首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coat protein of Bacillus subtilis spores comprises about 10% of the total dry weight of spores and 25% of the total spore protein. One protein with a molecular weight of 13,000 to 15,000 comprises a major portion of the spore coat. This mature spore coat protein has histidine at its NH2 terminus and is relatively rich in hydrophobic amino acids. Netropsin, and antibiotic which binds to A-T-rich regions of DNA and inhibits sporulation, but not growth, decreased the synthesis of this spore coat protein by 75%. A precursor spore coat protein with a molecular weight of 25,000 is made initially at t1 of sporulation and is converted to the mature spore coat protein with a molecular weight of 13,500 at t2 - t3. These data indicate that the spore coat protein gene is expressed very early in sporulation prior to the modifications of RNA polymerase which have been noted.  相似文献   

2.
The spore appendages of Clostridium taeniosporum NI were removed from the spores by sonic treatment and were isolated by using discontinuous sucrose gradients. The amino acid composition of the appendages, which are elaborations of the spore coat, was similar to but not identical with the amino acid composition of the coats. Approximately 80% of the appendage dry weight was composed of 17 common amino acids, whereas 68% of the spore coat dry weight was amino acids. Mole ratios of the amino acids differed between the appendages and spore coats. The appendages contained neither diaminopimelic acid nor hydroxyproline. Glucosamine was an abundant constituent but muramic acid was absent. Approximately 10% of appendage dry weight consisted of three sugars, one of which was glucose. Phosphorus content was high and dipicolinic acid was absent. Appendage fine structure was not affected by common buffers, dilute acids and bases, hydrogen bond-breaking agents, certain proteolytic enzymes, or lysozyme.  相似文献   

3.
The spore coat protein of Clostridium perfringens type A was solubilized from intact spores by treatment with a mixture of sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) at alkaline pH. About 35% of the total dry weight of spores was extracted with this treatment. The extracted protein was partially purified by gel filtration. The major component (Fr-Bl) is rich in glutamic acid and aspartic acid, as well as half-cystine. SDS-polyacrylamide gel electrophoresis analysis of the Fr-Bl showed a major polypeptide band of a molecular weight of 17,000.  相似文献   

4.
Spore pool glutamic acid as a metabolite in germination   总被引:5,自引:4,他引:5       下载免费PDF全文
Spore glutamic acid pools were examined in dormant and germinating spores using colorimetric and (14)C analytical procedures. Germination of spores of Bacillus megaterium (parent strain), initiated by d-glucose, was accompanied by a rapid drop in the level of spore pool glutamate, from 12.0 mug/mg of dry spores to 7.7 mug/mg of dry spores after 30 sec of germination. Similar decreases in extractable spore pool glutamate were observed with l-alanine-initiated germination of B. licheniformis spores. On the other hand, glutamate pools of mutant spores of B. megaterium, with a requirement of gamma-aminobutyric acid for spore germination, remained unchanged for 9 min of germination, at which time more than 50% of the spore population had germinated. Evidence for conversion of spore pool glutamate to gamma-aminobutyric acid during germination of spores of B. megaterium (parent strain) was obtained.  相似文献   

5.
Sporangiospores of Rhizopus stolonifer were examined at various stages of germination by scanning electron and phase-contrast microscopy. These observations were correlated with changes in spore dry weight, spore volume, respiration, and syntheses of ribonucleic acid, deoxyribonucleic acid, and protein during germination.  相似文献   

6.
A low molecular weight protein from dry mung bean (Vigna radiata) embryonic axes has been purified to near homogeneity by chromatography on DEAE-cellulose and hydroxylapatite. It shows a molecular weight of about 12,000 in sodium dodecyl sulfate-polyacrylamide gels and a sedimentation coefficient of about 2 S in sucrose gradients. This protein occurs in greater amounts in dry axes than in dry cotyledons, and it dramatically disappears during early germination of the seed. Affinity chromatography tests do not indicate it as a trypsin inhibitor or as a glycoprotein. It is a water-soluble cytoplasmic protein exhibiting an amino acid composition characteristic of storage proteins with a high content of glutamic acid/glutamine. We suggest that it is a low molecular weight storage albumin.Abbreviations Asx aspartic acid/asparagine - BSA bovine serum albumin - Con A concanavalin A - EB extraction buffer - Glx glutamic acid/glutamine - HA hydroxylapatite - PB phosphate buffer - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

