共查询到20条相似文献,搜索用时 23 毫秒
1.
A flocculent Saccharomyces cerevisiae strain with the ability to express both the LAC4 (coding for β-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces marxianus was constructed. This recombinant strain is not only able to grow on lactose, but it can also ferment this substrate. To
our knowledge this is the first time that a recombinant S. cervisiae has been found to ferment lactose in a way comparable to that of the existing lactose-fermenting yeast strains. Moreover,
the flocculating capacity of the strain used in this work gives the process several advantages. On the one hand, it allows
for operation in a continuous mode at high cell concentration, thus increasing the system's overall productivity; on the other
hand, the biomass concentration in the effluent is reduced, thus decreasing product separation/purification costs.
Received: 2 October 1998 / Received revision: 15 January 1999 / Accepted: 17 January 1999 相似文献
2.
Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains 总被引:1,自引:0,他引:1
The recombinant xylose fermenting strain Saccharomyces cerevisiae TMB3001 can grow on xylose, but the xylose utilisation rate is low. One important reason for the inefficient fermentation of xylose to ethanol is believed to be the imbalance of redox co-factors. In the present study, a metabolic flux model was constructed for two recombinant S. cerevisiae strains: TMB3001 and CPB.CR4 which in addition to xylose metabolism have a modulated redox metabolism, i.e. ammonia assimilation was shifted from being NADPH to NADH dependent by deletion of gdh1 and over-expression of GDH2. The intracellular fluxes were estimated for both strains in anaerobic continuous cultivations when the growth limiting feed consisted of glucose (2.5 g L-1) and xylose (13 g L-1). The metabolic network analysis with 13C labelled glucose showed that there was a shift in the specific xylose reductase activity towards use of NADH as co-factor rather than NADPH. This shift is beneficial for solving the redox imbalance and it can therefore partly explain the 25% increase in the ethanol yield observed for CPB.CR4. Furthermore, the analysis indicated that the glyoxylate cycle was activated in CPB.CR4. 相似文献
3.
Saccharomyces cerevisiae strain with excellent xylose-fermenting capacity and inhibitor tolerance is crucial for lignocellulosic ethanol production. In this study, a combined strategy including site-directed mutagenesis, mating, evolutionary engineering, and haploidization was applied to obtain strains with ideal xylose fermentabilities. Haploid industrial strain KFG4-6B was engineered to overexpress endogenous xylulokinase (XK) and heterologous native or mutated xylose reductase (XR) and xylitol dehydrogenase (XDH) from Scheffersomyces stipitis. The XR-mutated strain HX57D showed over 12% increase in both xylose consumption rate and ethanol yield compared with the XR-native strain. To improve the xylose uptake, the HX57D-derived diploids were subjected to evolutionary engineering. In comparison with HX57D, evolved diploid Z4X-21-18 achieved 4.5-fold increases in rates of xylose consumption and ethanol production when fermenting xylose. When fermenting mixed sugars, the glucose and xylose uptake rates were 1.4-fold and 8.3-fold, respectively, higher. H18s28, a haploid of Z4X-21-18, enabled a further 10% increase in xylose consumption rate when fermenting xylose only. However, it was inferior to its diploid parent when fermenting mixed sugars. In the presaccharification-simultaneous saccharification and fermentation (P-SSF) of the whole pretreated wheat straw slurry with high contents of multiple inhibitors, Z4X-21-18 produced approximately 42 g/L ethanol with a yield of 0.38 g/g total sugars. 相似文献
4.
Background
Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.Results
The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.Conclusion
The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme. 相似文献5.
Adt I Kohler A Gognies S Budin J Sandt C Belarbi A Manfait M Sockalingum GD 《Canadian journal of microbiology》2010,56(9):793-801
In this study, we tested the potential of Fourier-transform infrared absorption spectroscopy to screen, on the one hand, Saccharomyces cerevisiae and non-S. cerevisiae strains and, on the other hand, to discriminate between S. cerevisiae and Saccharomyces bayanus strains. Principal components analysis (PCA), used to compare 20 S. cerevisiae and 21 non-Saccharomyces strains, showed only 2 misclassifications. The PCA model was then used to classify spectra from 14 Samos strains. All 14 Samos strains clustered together with the S. cerevisiae group. This result was confirmed by a routinely used electrophoretic pattern obtained by pulsed-field gel electrophoresis. The method was then tested to compare S. cerevisiae and S. bayanus strains. Our results indicate that identification at the strain level is possible. This first result shows that yeast classification and S. bayanus identification can be feasible in a single measurement. 相似文献
6.
