首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid and efficient delivery of imaging probes to the cell interior using permeation peptides has enabled novel applications in molecular imaging. Membrane permeant peptides based on the HIV-1 Tat basic domain sequence, GRKKRRQRRR, labeled with fluorophores and fluorescent proteins for optical imaging or with appropriate peptide-based motifs or macrocycles to chelate metals, such as technetium for nuclear scintigraphy and gadolinium for magnetic resonance imaging, have been synthesized. In addition, iron oxide complexes have been functionalized with the Tat basic domain peptides for magnetic resonance imaging applications. Herein we review current applications of permeation peptides in molecular imaging and factors influencing permeation peptide internalization. These diagnostic agents show concentrative cell accumulation and rapid kinetics and display cytosolic and focal nuclear accumulation in human cells. Combining methods, dual-labeled permeation peptides incorporating fluorescein maleimide and chelated technetium have allowed for both qualitative and quantitative analysis of cellular uptake. Imaging studies in mice following intravenous administration of prototypic diagnostic permeation peptides show rapid whole-body distribution allowing for various molecular imaging applications. Strategies to develop permeation peptides into molecular imaging probes have included incorporation of targeting motifs such as molecular beacons or protease cleavable domains that enable selective retention, activatable fluorescence, or targeted transduction. These novel permeation peptide conjugates maintain rapid translocation across cell membranes into intracellular compartments and have the potential for targeted in vivo applications in molecular imaging and combination therapy.  相似文献   

2.
Cell penetrating peptides are useful delivery tools for introducing molecules of interest into cells. A new class of cell penetrating molecules has been recently reported—cell penetrating, prenylated peptides. In this study a series of such peptides was synthesized to examine the relationship between peptide sequence and level of peptide internalization and to probe their mechanism of internalization. This study revealed that prenylated peptides internalize via a non-endocytotic pathway regardless of sequence. Sequence length and identity was found to play a role in peptide uptake but prenylated sequences as short as two amino acids were found to exhibit significant cell penetrating properties.  相似文献   

3.
Several studies have addressed the interaction of the HIV Tat protein with the cell surface. Our analysis of the cell attachment-promoting activity of Tat and peptides derived from it revealed that the basic domain of Tat, not the arg-gly-asp (RGD) sequence, is required for cell attachment to Tat. Affinity chromatography with Tat peptides and immunoprecipitation with various anti-integrin antibodies suggest that the vitronectin-binding integrin, alpha v beta 5, is the cell surface protein that binds to the basic domain of Tat. The Tat basic domain contains the sequence RKKRRQRRR. A related sequence, KKQRFRHRNRKG, present in the heparin-binding domain of an alpha v beta 5 ligand, vitronectin, also bound alpha v beta 5 in affinity chromatography and, in combination with an RGD peptide, was an inhibitor of cell attachment to vitronectin. The alpha v beta 5 interaction with these peptides was not solely due to high content of basic amino acids in the ligand sequences; alpha v beta 5 did not bind substantially to peptides consisting entirely of arginine or lysine, whereas a beta 1 integrin did bind to these peptides. The interaction of alpha v beta 5 with Tat is atypical for integrins in that the binding to Tat is divalent cation independent, whereas the binding of the same integrin to an RGD- containing peptide or to vitronectin requires divalent cations. These data define an auxiliary integrin binding specificity for basic amino acid sequences. These basic domain binding sites may function synergistically with the binding sites that recognize RGD or equivalent sequences.  相似文献   

4.
Multivalency represents a critical parameter in cell biology responsible for the overall avidity of low-affinity interactions and the triggering of cellular events. Functions such as catalytic activity, cellular uptake, or localization are frequently linked to the oligomeric state of a protein. This study explores the impact of multivalency on the import and routing of peptides into cells. Specifically, cationic import sequences such as decaarginine, decalysine, and the HIV Tat peptide (GRKKRRQRRRAP, residues 48-59) as well as the nuclear localization sequence from SV40 large T-antigen were assembled into defined peptide oligomers by fusing them to the tetramerization domain of human p53 (residues 325-355, hp53(tet) domain). The resulting tetravalent peptides typically displayed between 10- and 100-fold enhancements in cellular import and intracellular routing properties in relation to their monomeric homologues. These peptides were not toxic to cells. Flow cytometry results and transfection assays indicated that tetravalent decaarginyl peptides (10R-p53(tet) and NLS-10R-p53(tet)) were the peptides most efficiently routed into cells. Their mechanism of import was subsequently examined on unfixed, viable cells using a combination of metabolic inhibitors, flow cytometry, and microscopy techniques. These studies revealed that tetravalent arginine-rich peptides bind to heparan sulfate on the cell surface, are internalized at 37 degrees C, but not at 4 degrees C, via a clathrin-mediated pathway, and accumulate into endosome-like acidic compartments. A fraction of these tetravalent peptides access the cytosol and accumulate in the nucleus of cells. This study concludes that the oligomerization of proteins harboring arginine-rich peptide chains may profoundly influence their ability to enter and be routed into cells.  相似文献   

