首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A peanut cDNA phage surface display library was constructed and screened for the presence of IgE-binding proteins. We used a serum from a peanut-sensitized individual with a low specific IgE level to peanut extract and suffering from mild symptoms after peanut ingestion. A total of 1011 cDNA clones were screened by affinity selection towards serum IgE immobilized to solid-phase supports. After five rounds of selective enrichment, sequence determination of 25 inserts derived from different clones revealed presence of a single cDNA species. The cDNA-encoded gene product, formally termed Ara h 5, shows up to 80% amino acid sequence identity to the well-known plant allergen profilin, a 14 kD protein present only in low amount in peanut extracts. Immunoblot analysis of fifty sera from individuals sensitized to peanut showed that 16% had mounted a detectable IgE response to the newly identified peanut profilin. High-level expression as non-fusion protein in BL21 (DE3) was carried under control of the inducible T7 promoter. Peanut profilin was purified by affinity chromatography on poly-( -proline)-Sepharose and yielded 30 mg l−1 culture of highly pure recombinant allergen. In spite of the high level of up to 80% amino acid identity to other plant profilins, inhibition experiments with recombinant profilins of peanut, cherry, pear, celery and birch revealed marked differences regarding their IgE-binding capacity.  相似文献   

2.
Phage Peptide Libraries   总被引:1,自引:0,他引:1  
Filamentous phage particles have been central in the construction of libraries displaying vast numbers of random peptides. These random peptides can be antigenically presented as fusions to coat proteins III and VIII of the phage. The isolation of ligate-reactive phage from an immense background of nonspecific phage is achieved by the biopanning process. Enrichment of reactive phage relative to unreactive phage occurs with alternate rounds of affinity selection to the desired molecular target and amplification of the specifically bound phage. This allows the isolation of rare binding species contained in the phage peptide libraries. Each phage particle contains the information in its genome pertaining to the type of random peptide insert displayed. Hence, the identification of binding motifs displayed on ligate-reactive phage is revealed by sequencing the relevant insert site in the phage genome. Phage peptide libraries have been used to isolate ligands to an array of protein ligates. The libraries have proved particularly effective in defining the binding sites of monoclonal antibodies and to some extent polyclonal sera. The analysis of the peptide insert sequences of a number of different clones of antibody binding phage can reveal a great deal about the nature and restriction of the amino acid residues critical for the antibody–antigen interaction.  相似文献   

3.
Synthesis of IgE by B lymphocytes can be regulated by soluble lymphocyte factors which have affinity for the Fc region of IgE (IgE-binding factors). In previous studies, we identified cDNA clones encoding rodent IgE-binding factors by direct expression in transfected mammalian cells. Here we show that IgE-binding factor cDNA clone 8.3 is a member of the endogenous, retrovirus-like intracisternal A-particle gene family of the mouse. This conclusion is supported by blot hybridization, DNA sequence comparisons, heteroduplex analysis, and immunochemical cross-reactivity of the encoded proteins. The results identify a member of this highly reiterated gene family with a role in regulation of the allergic immune response.  相似文献   

4.
Bacteriophage lambda surface display was used to isolate cDNA clones encoding autoantigens recognized by synovial fluid (SF) or sera from patients with rheumatoid arthritis (RA). We constructed cDNA libraries from human synovial sarcoma cells and synovial tissue, using the surface display vector lambdafoo. The cDNA libraries were screened by affinity selection using 40 SF and 44 sera as probes separately immobilized in microtiter wells. Phage clones isolated encode 13 different autoantigens; an unknown protein, two proteins previously unanalyzed as autoimmune antigens, three proteins previously unknown to be recognized by RA sera, and seven known RA antigens. When analyzed their sensitivity and specificity for RA by phage enzyme-linked immunosorbent assay, frequencies of sera that recognize the newly-isolated autoantigens ranged from 20.5 to 6.8% of a panel of RA sera, and 13.6-0% of other autoimmune disease sera. These results indicate that the lambda phage surface display may be powerful for the isolation of cDNA clones encoding autoantigens recognized by SF or sera from patients with not only RA but also other autoimmune diseases.  相似文献   

