fully expand (full fusion) or close again (transient fusion). Partial release of vesicle contents may occur during transient fusion, which was described to last between milliseconds and seconds, depending on the size of the vesicle. We studied fusion pores in a slow-secreting lung epithelial cell (type II cell) using fluorescence staining of vesicle contents (surfactant) and fluorescence recovery after photobleaching (FRAP). Surfactant is a lipidic material, which is secreted into the alveolar lumen to reduce the surface tension in the lung. We found release of surfactant to be a slow process, which can last for hours. Accordingly, fusion pores in these cells are stable structures, which appear to be a barrier for release. FRAP measurements suggest that transient fusions occasionally take place in these long-lasting fusion pores, resulting in partial release of surfactant into the extracellular space. These data suggest that postfusion mechanisms may regulate the amount of secreted surfactant.  相似文献   

4.
S Scepek  J R Coorssen    M Lindau 《The EMBO journal》1998,17(15):4340-4345
Using the patch-clamp technique, we studied the role of protein phosphorylation and dephosphorylation on the exocytotic fusion of secretory granules with the plasma membrane in horse eosinophils. Phorbol 12-myristate 13-acetate (PMA) had no effect on the amplitude and dynamics of degranulation, indicating that the formation of fusion pores is insensitive to activation of protein kinase C (PKC). Fusion pore expansion, however, was accelerated approximately 2-fold by PMA, and this effect was abolished by staurosporine. Elevating intracellular Ca2+ to 1.5 microM also resulted in a 2-fold acceleration of pore expansion; this effect was not prevented by staurosporine, indicating that intracellular Ca2+ and activation of PKC accelerate fusion pore expansion via distinct mechanisms. However, fusion pores can expand fully even when PKC is inhibited. In contrast, the phosphatase inhibitor alpha-naphthylphosphate inhibits exocytotic fusion and slows fusion pore expansion. These results demonstrate that, subsequent to its formation, fusion pore expansion is under control of proteins subject to functional changes based on their phosphorylation states.  相似文献   

5.
The swelling of the secretory granule matrix which follows fusion has been proposed as the driving force for the rapid expansion of the fusion pore necessary for exocytosis. To test this hypothesis, we have combined simultaneous measurements of secretory granule swelling using videomicroscopy with patch clamp measurements of the time course of the exocytotic fusion pore in mast cells from the beige mouse. We show that isotonic acidic histamine solutions are able to inhibit swelling of the secretory granule matrix both in purified secretory granules lysed by electroporation and in intact cells stimulated to exocytose by guanine nucleotides. In contrast to the inhibitory effects on granule swelling, the rate of expansion of the exocytotic fusion pore is unaffected. Therefore, as the rate of granule swelling was more than 20 times slower under these conditions, swelling of the secretory granule matrix due to water entry through the fusion pore cannot be the force responsible for the characteristic rapid expansion of the exocytotic fusion pore. We suggest that tension in the secretory granule membrane, which has recently been demonstrated in fused secretory granules, might be the force that drives the irreversible expansion of the fusion pore.  相似文献   

6.
Fusion pores or porosomes are basket-like structures at the cell plasma membrane, at the base of which, membrane-bound secretory vesicles dock and fuse to release vesicular contents. Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. ImmunoAFM studies demonstrated the release of vesicular contents through the pores. Transmission electron microscopy (TEM) further confirmed the presence of fusion pores, and immunoAFM, and immunochemical studies demonstrated t-SNAREs to localize at the base of the fusion pore. In the present study, the morphology, function, and composition of the immunoisolated fusion pore was investigated. TEM studies reveal in further detail the structure of the fusion pore. Immunoblot analysis of the immunoisolated fusion pore reveals the presence of several isoforms of the proteins, identified earlier in addition to the association of chloride channels. TEM and AFM micrographs of the immunoisolated fusion pore complex were superimposable, revealing its detail structure. Fusion pore reconstituted into liposomes and examined by TEM, revealed a cup-shaped basket-like morphology, and were functional, as demonstrated by their ability to fuse with isolated secretory vesicles.  相似文献   

