共查询到20条相似文献,搜索用时 15 毫秒
1.
M'hadheb-Gharbi MB El Hiar R Paulous S Jaïdane H Aouni M Kean KM Gharbi J 《Journal of molecular microbiology and biotechnology》2008,14(4):147-156
The lengthy 5' nontranslated region of coxsackievirus B3 (CVB3) forms a highly ordered secondary structure containing an internal ribosome entry segment (IRES), which plays an important role in controlling viral translation and pathogenesis. The stem-loop V (SL-V) of this IRES contains a large lateral bulge loop which encompasses two conserved GNRA motifs. In this study, we analyzed the effects of point mutations within the GNRA motifs of the CVB3 IRES. We characterized in vitro virus production and translation efficiency and we tested in vivo virulence of two CVB3 mutants produced by site-directed mutagenesis. The GNAA1 and GNAA2 RNAs displayed decreased translation initiation efficiency when translated in rabbit reticulocyte lysates. This translation defect was correlated with reduced yields of infectious virus particles in HeLa cells in comparison with the wild type. When inoculated orally into Swiss mice, both mutant viruses were avirulent and caused neither inflammation nor necrosis in hearts. These results highlight the important role of the GNRA motifs within the SL-V of the IRES of CVB3, in directing translation initiation. 相似文献
2.
Structure and function of a small RNA that selectively inhibits internal ribosome entry site-mediated translation. 总被引:3,自引:0,他引:3
下载免费PDF全文

A 60 nt long RNA termed IRNA, isolated from the yeast Saccharomyces cerevesiae, was previously shown to selectively block internal ribosome entry site (IRES)-mediated translation without interfering with cap-dependent translation of cellular mRNAs both in vivo and in vitro. IRNA specifically bound cellular proteins believed to be important for IRES-mediated translation. We demonstrate here that a complementary copy of IRNA (cIRNA) is also active in blocking IRES-mediated translation and that it binds many of the same cellular proteins that IRNA does. We have probed the secondary structure of both IRNA and cIRNA using single-strand- and double-strand-specific nucleases as well as using oligonucleotide hybridization followed by RNase H digestion. Both IRNA and cIRNA share secondary structural homology, although distinct differences do exist between the two structures. Mutational analysis of IRNA shows that sequences that form both the main stem and one loop are critical for its translation inhibitory activity. Maintenance of the established secondary structure appears to be required for both IRNA's ability to bind cellular trans -acting proteins believed to be required for IRES-mediated translation and its ability to block IRES-mediated translation. 相似文献
3.
We have shown previously that polypyrimidine tract binding protein 1 (PTB) binds and activates the Apaf-1 internal ribosome entry segment (IRES) when the protein upstream of N-ras (unr) is prebound. Here we show that the Apaf-1 IRES is highly active in neuronal-derived cell lines due to the presence of the neuronal-enhanced version of PTB, nPTB. The unr and PTB/nPTB binding sites have been located on the Apaf-1 IRES RNA, and a structural model for the IRES bound to these proteins has been derived. The ribosome landing site has been located to a single-stranded region, and this is generated by the binding of the nPTB and unr to the RNA. These data suggest that unr and nPTB act as RNA chaperones by changing the structure of the IRES into one that permits translation initiation. 相似文献
4.
5.
The 5' untranslated region of protein kinase Cdelta directs translation by an internal ribosome entry segment that is most active in densely growing cells and during apoptosis
下载免费PDF全文

Protein kinase Cdelta (PKCdelta) is a member of the PKC family of phospholipid-dependent serine/threonine kinases and is involved in cell proliferation, apoptosis, and differentiation. Previous studies have suggested that different PKC isoforms might be translationally regulated. We report here that the 395-nt-long 5' untranslated region (5' UTR) of PKCdelta is predicted to form very stable secondary structures with free energies (deltaG values) of around -170 kcal/mol. The 5' UTR of PKCdelta can significantly repress luciferase translation in rabbit reticulocyte lysate but does not repress luciferase translation in a number of transiently transfected cell lines. By using a bicistronic luciferase reporter, we show that the 5' UTR of PKCdelta contains a functional internal ribosome entry segment (IRES). The activity of the PKCdelta IRES is greatest in densely growing cells and during apoptosis, when total protein synthesis and levels of full-length eukaryotic initiation factor 4G are reduced. However, the IRES activity of the 5' UTR of PKCdelta is not enhanced during serum starvation, another condition shown to inhibit cap-dependent translation, suggesting that its potency is dependent on specific cellular conditions. Accumulating data suggest that PKCdelta has a function as proliferating cells reach high density and in early and later events of apoptosis. Our studies suggest a mechanism whereby PKCdelta synthesis can be maintained under these conditions when cap-dependent translation is inhibited. 相似文献
6.