5.
We describe the construction and characterization of two lambda surface displayed cDNA expression libraries derived from human brain and mouse embryo. cDNA inserts were obtained by tagged random-priming elongation of commercially available cDNA libraries and cloned into a novel lambda vector at the 3' end of the D capsid protein gene, which produced highly complex repertoires (1x10(8) and 2x10(7) phage). These libraries were affinity selected with a monoclonal antibody against the neural specific factor GAP-43 and with polyclonal antibodies that recognize the EMX1 and EMX2 homeoproteins. In both cases rapid identification of specific clones was achieved, which demonstrates the great potential of the lambda display system for generating affinity selectable cDNA libraries from complex genomes.  相似文献   

6.
The alpha-chain of Fc epsilon RI (Fc epsilon RIalpha) plays a critical role in the binding of IgE to Fc epsilon RI. A fully human antibody interfering with this interaction may be useful for the prevention of IgE-mediated allergic diseases. Here, we describe the successful isolation of a human single-chain Fv antibody specific to human Fc epsilon RIalpha using human antibody phage display libraries. Using the non-immune phage antibody libraries constructed from peripheral blood lymphocyte cDNA from 20 healthy subjects, we isolated three phage clones (designated as FcR epsilon 27, FcR epsilon 51, and FcR epsilon 70) through two rounds of biopanning selection. The purified soluble scFv, FcR epsilon 51, inhibited the binding of IgE to recombinant Fc epsilon RIalpha, although both FcR epsilon 27 and FcR epsilon 70 showed fine binding specificity to Fc epsilon RIalpha. Since FcR epsilon 51 was determined to be a monomer by HPLC, BIAcore analysis was performed. The dissociation constant of FcR epsilon 51 to Fc epsilon RIalpha was estimated to be 20 nM, i.e., fortyfold lower than that of IgE binding to Fc epsilon RIalpha (K(d) = 0.5 nM). With these characteristics, FcR epsilon 51 exhibited inhibitory activity on the release of histamine from passively sensitized human peripheral blood mononuclear cells.  相似文献   

7.
Serological cloning of tumor-associated antigens (TAAs) using patient autoantibodies and tumor cDNA expression libraries (SEREX) has identified a wide array of tumor proteins eliciting B-cell responses in patients. However, alternative cloning strategies with the possibility of high throughput analysis of patient sera and tumor libraries may be of interest. We explored the pJuFo phage surface display system, allowing display of recombinant tumor proteins on the surface of M13 filamentous phage, for cloning of TAAs in prostate cancer (PC). Control experiments established that after a few rounds of selection on immobilized specific IgG, a high degree of enrichment of seroreactive clones was achieved. With an increasing number of selection rounds, a higher yield of positive clones was offset by an apparent loss of diversity in the repertoire of selected clones. Using autologous patient serum IgG in a combined biopanning and immunoscreening approach, we identified 13 different TAAs. Three of these (NY-ESO-1, Lage-1, and Xage-1) were known members of the cancer/testis family of TAAs, and one other protein had previously been isolated by SEREX in cancer types other than PC. Specific IgG responses against NY-ESO-1 were found in sera from 4/20 patients with hormone refractory PC, against Lage-1 in 3/20, and Xage-1 in 1/20. No reactivity against the remaining proteins was detected in other PC patients, and none of the TAAs reacted with serum from healthy subjects. The results demonstrate that phage surface display combined with postselection immunoscreening is suitable for cloning a diverse repertoire of TAAs from tumor tissue cDNA libraries. Furthermore, candidate TAAs for vaccine development of PC were identified.  相似文献   

8.
cDNA expression libraries displayed on lambda phage have been successfully employed to identify partners involved in antibody–antigen, protein– protein and DNA–protein interactions and represent a novel approach to functional genomics. However, as in all other cDNA expression libraries based on fusion to a carrier polypeptide, a major issue of this system is the absence of control over the translation frame of the cDNA. As a consequence, a large number of clones will contain lambda D/cDNA fusions, resulting in the foreign sequence being translated on alternative reading frames. Thus, many phage will not display natural proteins, but could be selected, as they mimic the binding properties of the real ligand, and will hence interfere with the selection outcome. Here we describe a novel lambda vector for display of exogenous peptides at the C-terminus of the capsid D protein. In this vector, translation of fusion peptides in the correct reading frame allows efficient in vivo biotinylation of the chimeric phage during amplification. Using this vector system we constructed three libraries from human hepatoma cells, mouse hepatocytic MMH cells and from human brain. Clones containing open reading frames (ORFs) were rapidly selected by streptavidin affinity chromatography, leading to biological repertoires highly enriched in natural polypeptides. We compared the selection outcome of two independent experiments performed using an anti-GAP-43 monoclonal antibody on the human brain cDNA library before and after ORF enrichment. A significant increase in the efficiency of identification of natural target peptides with very little background of false-positive clones was observed in the latter case.  相似文献   