7.
Membrane fusion is fundamental to the life of eukaryotic cells. Cellular trafficking and compartmentalization, import of food stuffs and export of waste, inter-cellular communication, sexual reproduction, and cell division are all dependent on this basic process. Yet, little is known about the molecular mechanism(s) by which fusion occurs. It is known that fusing membranes must somehow be docked and brought into close contact. Specific proteins, many of which have been identified within the past decade, accomplish this. An electrical connection or 'fusion pore' is established between compartments surrounded by the fusing membranes. Three primary views of the mechanism of pore formation during secretory and viral fusion have been proposed within the past decade. In one view, a protein ring forms an initial transient connection that expands slowly by recruiting lipid so as to form a lipidic junction. In another view, the initial fusion pore consists of a protein-lipid complex that transforms slowly until the fusion proteins dissociate from the complex to form an irreversible lipidic pore. In a third view, the initial pore is a transient lipid pore that fluctuates between open and closed states before either expanding irreversibly or closing. Recent work has helped define the mechanism by which poly(ethylene glycol) (PEG) mediates fusion of highly curved model membranes composed only of synthetic phospholipids. PEG is a highly hydrated polymer that can bring vesicle membranes to near molecular contact by making water between them thermodynamically unfavourable. Disrupted packing in the contacting monolayers of these vesicle membranes is necessary to induce fusion. The time course and sequence of molecular events of the ensuing fusion process have also been defined. This sequence of events involves the formation of an initial, transient intermediate in which outer leaflet lipids have mixed and small transient pores join fusing compartments ('stalk'). The transient intermediate transforms in 1-3 min to a fusion-committed, second intermediate ('septum') that then 'pops' to form the fusion pore. Inner leaflet mixing, which is shown to be distinct from outer leaflet mixing, accompanies contents mixing that marks formation of the fusion pore. Both the sequence of events and the activation energies of these events correspond well to those observed in viral membrane fusion and secretory granule fusion. These results strongly support the contention that both viral and secretory fusion events occur by lipid molecule rearrangements that can be studied and defined through the use of PEG-mediated vesicle fusion as a model system. A possible mechanism by which fusion proteins might mediate this lipidic process is described.  相似文献   

8.
In regulated exocytosis vesicular and plasma membranes merge to form a fusion pore in response to stimulation. The nonselective cation HCN channels are involved in the regulation of unitary exocytotic events by at least 2 mechanisms. They can affect SNARE-dependent exocytotic activity indirectly, via the modulation of free intracellular calcium; and/or directly, by altering local cation concentration, which affects fusion pore geometry likely via electrostatic interactions. By monitoring membrane capacitance, we investigated how extracellular cation concentration affects fusion pore diameter in pituitary cells and astrocytes. At low extracellular divalent cation levels predominantly transient fusion events with widely open fusion pores were detected. However, fusion events with predominately narrow fusion pores were present at elevated levels of extracellular trivalent cations. These results show that electrostatic interactions likely help determine the stability of discrete fusion pore states by affecting fusion pore membrane composition.  相似文献   

9.
In regulated exocytosis vesicular and plasma membranes merge to form a fusion pore in response to stimulation. The nonselective cation HCN channels are involved in the regulation of unitary exocytotic events by at least 2 mechanisms. They can affect SNARE-dependent exocytotic activity indirectly, via the modulation of free intracellular calcium; and/or directly, by altering local cation concentration, which affects fusion pore geometry likely via electrostatic interactions. By monitoring membrane capacitance, we investigated how extracellular cation concentration affects fusion pore diameter in pituitary cells and astrocytes. At low extracellular divalent cation levels predominantly transient fusion events with widely open fusion pores were detected. However, fusion events with predominately narrow fusion pores were present at elevated levels of extracellular trivalent cations. These results show that electrostatic interactions likely help determine the stability of discrete fusion pore states by affecting fusion pore membrane composition.  相似文献   