5.
The cellular penetration (CP) activity of functional molecules has attracted significant attention as one of the most promising new approaches for drug delivery. In particular, cell-penetrating peptides (CPPs) have been studied extensively in cellular engineering. Because there have been few large-scale systematic studies to identify peptide sequences with optimal CP activity or that are suitable for further applications in cell engineering, such as cell-specific penetration and cell-selective culture, we screened and compared the cellular uptake (CU) activity of 54 systematically designed α-helical peptides in HeLa cells. Furthermore, the CU activity of 24 designed peptides was examined in four cell lines using a cell fingerprinting technique and statistical approaches. The CU activities in various cells depended on amino acid residues of peptide sequences as well as charge, α-helical content and hydrophobicity of the peptides. Notably, the mutation of a single residue significantly altered the CU ability of a peptide, highlighting the variability of cell uptake mechanisms. Moreover, these results demonstrated the feasibility of cell-selective culture by conducting cell-selective permeation and death in cultures containing two cell types. These studies may lead to further peptide library design and screening for new classes of CPPs with useful functions.  相似文献   

6.
Reversible lipid attachment was investigated as a means to deliver small peptides into cells. Two labile straight chain alkyl motifs were developed: a cysteine dodecane disulfide (Cdd) building block and a tyrosine- or serine-myristate ester. Both moieties are cleaved on cell internalization and are compatible with Fmoc solid phase peptide synthesis. A series of fluorophore-labeled peptides that varied in lipophilic content, net charge, and charge distribution were synthesized. The peptides were screened for cellular uptake efficiency as monitored by fluorescence microscopy. Effective peptide transport is based on a distributed net positive charge introduced as lysine residues at the C and/or N terminus of the peptide and the presence of a hydrophobic domain exhibiting an estimated log P4.0. The incorporation of labile lipid motifs into peptides enhances lipophilic character of the peptides and contributes to cellular uptake with minimal alteration to the native sequence.  相似文献   

7.
The mapping of regions within integrin cytoplasmic domains responsible for the different effects on cell behaviour is an important part of an analysis of integrin-mediated signalling. In order to facilitate this analysis in primary cells, we have used cell-permeable homeopeptides to deliver sequences mimicking parts of the integrin beta1 cytoplasmic domain into the cell. In a study using oligodendrocyte precursors, the cells that give rise to myelin-forming oligodendrocytes during CNS development, we show that these peptides can be used to manipulate beta1 integrin signalling and that the regions of the cytoplasmic domain involved in migration and survival are distinct. Peptides mimicking the N-terminal portion of the cytoplasmic domain previously implicated in binding to Focal Adhesion Kinase (FAK) induce apoptosis, while peptides mimicking more C-terminal sequences do not cause cell death. In contrast they show that the NPIY sequence, the N-terminal one of two NPXY motifs previously implicated in signalling, is involved in migration. Peptides containing this sequence promote migration while alteration of NPIY to NPIA makes the peptide inhibitory to migration. Our results show that these peptides represent a novel approach to integrin signalling that allow rapid definition of critical cytoplasmic sequences in primary cells.  相似文献   

8.
Protein transduction domains (PTDs) are peptides that afford the internalization of cargo macromolecules (including plasmid DNA, proteins, liposomes, and nanoparticles). In the case of polycationic peptides, the efficiency of PTDs to promote cellular uptake is directly related to their molecular mass or their polyvalent presentation. Similarly, the efficiency of routing to the nucleus increases with the number of nuclear localization signals (NLS) associated with a cargo. The quantitative enhancement, however, depends on the identity of the PTD sequence as well as the targeted cell type. Thus the choice and multivalent presentation of PTD and NLS sequences are important criteria guiding the design of macromolecules intended for specific intracellular localization. This review outlines synthetic and recombinant strategies whereby PTDs and signal sequences can be assembled into multivalent peptide dendrimers and promote the uptake and routing of their cargoes. In particular, the tetramerization domain of the tumour suppressor p53 (p53tet) is emerging as a useful scaffold to present multiple routing and targeting moieties. Short cationic peptides fused to the 31-residue long p53tet sequence resulted in tetramers displaying a significant enhancement (up to 1000 fold) in terms of their ability to be imported into cells and delivered to the cell nucleus in relation to their monomeric analogues. The design of future polycationic peptide dendrimers as effective delivering vehicles will need to incorporate selective cell targeting functions and provide solutions to the issue of endosomal entrapment.  相似文献   