9.
Delayed infectivity panning (DIP) is a novel approach for the in vivo isolation of interacting protein pairs. DIP combines phage display and cell surface display of polypeptides as follows: an antigen is displayed in many copies on the surface of F(+) Escherichia coli cells by fusing it to a Lpp-OmpA' hybrid. To prevent premature, non-specific infection by phage, the cells are rendered functionally F(-) by growth at 16 degrees C. The antigen-displaying cells are used to capture antibody-displaying phage by virtue of the antibody-antigen interaction. Following removal of unbound phage, infection of the cells by bound phage is initiated by raising the temperature to 37 degrees C that facilitates F pilus expression. The phage then dissociate from the antigen and infect the bacteria through the F pilus. Using specific scFv antibodies and the human ErbB2 proto-oncogene and IL2-Ralpha chain as model antibody-antigen pairs, we demonstrate enrichment of those phage that display a specific antibody over phage that display an irrelevant antibody of over 1,000,000 in a single DIP cycle. We further show the successful isolation of anti-toxin, anti-receptor, anti-enzyme and anti-peptide antibodies from several immune phage libraries, a shuffled library and a large synthetic human library. The effectiveness of DIP makes it suitable for the isolation of rare clones present in large libraries.Since DIP can be applied for most of the phage libraries already existing, it could be a powerful tool for the rapid isolation and characterization of binders in numerous protein-protein interactions.  相似文献   

10.
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field.  相似文献   

11.
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.  相似文献   

12.
Thirteen cDNA clones encoding IgE-binding proteins were isolated from expression libraries of anthers of Brassica rapa L. and B. napus L. using serum IgE from a patient who was specifically allergic to Brassica pollen. These clones were divided into two groups, I and II, based on the sequence similarity. All the group I cDNAs predicted the same protein of 79 amino acids, while the group II predicted a protein of 83 amino acids with microheterogeneity. Both of the deduced amino acid sequences contained two regions with sequence similarity to Ca2+-binding sites of Ca2+-binding proteins such as calmodulin. However flanking sequences were distinct from that of calmodulin or other Ca2+-binding proteins. RNA-gel blot analysis showed the genes of group I and II were preferentially expressed in anthers at the later developmental stage and in mature pollen. The recombinant proteins produced in Escherichia coli was recognized in immunoblot analysis by the IgE of a Brassica pollen allergic patient, but not by the IgE of a non-allergic patient. The cDNA clones reported here, therefore, represent pollen allergens of Brassica species.  相似文献   

13.
In the post-genomic era, validation of candidate gene targets frequently requires proteinbased strategies. Phage display is a powerful tool to define protein-protein interactions by generating peptide binders against target antigens. Epitope phage display libraries have the potential to enrich coding exon sequences from human genomic loci. We evaluated genomic and cDNA phage display strategies to identify genes in the 5q31 Interleukin gene cluster and to enrich cell surface receptor tyrosine kinase genes from a breast cancer cDNA library. A genomic display library containing 2 x 106 clones with exon-sized inserts was selected with antibodies specific for human Interleukin-4 (IL-4) and Interleukin-13. The library was enriched significantly after two selection rounds and DNA sequencing revealed unique clones. One clone matched a cognate IL-4 epitope; however, the majority of clone insert sequences corresponded to E. coli genomic DNA. These bacterial sequences act as 'mimotopes' (mimetic sequences of the true epitope), correspond to open reading frames, generate displayed peptides, and compete for binding during phage selection. The specificity of these mimotopes for IL-4 was confirmed by competition ELISA. Other E. coli mimotopes were generated using additional antibodies. Mimotopes for a receptor tyrosine kinase gene were also selected using a breast cancer SKBR-3 cDNA phage display library, screened against an anti-erbB2 monoclonal antibody. Identification of mimotopes in genomic and cDNA phage libraries is essential for phage display-based protein validation assays and two-hybrid phage approaches that examine protein-protein interactions. The predominance of E. coli mimotopes suggests that the E. coli genome may be useful to generate peptide diversity biased towards protein coding sequences.ABBREVIATIONS USED: IL, interleukin; ELISA, enzyme linked immunoabsorbant assay; PBS, phospho-buffered saline; cfu, colony forming units.  相似文献   