Detailed analysis of the requirements of hepatitis A virus internal ribosome entry segment for the eukaryotic initiation factor complex eIF4F
下载免费PDF全文

The hepatitis A virus (HAV) internal ribosome entry segment (IRES) is unique among the picornavirus IRESs in that it is inactive in the presence of either the entero- and rhinovirus 2A or aphthovirus Lb proteinases. Since these proteinases both cleave eukaryotic initiation factor 4G (eIF4G) and HAV IRES activity could be rescued in vitro by addition of eIF4F to proteinase-treated extracts, it was concluded that the HAV IRES requires eIF4F containing intact eIF4G. Here, we show that the inability of the HAV IRES to function with cleaved eIF4G cannot be attributed to inefficient binding of the cleaved form of eIF4G by the HAV IRES. Indeed, the binding of both intact eIF4F and the C-terminal cleavage product of eIF4G to the HAV IRES was virtually indistinguishable from their binding to the encephalomyocarditis virus IRES, as assessed by UV cross-linking and filter retention assays. Rather, we show that HAV IRES activity requires, either directly or indirectly, components of the eIF4F complex which interact with the N-terminal fragment of eIF4G. Effectively, HAV IRES activity, but not that of the human rhinovirus IRES, was sensitive to the rotavirus nonstructural protein NSP3 [which displaces poly(A)-binding protein from the eIF4F complex], to recombinant eIF4E-binding protein (which prevents the association of the cap binding protein eIF4E with eIF4G), and to cap analogue. 相似文献
7.
Ogawa A 《Bioorganic & medicinal chemistry letters》2012,22(4):1639-1642
A strategy for rationally constructing a novel type of eukaryotic OFF-riboswitch, which ligand-dependently turns off translation mediated by an internal ribosome entry site (IRES), has been established. The theophylline-dependent IRES-based OFF-riboswitch obtained through the proposed strategy functioned well in wheat germ extract, independently from the downstream gene, indicating that it can regulate any gene. Despite the fact that it has one theophylline aptamer, its switching efficiency was as high as that of a previously reported theophylline-dependent OFF-riboswitch that was constructed by inserting three continuous theophylline aptamers into a 5' untranslated region in mRNA to downregulate the normal 5'-terminus-mediated translation. In addition, because the riboswitch part that was optimized in the theophylline-dependent IRES-based OFF-riboswitch, except for the aptamer domain, can be used as-is for other aptamer-ligand pairs, an arbitrary ligand-dependent IRES-based OFF-riboswitch is easy to construct with the corresponding well-minimized aptamer. 相似文献
8.
A cell synchronization protocol was established in which global and individual mRNA translational efficiencies could be examined. While global translational efficiency was reduced in mitotic cells, approximately 3% of mRNAs remained predominantly associated with large polysomes during mitosis, as determined by cDNA microarray analyses. The 5'-non-coding regions of six mRNAs were shown to contain internal ribosome entry sites (IRES). However, not all known mRNAs that contain IRES elements were actively translated during mitosis, arguing that specific IRES sequences are differentially regulated during mitosis. 相似文献
9.
10.
Selection and analysis of mutations in an encephalomyocarditis virus internal ribosome entry site that improve the efficiency of a bicistronic flavivirus construct
下载免费PDF全文

Flaviviruses have a positive-stranded RNA genome, which simultaneously serves as an mRNA for translation of the viral proteins. All of the structural and nonstructural proteins are translated from a cap-dependent cistron as a single polyprotein precursor. In an earlier study (K. K. Orlinger, V. M. Hoenninger, R. M. Kofler, and C. W. Mandl, J. Virol. 80:12197-12208, 2006), it was demonstrated that an artificial bicistronic flavivirus genome, TBEV-bc, in which the region coding for the viral surface glycoproteins prM and E from tick-borne encephalitis virus (TBEV) had been removed from its natural context and inserted into the 3' noncoding region under the control of an internal ribosome entry site (IRES) from encephalomyocarditis virus (EMCV) produces viable, infectious virus when cells are transfected with this RNA. The rates of RNA replication and infectious particle formation were significantly lower with TBEV-bc, however, than with wild-type TBEV. In this study, we have identified two types of mutations, selected by passage in BHK-21 cells, that enhance the growth properties of TBEV-bc. The first type occurred in the E protein, and these most likely increase the affinity of the virus for heparan sulfate on the cell surface. The second type occurred in the inserted EMCV IRES, in the oligo(A) loop of the J-K stem-loop structure, a binding site for the eukaryotic translation initiation factor 4G. These included single-nucleotide substitutions as well as insertions of additional adenines in this loop. An A-to-C substitution in the oligo(A) loop decreased the efficiency of the IRES itself but nevertheless resulted in improved rates of virus particle formation and overall replication efficiency. These results demonstrate the need for proper balance in the competition for free template RNA between the viral RNA replication machinery and the cellular translation machinery at the two different start sites and also identify specific target sites for the improvement of bicistronic flavivirus expression vectors. 相似文献
11.