9.
Many MR contrast agents have been developed and proven effective for extracellular nontargeted applications, but exploitation of intracellular MR contrast agents has been elusive due to the permeability barrier of the plasma membrane. Peptide transduction domains can circumvent this permeability barrier and deliver cargo molecules to the cell interior. Based upon enhanced cellular uptake of permeation peptides with D-amino acid residues, an all-D Tat basic domain peptide was conjugated to DOTA and chelated to gadolinium. Gd-DOTA-D-Tat peptide in serum at room temperature showed a relaxivity of 7.94 +/- 0.11 mM(-1) sec(-1) at 4.7 T. The peptide complex displayed no significant binding to serum proteins, was efficiently internalized by human Jurkat leukemia cells resulting in intracellular T1 relaxation enhancement, and in preliminary T1-weighted MRI experiments, significantly enhanced liver, kidney, and mesenteric signals.  相似文献   

10.
Protein transduction domains (PTDs) are peptides that afford the internalization of cargo macromolecules (including plasmid DNA, proteins, liposomes, and nanoparticles). In the case of polycationic peptides, the efficiency of PTDs to promote cellular uptake is directly related to their molecular mass or their polyvalent presentation. Similarly, the efficiency of routing to the nucleus increases with the number of nuclear localization signals (NLS) associated with a cargo. The quantitative enhancement, however, depends on the identity of the PTD sequence as well as the targeted cell type. Thus the choice and multivalent presentation of PTD and NLS sequences are important criteria guiding the design of macromolecules intended for specific intracellular localization. This review outlines synthetic and recombinant strategies whereby PTDs and signal sequences can be assembled into multivalent peptide dendrimers and promote the uptake and routing of their cargoes. In particular, the tetramerization domain of the tumour suppressor p53 (p53tet) is emerging as a useful scaffold to present multiple routing and targeting moieties. Short cationic peptides fused to the 31-residue long p53tet sequence resulted in tetramers displaying a significant enhancement (up to 1000 fold) in terms of their ability to be imported into cells and delivered to the cell nucleus in relation to their monomeric analogues. The design of future polycationic peptide dendrimers as effective delivering vehicles will need to incorporate selective cell targeting functions and provide solutions to the issue of endosomal entrapment.  相似文献   

11.
Membrane permeation peptides, such as Tat basic domain, have emerged as useful membrane transduction agents with potential utility in therapeutic delivery and diagnostic imaging. While generally thought to universally permeate all cells by a nonselective process, the mechanism of membrane transduction remains poorly characterized. To examine vectorial transport properties of Tat basic domain in well-differentiated epithelial cells possessing tight junctions, L and D stereoisomers of Tat(48-57) peptide conjugates labeled with (99m)Tc were quantitatively analyzed in confluent monolayers of MDCK renal epithelial and CaCo-2 colonic carcinoma cells grown in transwell configurations. In both cell lines, vectorial transepithelial apparent permeability coefficients (P(app)) for L- and D-[(99m)Tc]Tat-peptides ranged from 30 to 70 nm/s, comparable to values for the macromolecular impermeant marker inulin in both apical-to-basolateral and basolateral-to-apical directions, but 100-fold less than the P(app) values for propranolol, a highly permeable control compound. Upon direct instillation of [(99m)Tc]Tat-peptide into the urinary bladder of living rats in vivo, no transepithelial permeation into other tissues was identified. Furthermore, MDCK and CaCo-2 cells showed a complete lack of intracellular accumulation of fluorescein conjugated Tat-peptide. However, translocation into cells was induced by treatment with plasma membrane permeabilizing agents such as digitonin and acetone/methanol, while cholesterol depletion with beta-methyl-cyclodextrin and metabolic inhibition with CCCP or 4 degrees C showed no effect. By contrast, in Hela and KB 3-1 cells, epithelial lines that do not form tight junctions in monolayer culture, baseline cytoplasmic and nucleolar accumulation was readily observed. Because all four cell lines expressed heparan sulfate proteoglycans, putative receptors for Tat basic peptides, we found no correlation between heparan sulfate and the permeation barrier observed in MDCK and CaCo-2 cells. The unanticipated presence of a permeation barrier to Tat-peptides in well-differentiated epithelial cells suggests the existence of cell-specific mechanisms for mediated translocation of these permeation peptides.  相似文献   