【目的】构建可用于纤维素乙醇高效生产的混合糖发酵重组酿酒酵母菌株,并利用菊芋秸秆为原料进行乙醇发酵。【方法】筛选在木糖中生长较好的酿酒酵母YB-2625作为宿主菌,构建木糖共代谢菌株YB-2625 CCX。进一步通过r DNA位点多拷贝整合的方式,以YB-2625 CCX为出发菌株构建木糖脱氢酶过表达菌株,并筛选得到优势菌株YB-73。采用同步糖化发酵策略研究YB-73的菊芋秸秆发酵性能。【结果】YB-73菌株以90 g/L葡萄糖和30 g/L木糖为碳源进行混合糖发酵,乙醇产量比出发菌株YB-2625 CCX提高了13.9%,副产物木糖醇产率由0.89 g/g降低至0.31 g/g,下降了64.6%。利用重组菌YB-73对菊芋秸秆进行同步糖化发酵,48 h最高乙醇浓度达到6.10%(体积比)。【结论】通过转入木糖代谢途径以及r DNA位点多拷贝整合过表达木糖脱氢酶基因可有效提高菌株木糖发酵性能,并用于菊芋秸秆的纤维素乙醇生产。这是首次报道利用重组酿酒酵母进行菊芋秸秆原料的纤维素乙醇发酵。 相似文献
7.
Urea transport-defective strains of Saccharomyces cerevisiae. 总被引:7,自引:7,他引:0
Experiments characterizing the urea active transport system in Saccharomyces cerevisiae indicate that (i) formamide and acetamide are strong competitive inhibitors of urea accumulation, (ii) uptake is maximal at pH 3.3 and is 80% inhibited at pH 6.0, and (iii) adenosine 5'-triphosphate generated by glycolysis in conjunction with formation of an ion gradient is likely the driving force behind urea transport. Mutant strains were isolated that are unable to accumulate urea at external concentrations of 0.25 mM. These strains also exhibit a depressed growth rate on 10 mM urea, indicating existence of a relationship between the active transport and facilitated diffusion modes of urea uptake. 相似文献
8.
R Snow 《Mutation research》1968,6(3):409-418
9.
《Journal of Fermentation and Bioengineering》1993,75(2):83-88
The xylose reductase gene originating from Pichia stipitis was subcloned on an expression vector with the enolase promoter and terminator from Saccharomyces cerevisiae. The transformants of S. cerevisiae harboring the resultant plasmids produced xylose reductase constitutively at a rate about 3 times higher than P. stipitis, but could not assimilate xylose due to the deficient conversion of xylitol to xylulose. The xylitol dehydrogenase gene was also isolated from the gene library of P. stipitis by plaque hybridization using a probe specific for its N-terminal amino acid sequence. The gene transferred into S. cerevisiae was well expressed. Furthermore, high expressions of the xylose reductase and xylitol dehydrogenase genes in S. cerevisiae were achieved by introducing both genes on the same or coexisting plasmids. The transformants could grow on a medium containing xylose as the sole carbon source, but ethanol production from xylose was less than that by P. stipitis and a significant amount of xylitol was excreted into the culture broth. 相似文献
10.
Schacherer J de Montigny J Welcker A Souciet JL Potier S 《Nucleic acids research》2005,33(19):6319-6326
Duplication is thought to be one of the main processes providing a substrate on which the effects of evolution are visible. The mechanisms underlying this chromosomal rearrangement were investigated here in the yeast Saccharomyces cerevisiae. Spontaneous revertants containing a duplication event were selected and analyzed. In addition to the single gene duplication described in a previous study, we demonstrated here that direct tandem duplicated regions ranging from 5 to 90 kb in size can also occur spontaneously. To further investigate the mechanisms in the duplication events, we examined whether homologous recombination contributes to these processes. The results obtained show that the mechanisms involved in segmental duplication are RAD52-independent, contrary to those involved in single gene duplication. Moreover, this study shows that the duplication of a given gene can occur in S.cerevisiae haploid strains via at least two ways: single gene or segmental duplication. 相似文献
11.
