首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We describe a protocol for detecting electron spin-spin interactions between a radical and a metal ion in a protein or protein complex by saturation-recovery electron paramagnetic resonance (EPR). This protocol can be used with a protein containing an endogenous metal center and either an endogenous or synthetic radical species. We suggest a two-step approach whereby dipole-dipole or exchange interactions are first detected by continuous-wave EPR experiments and then quantified by saturation-recovery EPR. The latter measurements make it possible to measure long distances to within a few Angstroms. The protocol for making distance measurements by saturation-recovery EPR will take approximately 6 days to complete.  相似文献   

2.
This is a historical overview of the advent of applications of spin labeling to biological systems and the subsequent developments from the perspective of a scientist who was working as a Ph.D. student when the technique was conceived and was fortunate enough to participate in its development. In addition, the historical development of in vivo applications of EPR on animals and other living systems is described from a personal perspective.  相似文献   

3.
4.
《FEBS letters》1986,203(1):36-40
Signal II of plant photosynthesis, which is thought to be due to a plastosemiquinone cation radical, has been studied by EPR at 9 and 35 GHz in non-oriented and partly oriented PS II particles. The spectra measured of the oriented particles at 35 GHz show that the molecular Z-axis, which is the axis perpendicular to the plane of the radical, makes an angle of 60° with the membrane normal. All spectra could be computer-simulated with one set of parameters. This set is essentially the same as that given earlier on the basis of EPR spectroscopy on non-oriented membranes [(1985) Biochim. Biophys. Acta 809, 421-428], except that the bond bending of the hydroxyl group on ring position 1 is found to be 60°, resulting in a somewhat smaller isotropie hyperfine splitting of the hydroxyl proton.Signal IIEPROrientationHyperfine coupling  相似文献   

5.
Recipient of the Society Award for Young Scientists 1991.  相似文献   

6.
Planta - Recent investigations have provided important new insights into the structures and functions of the extrinsic proteins of Photosystem II. This review is an update of the last major review...  相似文献   

7.
Electron paramagnetic resonance (EPR) spectroscopy is a valuable tool for understanding the oxidation state and chemical environment of the Mn4Ca cluster of photosystem II. Since the discovery of the multiline signal from the S2 state, EPR spectroscopy has continued to reveal details about the catalytic center of oxygen evolution. At present EPR signals from nearly all of the S-states of the Mn4Ca cluster, as well as from modified and intermediate states, have been observed. This review article describes the various EPR signals obtained from the Mn4Ca cluster, including the metalloradical signals due to interaction of the cluster with a nearby organic radical.  相似文献   

8.
Chloride is an essential cofactor for the oxidation of water to oxygen. Anion substitution (Br(-), I(-), NO(2)(-), F(-)) in Cl(-)-depleted PS II membranes brings out significant changes in the EPR signals arising from the S(2) state and from the iron-quinone complex of PS II. On the basis of the changes observed in the S(2) state multiline signal and the Q(A)Fe(3+) EPR signal in Cl(-)-depleted PS II membranes after substituting with various anions, we report a possible binding site of anions such as chloride and bromide at the PS II donor side as well as at the acceptor side.  相似文献   

9.
Biological photosynthesis utilizes membrane-bound pigment/protein complexes to convert light into chemical energy through a series of electron-transfer events. In the unique photosystem II (PSII) complex these electron-transfer events result in the oxidation of water to molecular oxygen. PSII is an extremely complex enzyme and in order to exploit its unique ability to convert sunlight into chemical energy it will be necessary to make a minimal model. Here we will briefly describe how PSII functions and identify those aspects that are essential in order to catalyze the oxidation of water into O(2), and review previous attempts to design simple photo-catalytic proteins and summarize our current research exploiting the E. coli bacterioferritin protein as a scaffold into which multiple cofactors can be bound, to oxidize a manganese metal center upon illumination. Through the reverse engineering of PSII and light driven water splitting reactions it may be possible to provide a blueprint for catalysts that can produce clean green fuel for human energy needs.  相似文献   

10.
T D Elich  M Edelman    A K Mattoo 《The EMBO journal》1993,12(12):4857-4862
A number of photosystem II (PSII)-associated proteins, including D1, D2, CP43 and LHCII, are phosphorylated post-translationally by a membrane-bound, redox-regulated kinase activity. In vitro studies have demonstrated that these proteins can be dephosphorylated by membrane-bound phosphatase activity, reportedly insensitive to light or redox control. We demonstrate here that the PSII core proteins, D1, D2 and CP43, undergo light-stimulated, linear electron-transport-independent dephosphorylation in vivo. The in vivo dephosphorylation of D1 was characterized further and shown to depend upon light intensity, and to occur throughout the visible light spectrum with characteristics most consistent with light absorption by chlorophyll. PSII core protein dephosphorylation in vivo was stimulated by photosystem I (PSI)-specific far-red light, and inhibited by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, an inhibitor of plastoquinol oxidation by the cytochrome b6f complex. Based on these findings, we propose that PSI excitation is involved in regulating dephosphorylation of PSII core proteins in vivo.  相似文献   