12.
Enhancement of gene transfer using YIGSR analog of Tat-derived peptide   总被引:1,自引:0,他引:1  
Cell penetrating peptide based gene carriers are notably known for low level of gene transfer. To remedy this, as laminin receptor (LR) has been previously linked to tumor metastasis, the LR-binding domain (YIGSR) as well as a scrambled sequence (SGIYR) were added to Tat-derived peptide sequence (YIGSR-Tat and SGIYR-Tat respectively). Peptides cellular uptake was assessed with high-LR (HT1080) and low-LR (HT29) cell lines by flow cytometry. Their ability to form complexes with DNA was examined using YOPRO-1 fluorescence assay and their transfection efficiencies evaluated using a luciferase reporter gene assay. DNA complexes were formed at (+/-) charge ratios as low as 2:1. While no conclusion could be drawn on the effect of YIGSR sequence on peptides uptake in both cell lines, a significant improvement in gene transfection in HT1080 cells was achieved using YIGSR-Tat compared to Tat and SGIYR-Tat. Additionally this increased efficiency was inhibited by excess free YIGSR. No significant difference in transfection efficiency was observed between Tat, SGIYR-Tat and YIGSR-Tat based complexes in HT29 cells. These studies demonstrate that attachment of receptor-binding ligand (YIGSR) to Tat-derived peptide can improve the efficiency of gene transfer in LR-positive cells (HT1080).  相似文献   

13.
Microorganisms possess stringent cell membranes which limit the cellular uptake of antimicrobials. One strategy to overcome these barriers is to attach drugs or research reagents to carrier peptides that enter cells by passive permeation or active uptake. Here the short endocytosis signal peptide NPFSD was found to efficiently deliver both FITC and GFP into Saccharomyces cerevisiae and Candida albicans with uptake into the majority of cells in a population. The NPFSD signal is itself non-toxic, but when fused to the ricin A chain toxin (RTA) the peptide enhanced both cell uptake and toxicity against C. albicans, which like other yeasts is resistant to naked RTA. Cell entry required at least 1 h incubation, temperatures above 4 degrees C, and an energy source, and uptake was out-competed with free peptide. Therefore, the NPFSD peptide can carry a range of compounds into yeasts and this delivery route holds promise to enhance the activity of antifungals.  相似文献   

14.
Thrombospondin (TS) mediates attachment, spreading, and motility of several cell types through at least four cell binding domains: the amino-terminal heparin binding domain, the type I repeats containing the CSVTCG sequence, the RGDA sequence in the last of the type III calcium binding repeats and the carboxyl-terminal cell or platelet binding domain (CBD). The attachment of human melanoma cells (G361) to the COOH-terminal domain is independent of the RGDA sequence and is inhibited by the monoclonal antibody C6.7. To define the cell binding site(s) within this 212-residue COOH-terminal domain, we have synthesized eight overlapping peptides (seven 30-mers and a final 37-mer) representing the entire sequence of the CBD. Several of these peptides are insoluble in aqueous buffers at high concentration. Cell adhesion assays have been devised which employ covalent coupling of peptides in chaotropic solvents to chemically derivatized plastic 96-well plates. Three synthetic peptides, two of which are nonadjacent in the linear sequence, are potent attachment factors for G361 cells. C6.7 blocks adhesion to one of these peptides, whereas sulfated glycoconjugates inhibit adhesion of cells to all three. Polyclonal antibodies raised against the peptides inhibit cell adhesion to the peptides, the recombinant CBD, and to intact TS. The peptides GRGDSP and VTCG are not inhibitory. These sites are thus independent from the type I repeats and the RGDA sequence of TS. Each of the active peptides inhibits cell attachment to the other active peptides as well as to the CBD and to intact TS. This mutual inhibition suggests that the peptides share a common cellular receptor which may contain an associated glycoconjugate chain. These data indicate that the COOH-terminal cell binding domain of TS contains at least two peptide sequences which contribute to the attachment of a wide variety of cells.  相似文献   