10.
Low pH-induced fusion mediated by the hemagglutinin (HA) of influenza virus involves conformational changes in the protein that lead to the insertion of a "fusion peptide" domain of this protein into the target membrane and is thought to perturb the membrane, triggering fusion. By using whole virus, purified HA, or HA ectodomains, we found that shortly after insertion, pores of less than 26 A in diameter were formed in liposomal membranes. As measured by a novel assay, these pores stay open, or continue to close and open, for minutes to hours and persist after pH neutralization. With virus and purified HA, larger pores, allowing the leakage of dextrans, were seen at times well after insertion. For virus, dextran leakage was simultaneous with lipid mixing and the formation of "fusion pores," allowing the transfer of dextrans from the liposomal to the viral interior or vice versa. Pores did not form in the viral membrane in the absence of a target membrane. Based on these data, we propose a new model for fusion, in which HA initially forms a proteinaceous pore in the target, but not in the viral membrane, before a lipidic hemifusion intermediate is formed.  相似文献   

11.
We have studied exocytosis of single small granules from human neutrophils by capacitance recordings in the cell-attached configuration. We found that 2.2% of the exocytotic events were flickers. The flickers always ended with a downward step. This indicates closing of the fusion pore. During flickering, the fusion pore conductance remained below 1 nS, and no net membrane transfer was detectable. After fusion pore expansion beyond 1 nS the pore expanded irreversibly, leading to rapid full incorporation of the granule/vesicle into the plasma membrane. Following exocytosis of single granules, a capacitance decrease directly related to the preceding increase was observed in 7% of the exocytotic events. This decrease followed immediately after irreversible pore expansion, and is presumably triggered by full incorporation of the vesicle into the patch membrane. The capacitance decrease could be interpreted as endocytosis triggered by exocytosis. However, the gradual decrease could also reflect a decrease in the "free" patch area following incorporation of an exocytosed vesicle. We conclude that non-stepwise capacitance changes must be interpreted with caution, since a number of factors go into determining cell or patch admittance.  相似文献   

12.
Dynamin is a master regulator of membrane fission in endocytosis. However, a function for dynamin immediately upon fusion has also been suspected from a variety of experiments that measured release of granule contents. The role of dynamin guanosine triphosphate hydrolase (GTPase) activity in controlling fusion pore expansion and postfusion granule membrane topology was investigated using polarization optics and total internal reflection fluorescence microscopy (pTIRFM) and amperometry. A dynamin-1 (Dyn1) mutant with increased GTPase activity resulted in transient deformations consistent with rapid fusion pore widening after exocytosis; a Dyn1 mutant with decreased activity slowed fusion pore widening by stabilizing postfusion granule membrane deformations. The experiments indicate that, in addition to its role in endocytosis, GTPase activity of dynamin regulates the rapidity of fusion pore expansion from tens of milliseconds to seconds after fusion. These findings expand the membrane-sculpting repertoire of dynamin to include the regulation of immediate postfusion events in exocytosis that control the rate of release of soluble granule contents.  相似文献   

13.
The fusion pore     
The secretory process requires many different steps and stages. Vesicles must be formed and transported to the target membrane. They must be tethered or docked at the appropriate sites and must be prepared for fusion (priming). As the last step, a fusion pore is formed and the contents are released. Release of neurotransmitter is an extremely rapid event leading to rise times of the postsynaptic response of less than 100 micro s. The release thus occurs during the initial formation of the exocytotic fusion pore. To understand the process of synaptic transmission, it is thus of outstanding importance to understand the molecular structure of the fusion pore, what are the properties of the initial fusion pore, how these properties affect the release process and what other factors may be limiting the kinetics of release. Here we review the techniques currently employed in fusion pore studies and discuss recent data and opinions on exocytotic fusion pore properties.  相似文献   

14.
BackgroundDynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis.MethodsThus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol.ResultsDynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma.ConclusionsOur results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.  相似文献   