11.
12.
The effect of Zn(2+) or Cu(2+) ions on Mn-depleted photosystem II (PS II) has been investigated using EPR spectroscopy. In Zn(2+)-treated and Cu(2+)-treated PS II, chemical reduction with sodium dithionite gives rise to a signal attributed to the plastosemiquinone, Q(A)(*)(-), the usual interaction with the non-heme iron being lost. The signal was identified by Q-band EPR spectroscopy which partially resolves the typical g-anisotropy of the semiquinone anion radical. Illumination at 200 K of the unreduced samples gives rise to a single organic free radical in Cu(2+)-treated PS II, and this is assigned to a monomeric chlorophyll cation radical, Chl a(*)(+), based on its (1)H-ENDOR spectrum. The Zn(2+)-treated PS II under the same conditions gives rise to two radical signals present in equal amounts and attributed to the Chl a(*)(+) and the Q(A)(*)(-) formed by light-induced charge separation. When the Cu(2+)-treated PS II is reduced by sodium ascorbate, at >/=77 K electron donation eliminates the donor-side radical leaving the Q(A)(*)(-) EPR signal. The data are explained as follows: (1) Cu(2+) and Zn(2+) have similar effects on PS II (although higher concentrations of Zn(2+) are required) causing the displacement of the non-heme Fe(2+). (2) In both cases chlorophyll is the electron donor at 200 K. It is proposed that the lack of a light-induced Q(A)(*)(-) signal in the unreduced Cu(2+)-treated sample is due to Cu(2+) acting as an electron acceptor from Q(A)(*)(-) at low temperature, forming the Cu(+) state and leaving the electron donor radical Chl a(*)(+) detectable by EPR. (3) The Cu(2+) in PS II is chemically reducible by ascorbate prior to illumination, and the metal can therefore no longer act as an electron acceptor; thus Q(A)(*)(-) is generated by illumination in such samples. (4) With dithionite, both the Cu(2+) and the quinone are reduced resulting in the presence of Q(A)(*)(-) in the dark. The suggested high redox potential of Cu(2+) when in the Fe(2+) site in PS II is in contrast to the situation in the bacterial reaction center where it has been shown in earlier work that the Cu(2+) is unreduced by dithionite. It cannot be ruled out however that Q(A)-Cu(2+) is formed and a magnetic interaction is responsible for the lack of the Q(A)(-) signal when no exogenous reductant is present. With this alternative possibility, the effects of reductants would be explained as the loss of Cu(2+) (due to formation of Cu(+)) leading to loss of the Cu(2+) from the Fe(2+) site due to the binding equilibrium. The quite different binding and redox behavior of the metal in the iron site in PS II compared to that of the bacterial reaction center is presumably a further reflection of the differences in the coordination of the iron in the two systems.  相似文献   

13.
A light-induced spin-polarized triplet state has been detected in a purified Photosystem II preparation by electron paramagnetic resonance spectroscopy at liquid helium temperature. The electron spin polarization pattern is interpreted to indicate that the triplet originates from radical pair recombination between the oxidized primary donor chlorophyll, P-680+, and the reduced intermediate pheophytin, I-, as has been previously demonstrated in bacterial reaction centers. The dependence of the triplet signal on the redox state of I and the primary acceptor, Q, are consistent with the origin of the triplet signal from the triplet state of P-680. Redox-poising experiments indicate the presence of an endogenous donor (or donors) which operates at 3-5 K and 200 K. The zero field-splitting parameters of the triplet are very similar to those of monomeric chlorophyll a however, this alone does not allow a distinction to be made between monomeric and dimeric structures for P-680.  相似文献   

14.
15.
The (18)O exchange rates for the substrate water bound in the S(3) state were determined in different photosystem II sample types using time-resolved mass spectrometry. The samples included thylakoid membranes, salt-washed Triton X-100-prepared membrane fragments, and purified core complexes from spinach and cyanobacteria. For each sample type, two kinetically distinct isotopic exchange rates could be resolved, indicating that the biphasic exchange behavior for the substrate water is inherent to the O(2)-evolving catalytic site in the S(3) state. However, the fast phase of exchange became somewhat slower (by a factor of approximately 2) in NaCl-washed membrane fragments and core complexes from spinach in which the 16- and 23-kDa extrinsic proteins have been removed, compared with the corresponding rate for the intact samples. For CaCl(2)-washed membrane fragments in which the 33-kDa manganese stabilizing protein (MSP) has also been removed, the fast phase of exchange slowed down even further (by a factor of approximately 3). Interestingly, the slow phase of exchange was little affected in the samples from spinach. For core complexes prepared from Synechocystis PCC 6803 and Synechococcus elongatus, the fast and slow exchange rates were variously affected. Nevertheless, within the experimental error, nearly the same exchange rates were measured for thylakoid samples made from wild type and an MSP-lacking mutant of Synechocystis PCC 6803. This result could indicate that the MSP has a slightly different function in eukaryotic organisms compared with prokaryotic organisms. In all samples, however, the differences in the exchange rates are relatively small. Such small differences are unlikely to arise from major changes in the metal-ligand structure at the catalytic site. Rather, the observed differences may reflect subtle long range effects in which the exchange reaction coordinates become slightly altered. We discuss the results in terms of solvent penetration into photosystem II and the regional dielectric around the catalytic site.  相似文献   