15.
Three distinctive heparin-binding sites were observed in type IV collagen by the use of rotary shadowing: in the NC1 domain and at distances 100 and 300 nm from the NC1 domain. Scatchard analysis indicated different affinities for these sites. Electron microscopic analysis of heparin-type IV collagen interaction with increasing salt concentrations showed the different affinities to be NC1 greater than 100 nm greater than 300 nm. The NC1 domain bound specifically to chondroitin/dermatan sulfate side chains as well. This binding was observed at the electron microscope and in solid-phase binding assays (where chondroitin sulfate could compete for the binding of [3H]heparin to NC1-coated substrata). The triple helix-rich, rod-like domain of type IV collagen did not bind to chondroitin/dermatan sulfate side chains. In solid-phase binding assays only heparin could compete for the binding of [3H]heparin to this domain. In order to more precisely map potential heparin-binding sites in type IV collagen, we chemically synthesized 17 arginine- and lysine-containing peptides from the alpha 1(IV) and alpha 2(IV) chains. Three peptides from the known sequence of the alpha 1(IV) and alpha 2(IV) chains were shown to specifically bind heparin: peptide Hep-I (TAGSCLRKFSTM), from the alpha 1(NC1) chain, peptide Hep-II (LAGSCLARFSTM), a peptide corresponding to the same sequence in peptide Hep-I from the alpha 2 (NC1) chain, and peptide Hep-III (GEFYFDLRLKGDK) which contained an interruption of the triple helical sequence of the alpha 1(IV) chain at about 300 nm from the NC1 domain, were demonstrated to bind heparin in solid-phase binding assays and compete for the binding of [3H]heparin to type IV collagen-coated substrata. Therefore, each of these peptides may represent a potential heparin-binding site in type IV collagen. The mapping of the binding of heparin or related structures, such as heparan sulfate proteoglycan, to specific sequences of type IV collagen could help the understanding of several structural and functional properties of this basement membrane protein as well as interactions with other basement membrane and/or cell surface-associated macromolecules.  相似文献   

16.
A Mycobacterium tuberculosis membrane protein called Mycobacterium cell entry protein (Mce1A) was previously shown to mediate the uptake of nonpathogenic Escherichia coli and latex beads by nonphagocytic mammalian cells. Here we characterize further the in vitro invasive activity of Mce1A using colloidal gold nanoparticles and fluorescent latex microspheres. Mce1A-coated colloidal gold particles induced plasma membrane invagination and entered membrane-bound compartments inside HeLa cells. Few of the protein-coated particles were also found in the cytosol compartment. Cytochalasin D and nocodazole inhibited the uptake by HeLa cells, indicating that rearrangement of both microtubules and microfilaments was necessary for the uptake. The functional domain of Mce1A for invasion was narrowed to a highly basic 22-amino acid sequence termed Inv3. A synthetic Inv3 peptide stimulated uptake of colloidal gold particles as well as latex microspheres by HeLa cells. A chimeric protein composed of Inv3 sequence at the N terminus of beta-galactosidase appeared to stain the nuclear membrane, suggesting that it entered the HeLa cell cytoplasm. These observations suggest that the cell uptake activity of Mce1A is confined to a small peptide domain located in the core region of the protein. Inv3 could be used to ferry any protein in fusion with it into mammalian cells and may serve as a potent nonviral delivery system.  相似文献   

17.
We have further characterized the protein kinase C (PK-C) dependent phosphorylation of basic fibroblast growth factor (FGF). Intact recombinant basic FGF and a series of ten peptide fragments of basic FGF were phosphorylated by PK-C and the products were analyzed by SDS-PAGE and autoradiography. As expected, peptide fragments containing the known site of phosphorylation (Ser64) are substrates for phosphorylation. Surprisingly however, peptides containing the receptor binding domain of the mitogen [basic FGF(106-115)] are also phosphorylated. An examination of this sequence reveals the presence of a consensus sequence (Ser108-Ala109-Lys110) that mediates the reaction. Accordingly, all peptides that contain the core amino acids basic FGF(106-111) are substrates for phosphorylation. Peptide mapping of basic FGF confirms that Ser64 is the primary site of phosphorylation, suggesting that Ser108 is a cryptic consensus sequence. Because basic FGF is metabolized to sequence specific fragments after its binding and internalization into target cells, this cryptic site may in fact be phosphorylated in vivo.  相似文献   