12.
Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras 总被引:11,自引:0,他引:11
下载免费PDF全文

Mitchell SA Brown EC Coldwell MJ Jackson RJ Willis AE 《Molecular and cellular biology》2001,21(10):3364-3374
It has been reported previously that the 5' untranslated region of the mRNA encoding Apaf-1 (apoptotic protease-activating factor 1) has an internal ribosome entry site (IRES), whose activity varies widely among different cell types. Here it is shown that the Apaf-1 IRES is active in rabbit reticulocyte lysates, provided that the system is supplemented with polypyrimidine tract binding protein (PTB) and upstream of N-ras (unr), two cellular RNA binding proteins previously identified to be required for rhinovirus IRES activity. In UV cross-linking assays and electrophoretic mobility shift assays with individual recombinant proteins, the Apaf-1 IRES binds unr but not PTB; however, PTB binding occurs if unr is present. Over a range of different cell types there is a broad correlation between the activity of the Apaf-1 IRES and their content of PTB and unr. In cell lines deficient in these proteins, overexpression of PTB and unr stimulated Apaf-1 IRES function. This is the first example where an IRES in a cellular mRNA has been shown to be functionally dependent, both in vitro and in vivo, on specific cellular RNA binding proteins. Given the critical role of Apaf-1 in apoptosis, these results have important implications for the control of the apoptotic cascade. 相似文献
13.
14.
15.
正In eukaryotic cells,initiation of protein translation is to recruit the ribosome to a specific mRNA,which is generally dependent on the 5'cap structure.However,protein translation can also be initiated in a cap-independent manner by using a cis-regulatory element termed the internal ribosome entry site(IRES).The first experimentally validated IRES was reported in the poliovirus 相似文献
16.
Ben M'hadheb-Gharbi M Gharbi J Paulous S Brocard M Komaromva A Aouni M Kean KM 《Molecular genetics and genomics : MGG》2006,276(4):402-412
The domain V within the internal ribosome entry segment (IRES) of poliovirus (PV) is expected to be important in its own neurovirulence because it contains an attenuating mutation in each of the Sabin vaccine strains. In this study, we try to find out if the results observed in the case of Sabin vaccine strains of PV can be extrapolated to another virus belonging to the same genus of enteroviruses but with a different tropism. To test this hypothesis, we used the coxsackievirus B3 (CVB3), known to be the most common causal agent of viral myocarditis. The introduction of the three PV Sabin-like mutations in the equivalent positions (nucleotides 484, 485, and 473) to the domain V of the CVB3 IRES results in significant reduced viral titer of the Sabin3-like mutant (Sab3-like) but not on those of Sab1- and Sab2-like mutants. This low titer was correlated with poor translation efficiency in vitro when all mutants were translated in rabbit reticulocyte lysates. However, elucidation by biochemical probing of the secondary structure of the entire domain V of the IRES of Sabin-like mutants reveals no distinct profiles in comparison with the wild-type counterpart. Prediction of secondary structure by MFOLD program indicates a structural perturbation of the stem containing the Sab3-like mutation, suggesting that specific protein-viral RNA interactions are disrupted, preventing efficient viral translation. 相似文献
17.
Malnou CE Werner A Borman AM Westhof E Kean KM 《The Journal of biological chemistry》2004,279(11):10261-10269
Initiation of poliovirus (PV) protein synthesis is governed by an internal ribosome entry segment structured into several domains including domain V, which is accepted to be important in PV neurovirulence because it harbors an attenuating mutation in each of the vaccine strains developed by A. Sabin. To better understand how these single point mutations exert their effects, we placed each of them into the same genomic context, that of PV type 1. Only the mutation equivalent to the Sabin type 3 strain mutation resulted in significantly reduced viral growth both in HeLa and neuroblastoma cells. This correlated with poor translation efficiency in vitro and could be explained by a structural perturbation of the domain V of the internal ribosome entry segment, as evidenced by RNA melting experiments. We demonstrated that reduced cell death observed during infection by this mutant is due to the absence of inhibition of host cell translation. We confirmed that this shut-off is correlated principally with cleavage of eIF4GII and not eIF4GI and that this cleavage is significantly impaired in the case of the defective mutant. These data support the previously reported conclusion that the 2A protease has markedly different affinities for the two eIF4G isoforms. 相似文献
18.
Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site 总被引:32,自引:0,他引:32
Picornaviruses are mammalian plus-strand RNA viruses whose genomes serve as mRNA. A study of the structure and function of these viral mRNAs has revealed differences among them in events leading to the initiation of protein synthesis. A large segment of the 5' nontranslated region, approximately 400 nucleotides in length, promotes 'internal' entry of ribosomes independent of the non-capped 5' end of the mRNA. This segment, which we have called the internal ribosome entry site (IRES), maps approximately 200 nt down-stream from the 5' end and is highly structured. IRES elements of different picornaviruses, although functionally similar in vitro and in vivo, are not identical in sequence or structure. However, IRES elements of the genera entero- and rhinoviruses, on the one hand, and cardio- and aphthoviruses, on the other hand, reveal similarities corresponding to phylogenetic kinship. All IRES elements contain a conserved Yn-Xm-AUG unit (Y, pyrimidine; X, nucleotide) which appears essential for IRES function. The IRES elements of cardio-, entero- and aphthoviruses bind a cellular protein, p57. In the case of cardioviruses, the interaction between a specific stem-loop of the IREs is essential for translation in vitro. The IRES elements of entero- and cardioviruses also bind the cellular protein, p52, but the significance of this interaction remains to be shown. The function of p57 or p52 in cellular metabolism is unknown. Since picornaviral IRES elements function in vivo in the absence of any viral gene products, we speculate that IRES-like elements may also occur in specific cellular mRNAs releasing them from cap-dependent translation. IRES elements are useful tools in the construction of high yield expression vectors, or for tagging cellular genetic elements. 相似文献
19.
Restoration of functional gap junctions through internal ribosome entry site-dependent synthesis of endogenous connexins in density-inhibited cancer cells
下载免费PDF全文

Lahlou H Fanjul M Pradayrol L Susini C Pyronnet S 《Molecular and cellular biology》2005,25(10):4034-4045
Gap junctions are composed of connexins and are critical for the maintenance of the differentiated state. Consistently, connexin expression is impaired in most cancer cells, and forced expression of connexins following cDNA transfection reverses the tumor phenotype. We have found that the restoration of density inhibition of human pancreatic cancer cells by the antiproliferative somatostatin receptor 2 (sst2) is due to overexpression of endogenous connexins Cx26 and Cx43 and consequent formation of functional gap junctions. Immunoblotting along with protein metabolic labeling and mRNA monitoring revealed that connexin expression is enhanced at the level of translation but is not sensitive to the inhibition of cap-dependent translation initiation. Furthermore, we identified a new internal ribosome entry site (IRES) in the Cx26 mRNA. The activity of Cx26 IRES and that of the previously described Cx43 IRES are enhanced in density-inhibited cells. These data indicate that the restoration of functional gap junctions is likely a critical event in the antiproliferative action of the sst2 receptor. We further suggest that the existence of IRESes in connexin mRNAs permits connexin expression in density-inhibited or differentiated cells, where cap-dependent translation is generally reduced. 相似文献
20.
The Taura syndrome virus (TSV), a member of the Dicistroviridae family of viruses, is a single-stranded positive-sense RNA virus which contains two nonoverlapping reading frames separated by a 230-nucleotide intergenic region. This intergenic region contains an internal ribosome entry site (IRES) which directs the synthesis of the TSV capsid proteins. Unlike other dicistroviruses, the TSV IRES contains an AUG codon that is in frame with the capsid region, suggesting that the IRES initiates translation at this AUG codon by using initiator tRNAmet. We show here that the TSV IRES does not use this or any other AUG codon to initiate translation. Like the IRES in cricket paralysis virus (CrPV), the TSV IRES can assemble 80S ribosomes in the absence of initiation factors and can direct protein synthesis in a reconstituted system that contains only purified ribosomal subunits, eukaryotic elongation factors 1A and 2, and aminoacylated tRNAs. The functional conservation of the CrPV-like IRES elements in viruses that can infect different invertebrate hosts suggests that initiation at non-AUG codons by an initiation factor-independent mechanism may be more prevalent. 相似文献