16.
The pulsed electron paramagnetic resonance (EPR) methods of electron spin echo envelope modulation (ESEEM) and electron spin echo-electron nuclear double resonance (ESE-ENDOR) are used to investigate the structure of the Photosystem II oxygen-evolving complex (OEC), including the paramagnetic manganese cluster and its immediate surroundings. Recent unpublished results from the pulsed EPR laboratory at UC-Davis are discussed, along with aspects of recent publications, with a focus on substrate and cofactor interactions. New data on the proximity of exchangeable deuterons around the Mn cluster poised in the S(0)-state are presented and interpreted. These pulsed EPR results are used in an evaluation of several recently proposed mechanisms for PSII water oxidation. We strongly favor mechanistic models where the substrate waters bind within the OEC early in the S-state cycle. Models in which the O-O bond is formed by a nucleophilic attack by a Ca(2+)-bound water on a strong S(4)-state electrophile provide a good match to the pulsed EPR data.  相似文献   

17.
The cyanobacterial small CAB-like proteins (SCPs) consist of one-helix proteins that resemble transmembrane regions of the light-harvesting proteins of plants. To determine whether these proteins are associated with protein complexes in the thylakoid membrane, an abundant member of the SCP family, ScpD, was marked with a His tag, and proteins co-isolating with His-tagged ScpD were identified. These proteins included the major Photosystem (PS) II components as well as FtsH, which is involved in degradation of the PSII complex. To ascertain specific interaction between ScpD and the PSII complex, the His-tagged protein fraction was subjected to two-dimensional blue native/SDS-PAGE. Again, PSII components were co-isolated with ScpD-His, and ScpD-His was found to interact most strongly with CP47. ScpD association was most prominent with the monomeric form of PSII, suggesting ScpD association with PSII that is repaired. Using antibodies that recognize both ScpC and ScpD, we found the ScpC protein, which is very similar in primary structure to ScpD, to also co-isolate with the PSII complex. In contrast, ScpE did not co-isolate with a major protein complex in thylakoids. A fourth member of the SCP family, ScpB, could not be immunodetected, but was found by mass spectrometry in samples co-isolating with ScpD-His. Therefore, ScpB may be associated with ScpD as well. No association between SCPs and PSI could be demonstrated. On the basis of these and other data presented, we suggest that members of the SCP family can associate with damaged PSII and can serve as a temporary pigment reservoir while PSII components are being replaced.  相似文献   

18.
G H Noren  R J Boerner  B A Barry 《Biochemistry》1991,30(16):3943-3950
The transformable cyanobacterium Synechocystis 6803 has a photosynthetic apparatus that is similar to that of plants. Because of the ease with which this organism can be genetically manipulated and isotopically labeled, Synechocystis has been used extensively in recent studies of electron transfer in the water-splitting complex, photosystem II. Here, we present the first EPR characterization of a highly active oxygen-evolving preparation from this organism. This preparation shows oxygen-evolution activities in the range from 2400-2600 mumol of O2/(mg of chlorophyll.h). We show that this preparation is stable enough for room temperature EPR studies. We then use this assay to show that the lineshapes of the D+ and Z+ tyrosine radicals are identical in this preparation, as has been observed in photosystem II complexes from a wide variety of photosynthetic species. We also present the first multiline EPR spectrum that has been observed from the Synechocystis manganese cluster.  相似文献   

19.
The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.  相似文献   

20.
We report electron paramagnetic resonance (EPR) studies on photosystem II (PSII) from higher plants in five different domains of the thylakoid membrane prepared by sonication and two-phase partitioning. The domains studied were the grana core, the entire grana stack, the grana margins, the stroma lamellae and the purified stromal fraction, Y100. The electron transport properties of both donor and acceptor sides of PSII such as oxygen evolution, cofactors Y D, Q A, the CaMn 4-cluster, and Cytb 559 were investigated. The PSII content was estimated on the basis of oxidized Y D and Q A (-) Fe (2+) signal from the acceptor side vs Chl content (100% in the grana core fraction). It was found to be about 82% in the grana, 59% in the margins, 35% in the stroma and 15% in the Y100 fraction. The most active PSII centers were found in the granal fractions as was estimated from the rates of electron transfer and the S 2 state multiline EPR signal. In the margin and stroma fractions the multiline signal was smaller (40 and 33%, respectively). The S 2 state multiline could not be induced in the Y100 fraction. In addition, the oxidized LP Cytb 559 prevailed in the stromal fractions while the HP form dominated in the grana core. The margins and entire grana fractions have Cytb 559 in both potential forms. These data together with previous analyses indicate that the sequence of activation of the PSII properties can be represented as: PSII content > oxygen evolution > reduced Cytb 559 > dimerization of PSII centers in all fractions of the thylakoid membrane with the gradual increase from stromal fractions via margin to the grana core fraction. The results further support the existence of a PSII activity gradient which reflects lateral movement and photoactivation of PSII centers in the thylakoid membrane. The possible role of the PSII redox components in this process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号