Saccharomyces cerevisiae has increasingly been engineered as a cell factory for efficient and economic production of fuels and chemicals from renewable resources. Notably, a wide variety of industrially important products are derived from the same precursor metabolite, acetyl-CoA. However, the limited supply of acetyl-CoA in the cytosol, where biosynthesis generally happens, often leads to low titer and yield of the desired products in yeast. In the present work, combined strategies of disrupting competing pathways and introducing heterologous biosynthetic pathways were carried out to increase acetyl-CoA levels by using the CoA-dependent n-butanol production as a reporter. By inactivating ADH1 and ADH4 for ethanol formation and GPD1 and GPD2 for glycerol production, the glycolytic flux was redirected towards acetyl-CoA, resulting in 4-fold improvement in n-butanol production. Subsequent introduction of heterologous acetyl-CoA biosynthetic pathways, including pyruvate dehydrogenase (PDH), ATP-dependent citrate lyase (ACL), and PDH-bypass, further increased n-butanol production. Recombinant PDHs localized in the cytosol (cytoPDHs) were found to be the most efficient, which increased n-butanol production by additional 3 fold. In total, n-butanol titer and acetyl-CoA concentration were increased more than 12 fold and 3 fold, respectively. By combining the most effective and complementary acetyl-CoA pathways, more than 100 mg/L n-butanol could be produced using high cell density fermentation, which represents the highest titer ever reported in yeast using the clostridial CoA-dependent pathway. 相似文献
12.
Nystatin-resistant mutants of haploid and polyploid strains of Saccharomyces cerevisiae were isolated by plating on gradient plates with increasing nystatin concentrations (60–3000 U/ml). Some of the mutants were defective in ergosterol biosynthesis, and produced zymosterol and cholestatetraenol-like sterols. Those mutants which do not form ergosterol produce less ethanol than the parent strains. They also had lower viability during fermentation of glucose solutions (8–13% vs. 33–47%). This became more pronounced in fermentations of higher concentrations of glucose. A nystatin-resistant but ergosterol-forming mutant had a similar fermentation capacity to the parent strain. 相似文献
13.
The effect of several antineoplastic agents on Saccharomyces cerevisiae strains has been investigated. Minimum inhibitory concentration (MIC), minimum cytotoxic concentration (MCC) and median effective concentration (EC50 ) were determined to identify strains with inherent sensitivity to the agents tested. Several strains proved to be sensitive to the antimetabolites 5-fluorouracil and methotrexate as well as to doxorubicin and cis-platine. On the contrary m -amsacrine, procarbazine, vinca alcaloids, melphalan and hydroxyurea were inactive at concentrations up to 400 μg ml −1 . The strain ATCC 2366, the most relatively sensitive to the agents tested, was used for studying the effect of treatment duration and of drug concentration on cell survival. Methotrexate and cis-platine, which according to MIC and MCC tests seemed ineffective for this strain, reduced survival significantly after 6 h of treatment. A correlation of the shape of the survival curves with MIC and MCC values was attempted. 相似文献
14.
To study sphingolipid function(s) in Saccharomyces cerevisiae, we have investigated the effects of environmental stress on mutant (SLC) strains (R. C. Dickson, G. B. Wells, A. Schmidt, and R. L. Lester, Mol. Cell. Biol. 10:2176-2181, 1990) that either contain or lack sphingolipids, depending on whether they are cultured with a sphingolipid long-chain base. Strains lacking sphingolipid were unable to grow at low pH, at 37 degrees C, or with high salt concentrations in the medium; these environmental stresses are known to inhibit the growth of some S. cerevisiae strains with a defective plasma membrane H(+)-ATPase. We found that sphingolipids were essential for proton extrusion at low pH and furthermore found that cells lacking sphingolipid no longer exhibited net proton extrusion at normal pH after a 1-min exposure to pH 3. Cells lacking sphingolipid appeared to rapidly become almost completely permeable to protons at low pH. The deleterious effects of low pH could be partially prevented by 1 M sorbitol in the suspension of cells lacking sphingolipid. Proton extrusion at normal pH (pH 6) was significantly inhibited at 39 degrees C only in cells lacking sphingolipid. Thus, the product of an SLC suppressor gene permits life without sphingolipids only in a limited range of environments. Outside this range, sphingolipids appear to be essential for maintaining proton permeability barriers and/or for proton extrusion. 相似文献
15.
16.
Nystatin-resistant mutants of haploid and polyploid strains of Saccharomyces cerevisiae were isolated by plating on gradient plates with increasing nystatin concentrations (60-3000 U/ml). Some of the mutants were defective in ergosterol biosynthesis, and produced zymosterol and cholestatetraenol-like sterols. Those mutants which do not form ergosterol produce less ethanol than the parent strains. They also had lower viability during fermentation of glucose solutions (8-13% vs. 33-47%). This became more pronounced in fermentations of higher concentrations of glucose. A nystatin-resistant but ergosterol-forming mutant had a similar fermentation capacity to the parent strain. 相似文献
17.