15.
The earliest event in exocytosis is the formation of a fusion pore, an aqueous channel that connects the lumen of a secretory granule with the extracellular space. We can observe the formation of individual fusion pores and their subsequent dilation or closure by measuring the changes in the admittance of patch-clamped mast cells during GTP gamma S-stimulated exocytotic fusion. To investigate the molecular structure of the fusion pore, we have studied the temperature dependency of the rate constants for fusion pore formation and closure. An Arrhenius plot of the rate of fusion pore formation shows a simple linear relationship with an apparent activation energy of 23 kcal/mol. In contrast, the Arrhenius plot of the rate of closure of the fusion pore is discontinuous, with the break at approximately 13 degrees C. Above the break point, the rate of closure has a weak temperature dependence (7 kcal/mol), whereas below 13 degrees C the rate of closure is temperature independent. This type of temperature dependency is characteristic of events that depend on diffusion in a lipid phase that undergoes a fluid-solid phase transition. We propose that the formation of the fusion pore is regulated by the conformational change of a molecular structure with a high activation energy, whereas the closure of the fusion pore is regulated by lipids that become phase separated at 13 degrees C.  相似文献   

16.
An externally applied electric field across vesicles leads to transient perforation of the membrane. The distribution and lifetime of these pores was examined using 1,2-di-oleoyl-sn-glycero-3-phosphocholine (DOPC) phospholipid vesicles using a standard fluorescent microscope. The vesicle membrane was stained with a fluorescent membrane dye, and upon field application, a single membrane pore as large as approximately 7 microm in diameter was observed at the vesicle membrane facing the negative electrode. At the anode-facing hemisphere, large and visible pores are seldom found, but formation of many small pores is implicated by the data. Analysis of pre- and post-field fluorescent vesicle images, as well as images from negatively stained electron micrographs, indicate that pore formation is associated with a partial loss of the phospholipid bilayer from the vesicle membrane. Up to approximately 14% of the membrane surface could be lost due to pore formation. Interestingly, despite a clear difference in the size distribution of the pores observed, the effective porous areas at both hemispheres was approximately equal. Ca(2+) influx measurements into perforated vesicles further showed that pores are essentially resealed within approximately 165 ms after the pulse. The pore distribution found in this study is in line with an earlier hypothesis (E. Tekle, R. D. Astumian, and P. B. Chock, 1994, Proc. Natl. Acad. Sci. U.S.A. 91:11512--11516) of asymmetric pore distribution based on selective transport of various fluorescent markers across electroporated membranes.  相似文献   

17.
《The Journal of cell biology》1996,135(6):1831-1839
The formation of the fusion pore is the first detectable event in membrane fusion (Zimmerberg, J., R. Blumenthal, D.P. Sarkar, M. Curran, and S.J. Morris. 1994. J. Cell Biol. 127:1885-1894). To date, fusion pores measured in exocytosis and viral fusion have shared features that include reversible closure (flickering), highly fluctuating semistable stages, and a lag time of at least several seconds between the triggering and the pore opening. We investigated baculovirus GP64- induced Sf9 cell-cell fusion, triggered by external acid solution, using two different electrophysiological techniques: double whole-cell recording (for high time resolution, model-independent measurements), and the more conventional time-resolved admittance recordings. Both methods gave essentially the same results, thus validating the use of the admittance measurements for fusion pore conductance calculations. Fusion was first detected by abrupt pore formation with a wide distribution of initial conductance, centered around 1 nS. Often the initial fusion pore conductance was stable for many seconds. Fluctuations in semistable conductances were much less than those of other fusion pores. The waiting time distribution, measured between pH onset and initial pore appearance, fits best to a model with many (approximately 19) independent elements. Thus, unlike previously measured fusion pores, GP64-mediated pores do not flicker, can have large, stable initial pore conductances lasting up to a minute, and have typical lag times of < 1 s. These findings are consistent with a barrel-shaped model of an initial fusion pore consisting of five to eight GP64 trimers that is lined with lipid.  相似文献   