7.
Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.  相似文献   

8.
Extensively washed, dormant spores of Bacillus subtilis were disrupted with glass beads in buffer at pH 7 in the presence of protease inhibitors. Approximately 31% of the total spore protein was soluble, and another 14% was removed from the insoluble fraction by hydrolysis with lysozyme and washing with 1 M KCl and 0.1% sodium dodecyl sulfate. The residual spore integuments comprised 55% of the total spore proteins and consisted of coats and residual membrane components. Treatment of integuments with sodium dodecyl sulfate and reducing agents at pH 10 solubilized 40% of the total spore protein. Seven low-molecular-weight polypeptide components of this solubilized fraction comprised 27% of the total spore protein. They are not normal membrane components and reassociated to form fibrillar structures resembling spore coat fragments. The residual insoluble material (15% of the total spore protein) was rich in cysteine and was probably also derived from the spore coats. A solubilized coat polypeptide of molecular weight 12,200 has been purified in good yield (4 to 5% of the total spore protein). Five amino acids account for 92% of its total amino acid residues: glycine, 19%; tyrosine, 31%; proline, 23%; arginine, 13%; and phenylalanine, 6%.  相似文献   

9.
The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat.  相似文献   

10.
The sequence of events occurring during the germination and outgrowth of appendage-bearing spores of Clostridium bifermentans was studied by phase-contrast and electron microscopy. The mature spore was characterized ultrastructurally as having the normal spore components as well as long tubular appendages which orginated from the surface of the spore coat. Spores were incompletely enclosed by a distinctly laminated exosporium which possessed hairlike projections on its outermost layer. During germination, structural changes were observed in the core, core wall, cortex, and spore coat layers. Cortical material was extruded from the spore during outgrowth, which usually occurred from the pole opposite the appendages. The subunits comprising the structure of the appendages and the morphology of the mature appendages were observed. No discernible changes could be observed in the spore appendages during germination and outgrowth.  相似文献   

11.
Samples of pollen wall protein of Cucurbita pepo were prepared as reported in previous paper. Gas chromoatographic analyses snowed that the carbohydrate fraction of the pollen wall glycoprotcin contained 20.4% rhamnose, 15.3% fucose, 11% mannose, 11% galactose, 31% glucose, 4% arabinose and traces of xylose. The glycoproteins were further purified by Con. A affinity chromatography, Isoelectric focussing electrophoresis of the purified sample showed 3 PAS-positive bands, with respective PI 5.2, 6.0 and 6.3. The glycoprotein samples were subjected to hydrolysis with 6N HC1. After hydrolysis, the mixture was analyzed for amino acid composition with Backman 121-MB automatic amino acid analyzer, Results show the amino acid composition of the 3 glycoprotein was very similar, They all have glycine, glutamic acid and serine as their major component (these three amino acids constitute 50–60% of the total amino acids); and they all contain very small amount of methionine, phenylalanine, isoleucine and tyrosine. The lysine content of each glycoprotein is consistent with its respective PI, the glycoprotein which contains more lysine has higher PI.  相似文献   

12.
Dormant spores of Bacillus megaterium were found to contain approximately 850 pmol of coenzyme A (CoA) per milligram of dry weight. Of this total, less than 1.5% was acetyl-CoA, 25% was CoA-disulfide, 43% was in disulfide linkage to protein, and the remainder was the free thiol. Dormand spores of Bacillus cereus and Clostridium bifermentans contained 700 and 600 pmol of CoA per milligram of dry weight, respectively; in both species approximately 45% of the CoA 45% of the CoA was in disulfide linkage to protein. During germination of spores of all three species, greater than 75% of the CoA-protein disulfides were cleaved. In B. megaterium, cleavage of these disulfides during spore germination did not require exogenous metabolites and occurred at about the same time as the initiation of germination. Much of the CoA was converted to acetyl-CoA at this time. Dormant spores also contained reduced nicotinamide adenine dinucleotide-dependent CoA-disulfide reductase at levels higher than those in other stages of growth. The level of total CoA in the growing cells was two- to three-fold higher than in spores. This level remained constant throughout growth and sporulation, but less than 2% of the total cellular CoA was in disulfide linkage to protein until late in sporulation. The CoA-protein disulfides accumulated exclusively within the developing spore at about the time when dipicolinic acid was accumulated.  相似文献   

13.
Two globulin storage proteins have been identified in spores of the ostrich fern, Matteuccia struthiopteris (L.) Todaro. The two proteins comprise a significant amount of the total spore protein, are predominantly salt-soluble, and can be extracted by other solvents to a limited extent. The large 11.3 Svedberg unit (S) globulin is composed of five polypeptides with molecular weights of 21,000, 22,000, 24,000, 28,000 and 30,000. Each polypeptide has several isoelectric point (pI) variants between pH 5 and 7. The small 2.2S storage protein has a pI > 10.5 and is composed of at least two major polypeptides of 6,000 and 14,000 Mr. The amino acid composition of both storage proteins reveals that the 11.3S protein is particularly rich in aspartic and glutamic acid, while the 2.2S protein has few acidic amino acids. During imbibition and germination the globulin fraction declines rapidly, with a corresponding degradation of individual polypeptides of each protein. Polyclonal antibodies against each of the two proteins were produced and used for immunolocalization to determine the site of storage protein deposition within the quiescent spore. The proteins were sequestered in protein bodies of 2 to 10 micrometers, that are morphologically similar to those found in the seeds of flowering plants. The results suggest that spore globulins are biochemically similar to seed globulins, especially those found in some cruciferous seeds.  相似文献   