Summary Concentrations of the intracellular intermediary metabolites fructose 1,6-diphosphate, pyruvate, citrate, and malate in free and calcium alginate-immobilized cells of Saccharomyces cerevisiae fermenting D-glucose anaerobically were determined when the sugar up-take rate and the ethanol production rate were constant No cell growth was observed and the fermentation yields and fermentation rates were the same in both types of cells. The concentrations of intermediary intracellular metabolites were also identical for the two types of fermenting cells. 相似文献
18.
虫草素作为药用真菌蛹虫草的主要活性成分,具有抗肿瘤、抗病毒等多种生理功能。现阶段虫草素主要通过蛹虫草液体发酵生产,但发酵周期长、生产强度低,制约了其大规模开发利用。文中在酿酒酵母Saccharomyces cerevisiae S288C中异源表达虫草素合成关键基因ScCNS1和ScCNS2,成功构建了产虫草素的酵母工程菌SHC16,发酵240 h虫草素产量可达67.32 mg/L;基因表达分析显示,发酵后期磷酸戊糖途径、嘌呤代谢及虫草素合成途径关键酶编码基因ZWF1、PRS4、ADE4、ScCNS1及ScCNS2表达水平显著上调。进一步地,通过优化发酵培养基组成,确定以50 g/L葡萄糖为初始底物结合一次补料、添加5 mmol/L Cu2+和1.0 g/L腺嘌呤为最适培养基组成。基于此在5 L搅拌发酵罐中开展补料分批发酵,144 h虫草素产量达到137.27 mg/L,生产强度达0.95 mg/(L·h),较未优化发酵体系提高240%。 相似文献
19.
Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. 总被引:5,自引:0,他引:5 下载免费PDF全文
The trehalose content in laboratory and industrial baker's yeast is widely believed to be a major determinant of stress resistance. Fresh and dried baker's yeast is cultured to obtain a trehalose content of more than 10% of the dry weight. Initiation of fermentation, e.g., during dough preparation, is associated with a rapid loss of stress resistance and a rapid mobilization of trehalose. Using specific Saccharomyces cerevisiae mutants affected in trehalose metabolism, we confirm the correlation between trehalose content and stress resistance but only in the absence of fermentation. We demonstrate that both phenomena can be dissociated clearly once the cells initiate fermentation. This was accomplished both for cells with moderate trehalose levels grown under laboratory conditions and for cells with trehalose contents higher than 10% obtained under pilot-scale conditions. Retention of a high trehalose level during fermentation also does not prevent the loss of fermentation capacity during preparation of frozen doughs. Although higher trehalose levels are always correlated with higher stress resistance before the addition of fermentable sugar, our results show that the initiation of fermentation causes the disappearance of any other factor(s) required for the maintenance of stress resistance, even in the presence of a high trehalose content. 相似文献
20.
Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains 总被引:6,自引:0,他引:6
Xylulose fermentation by four strains of Saccharomyces cerevisiae and two strains of xylose-fermenting yeasts, Pichia stipitis CBS 6054 and Candida shehatae NJ 23, was compared using a mineral medium at a cell concentration of 10 g (dry weight)/l. When xylulose was the sole carbon source and fermentation was anaerobic, S. cerevisiae ATCC 24860 and CBS 8066 showed a substrate consumption rate of 0.035 g g cells–1 h–1 compared with 0.833 g g cells–1 h–1 for glucose. Bakers' yeast and S. cerevisiae isolate 3 consumed xylulose at a much lower rate although they fermented glucose as rapidly as the ATCC and the CBS strains. While P. stipitis CBS 6054 consumed both xylulose and glucose very slowly under anaerobic conditions, C. shehatae NJ 23 fermented xylulose at a rate of 0.345 g g cells–1 h–1, compared with 0.575 g g cells–1 h–1 for glucose. For all six strains, the addition of glucose to the xylulose medium did not enhance the consumption of xylulose, but increased the cell biomass concentrations. When fermentation was performed under oxygen-limited conditions, less xylulose was consumed by S. cerevisiae ATCC 24860 and C. shehatae NJ 23, and 50%–65% of the assimilated carbon could not be accounted for in the products determined. 相似文献