18.
Formation of the fusion pore is a central question for regulated exocytosis by which secretory cells release neurotransmitters or hormones. Here, by dynamically monitoring exocytosis of large vesicles (2–7 μm) in astrocytes with two-photon microscopy imaging, we found that the exocytotic fusion pore was generated from the SNARE-dependent fusion at a ring shape of the docked plasma-vesicular membrane and the movement of a fusion-produced membrane fragment. We observed two modes of fragment movements, 1) a shift fragment that shifted to expand the fusion pore and 2) a fall-in fragment that fell into the collapsed vesicle to expand the fusion pore. Shift and fall-in modes are associated with full and partial collapses of large vesicles, respectively. The astrocytic marker, sulforhodamine 101, stained the fusion-produced membrane fragment more brightly than FM 1-43. Sulforhodamine 101 imaging showed that double fusion pores could simultaneously occur in a single vesicle (16% of large vesicles) to accelerate discharge of vesicular contents. Electron microscopy of large astrocytic vesicles showed shift and fall-in membrane fragments. Two modes of fusion pore formation demonstrate a novel mechanism underlying fusion pore expansion and provide a new explanation for full and partial collapses of large secretory vesicles.  相似文献   

19.
Membrane fusion intermediates induced by the glycosylphosphatidylinositol-linked ectodomain of influenza hemagglutinin (GPI-HA) were investigated by rapid freeze, freeze-substitution, thin section electron microscopy, and with simultaneous recordings of whole-cell admittance and fluorescence. Upon triggering, the previously separated membranes developed numerous hourglass shaped points of membrane contact (∼10–130 nm waist) when viewed by electron microscopy. Stereo pairs showed close membrane contact at peaks of complementary protrusions, arising from each membrane. With HA, there were fewer contacts, but wide fusion pores. Physiological measurements showed fast lipid dye mixing between cells after acidification, and either fusion pore formation or the lack thereof (true hemifusion). For the earliest pores, a similar conductance distribution and frequency of flickering pores were detected for both HA and GPI-HA. For GPI-HA, lipid mixing was detected prior to, during, or after pore opening, whereas for HA, lipid mixing is seen only after pore opening. Our findings are consistent with a pathway wherein conformational changes in the ectodomain of HA pull membranes towards each other to form a contact site, then hemifusion and pore formation initiate in a small percentage of these contact sites. Finally, the transmembrane domain of HA is needed to complete membrane fusion for macromolecular content mixing.  相似文献   

20.
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase involved in synaptogenesis and brain development, and its enzymatic activity is essential for slow forms of synaptic vesicle endocytosis. Recent work also has implicated Cdk5 in exocytosis and synaptic plasticity. Pharmacological inhibition of Cdk5 modifies secretion in neuroendocrine cells, synaptosomes, and brain slices; however, the specific mechanisms involved remain unclear. Here we demonstrate that dominant-negative inhibition of Cdk5 increases quantal size and broadens the kinetics of individual exocytotic events measured by amperometry in adrenal chromaffin cells. Conversely, Cdk5 overexpression narrows the kinetics of fusion, consistent with an increase in the extent of kiss-and-run exocytosis. Cdk5 inhibition also increases the total charge and current of catecholamine released during the amperometric foot, representing a modification of the conductance of the initial fusion pore connecting the granule and plasma membrane. We suggest that these effects are not attributable to an alteration in catecholamine content of secretory granules and therefore represent an effect on the fusion mechanism itself. Finally, mutational silencing of the Cdk5 phosphorylation site in Munc18, an essential protein of the late stages of vesicle fusion, has identical effects on amperometric spikes as dominant-negative Cdk5 but does not affect the amperometric feet. Cells expressing Munc18 T574A have increased quantal size and broader kinetics of fusion. These results suggest that Cdk5 could, in part, control the kinetics of exocytosis through phosphorylation of Munc18, but Cdk5 also must have Munc18-independent effects that modify fusion pore conductance, which may underlie a role of Cdk5 in synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号