18.
Aizawa Y  Sugiura Y  Ueno M  Mori Y  Imoto K  Makino K  Morii T 《Biochemistry》1999,38(13):4008-4017
The basic region peptide derived from the basic leucine zipper protein GCN4 bound specifically to the native GCN4 binding sequences in a dimeric form when the beta-cyclodextrin/adamantane dimerization domain was introduced at the C-terminus of the GCN4 basic region peptide. We describe here how the structure and stability of the dimerization domain affect the cooperative formation of the peptide dimer-DNA complex. The basic region peptides with five different guest molecules were synthesized, and their equilibrium dissociation constants with a peptide possessing beta-cyclodextrin were determined. These values, ranging from 1.3 to 15 microM, were used to estimate the stability of the complexes between the dimers with various guest/cyclodextrin dimerization domains and GCN4 target sequences. An efficient cooperative formation of the dimer complexes at the GCN4 binding sequence was observed when the adamantyl group was replaced with the norbornyl or noradamantyl group, but not with the cyclohexyl group that formed a beta-cyclodextrin complex with a stability that was 1 order of magnitude lower than that of the adamantyl group. Thus, cooperative formation of the stable dimer-DNA complex appeared to be effected by the stability of the dimerization domain. For the peptides that cooperatively formed dimer-DNA complexes, there was no linear correlation between the stability of the inclusion complex and that of the dimer-DNA complex. With the beta-cyclodextrin/adamantane dimerization domain, the basic region peptide dimer preferred to bind to a palindromic 5'-ATGACGTCAT-3' sequence over the sequence lacking the central G.C base pair and that with an additional G.C base pair in the middle. Changing the adamantyl group into a norbornyl group did not alter the preferential binding of the peptide dimers to the palindromic sequence, but slightly affected the selectivity of the dimer for other nonpalindromic sequences. The helical contents of the peptides in the DNA-bound dimer with the adamantyl group were decreased by reducing the stability of the dimer-DNA complex, which was possibly caused by deformation of the helical structure proximal to the dimerization domain.  相似文献   

19.
Several shorter analogues of the cell penetrating peptide, transportan, have been synthesized in order to define the regions of the sequence, which are responsible for the membrane translocation property of the peptide. Penetration of the peptides into Bowes melanoma cells and the influence on GTPase activity in Rin m5F cellular membranes have been tested. The experimental data on cell penetration have been compared with molecular modeling of insertion of peptides into biological membranes. Omission of six amino acids from the N-terminus did not significantly impair the cell penetration of the peptide while deletions at the C-terminus or in the middle of the transportan sequence decreased or abolished the cellular uptake. Most transportan analogues exert an inhibitory effect on GTPase activity. Molecular modeling shows that insertion of the transportan analogues into the membrane differs for different peptides. Probably the length of the peptide as well as the location of aromatic and positively charged residues have major impact on the orientation of peptides in the membranes and thereby influence the cellular penetration. In summary, we have designed and characterized several novel short transportan analogues with similar cellular translocation properties to the parent peptide, but with reduced undesired cellular activity.  相似文献   

20.
Laminin is a basement membrane glycoprotein that has diverse biological activities. A sequence on the A chain containing IKVAV (Ile-Lys-Val-Ala-Val) has been shown to promote neurite outgrowth, cell adhesion, and tumor growth and metastasis. Here we have determined the structural requirements of this synthetic peptide for biological activity. Twelve-amino acid-long all-L- (LAM-L) and all-D-peptide (LAM-D) segments as well as an alternating D- and L-amino acid-containing peptide (LAM-DL), which included the IKVAV sequence (residues 2097-2108), were synthesized. Circular dichroism spectral analysis revealed a mirror image conformation of LAM-D and LAM-L with mainly beta-sheet and to a minor extent alpha-helical structure. LAM-DL did not exhibit any significant ordered conformational features. LAM-D and LAM-L showed similar cell attachment activities for rat pheochromocytoma cells (PC12), whereas LAM-DL was inactive. A peptide analog with randomized IKVAV sequence (LAM-RM) was also inactive. A similar trend was observed in competition experiments of the four peptides with laminin in analogous cell attachment assays. In in vivo experiments, both LAM-D and LAM-L were capable of increasing tumor growth when subcutaneously injected into mice with murine melanoma cells B16F10. Results indicate that the conformational status of the IKVAV domain is a contributing factor in determining the biological activity but that there is no strict requirement for a specific chirality. There is a likely sequence specificity to the IKVAV region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号