14.
1. A glycosylated proline-rich protein (GPRP) was purified to homogeneity by subjecting parotid saliva to immunoaffinity, cation exchange, affinity and hydrophobic chromatography. 2. The purified GPRP had a molecular weight of 78 kDa as analyzed by SDS-PAGE. 3. The amino acid analysis revealed a preponderance of proline, glycine and glutamic acid/glutamine, which accounted for 77% of the total amino acids. 4. Cysteine, tyrosine or phenylalanine residues were not detected. 5. The glycoprotein contained 34% neutral sugars and the oligosaccharides were rich in mannose and N-acetylglucosamine, indicating that N-linked oligosaccharides were the predominant type of oligosaccharides in the molecule. 6. These observations were confirmed by treatment of the purified glycoprotein with specific N-glycosidase which removed the N-linked oligosaccharides leaving a core protein with an apparent molecular weight of 51 kDa. 7. The isoelectric point of GPRP was approx 7.0 and the molecule was not affected by reduction with 2-mercaptoethanol, indicating that no disulfide linkages were present. 8. The GPRP bound to hydroxyapatite and this binding could be partially inhibited by preincubation of the hydroxyapatite with parotid or submandibular saliva. 9. The purified GPRP also bound to a protein with an apparent molecular weight of 95 kDa present in submandibular saliva.  相似文献   

15.
Spores produced by a mutant of Bacillus subtilis were slow to develop their resistance properties during sporulation, and were slower to germinate than were wild-type spores. The coat protein composition of the mutant spores, as analysed by SDS-PAGE, was similar to that of the wild-type spores. However, one of the proteins (mol. wt 12000) which is normally present in the outer-most layers of mature wild-type spores and which is surface-exposed, was assembled abnormally into the coat of the mutant spores and not surface-exposed. The mutation responsible for this phenotype (spo-520) has been mapped between pheA and leuB on the B. subtilis chromosome, and was 47% cotransformable with leuB16. This mutation, and three others closely linked to it, define a new sporulation locus, spoVIB, which is involved in spore coat assembly. The phenotype of the mutant(s) supports the contention that spore germination and resistance properties may be determined by the assembly of the coat.  相似文献   

16.
17.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

18.
Spores from Bacillus thuringiensis serovars kurstaki and entomocidus synergized crystal protein toxicity for larvae of the Indianmeal moth (Plodia interpunctella). Preparations of spore-crystal mixtures of either serovar were more toxic for the larvae than either purified spores or crystals alone (based on dry weight). Spores lost 53% of their toxicity for the Indianmeal moth after 2 h of UV-irradiation, but remained partially toxic (28%) even after 4 h of irradiation. Spore coat protein was toxic for the Indianmeal moth and was synergistic with B. thuringiensis serovar kurstaki HD-1 crystal protein. Enhanced toxicity of the combined spore-crystal preparation was attributed to a combination of crystal and spore coat protein, and included the effects of spore germination and resulting septicemia in the larval hemolymph. Ultraviolet irradiation of spores reduced the toxicity from septicemia but not the synergism caused by spore coat protein. The potencies of spore-crystal preparations must be carefully evaluated on the basis of contributions from all three factors. Received: 15 September 1997/Accepted: 21 October 1997  相似文献   

19.
Polyacrylamide gel profiles of Clostridium perfringens spore coat protein revealed four and occasionally five components. Pulse-chase experiments indicated that synthesis of coat protein polypeptide and enterotoxin was an early sporulation event. However, maximum synthesis occurred coincident with the onset of heat resistance.  相似文献   

20.
The modB mutation eliminates specific carbohydrate epitopes from glycoproteins which are expressed primarily in prespore and spore cells of differentiating Dictyostelium discoideum. Spores formed by the mutant show several phenotypes. Whereas mutant spores germinate efficiently after heat activation, they germinate poorly after urea activation. Following germination, at least one glycosylation-defective glycoprotein is cleaved, and the larger fragment is released in soluble form from the spore coat. However, an earlier difference in the spore coat can be traced back to the nongerminated spore coat, as detected by the elutability of protein from intact spores by chemical extraction. An altered character of the pregermination spore coat is also suggested by increased labeling by a fluorescent lectin which binds to its interior. The findings are consistent with a change in the character of certain molecular contacts leading to altered characteristics of the mutant spore coat, which are specific because they are distinctive from changes observed in another glycosylation mutant which affects a different epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号