14.
In vitro selections for catalytic activity have been designed for the isolation of genes encoding enzymes from libraries of proteins displayed on filamentous phages. The proteins are generally expressed as C-terminal fusions with the N-terminus of the minor coat protein p3 for display on phages. As full-length cDNAs generally contain several stop codons near their 3′ end, this approach cannot be used for their expression on the surface of phages. Here we show that in vitro selection for catalytic activity is compatible with a system for expression of proteins as N-terminal fusions on the surface of bacteriophages. It is highlighted for the Stoffel fragment of Taq DNA polymerase I and makes use of (p3–Jun/Fos–Stoffel fragment) fusions. The efficiency of the selection is measured by an enrichment factor found to be about 55 for a phage polymerase versus a phage not expressing a polymerase. This approach could provide a method for the functional cloning of nucleotidyl transferases from cDNA libraries using filamentous phage display.  相似文献   

15.
目的:利用氨甲蝶呤(MTX)偶联琼脂糖凝胶吸附法从人肝脏细胞cDNA噬菌体展示文库中筛选与MTX相互作用的蛋白。方法:以偶联于琼脂糖凝胶表面的MTX为配基,通过"结合-洗脱-扩增"过程筛选与MTX相互作用的噬菌体。利用PCR对筛选结果进行监测,对筛选得到的噬菌体PCR产物进行序列测定和基因同源性分析。结果:通过五轮亲和筛选富集到特异噬菌体克隆,再通过PCR获得cDNA插入片段。通过BLAST程序搜索GenBank,证明筛选到的片段与人PI-3K相关蛋白激酶 SMG-1异构体1 蛋白同源性达100%。结论:利用偶联MTX的琼脂糖凝胶作为筛选基质,从T7噬菌体展示cDNA文库中富集特异噬菌体是一种方便、高效的MTX相互作用靶蛋白筛选方法。本方法可为探讨小分子药物的分子作用机制提供借鉴和参考.  相似文献   

16.
A library of heptapeptides displayed on the surface of filamentous phage M13 was evaluated as a potential source of affinity ligands for the purification of Rhizomucor miehei lipase. Two independent selection (biopanning) protocols were employed: the enzyme was either physically adsorbed on polystyrene or chemically immobilized on small magnetic beads. From screening with the polystyrene-adsorbed lipase it was found that there was a rapid enrichment of the library with “doublet” clones i.e. the phage species which carried two consecutive sequences of heptapeptides, whilst no such clones were observed from the screening using lipase attached to magnetic beads. The binding of the best clones to the enzyme was unambiguously confirmed by ELISA. However the synthetic heptapeptide of identical sequence to the best “monomeric” clone did not act as a satisfactory affinity ligand after immobilization on Sepharose. This indicated that the interaction with lipase was due to both the heptapeptide and the presence of a part of the phage coat protein. This conclusion was further verified by immobilizing the whole phage on the surface of magnetic beads and using the resulting conjugate as an affinity adsorbent. The scope of application of this methodology and the possibility of preparing phage-based affinity materials are briefly discussed.  相似文献   

17.
Soluble IgE receptors are potential in vivo modulators of IgE-mediated immune responses and are thus important for our basic understanding of allergic responses. We here characterize a novel soluble version of the IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI), the high affinity receptor for IgE. sFcεRI immunoprecipitates as a protein of ~40 kDa and contains an intact IgE-binding site. In human serum, sFcεRI is found as a soluble free IgE receptor as well as a complex with IgE. Using a newly established ELISA, we show that serum sFcεRI levels correlate with serum IgE in patients with elevated IgE. We also show that serum of individuals with normal IgE levels can be found to contain high levels of sFcεRI. After IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in the exosome-depleted, soluble fraction of cell culture supernatants. We further show that sFcεRI can block binding of IgE to FcεRI expressed at the cell surface. In summary, we here describe the alpha-chain of FcεRI as a circulating soluble IgE receptor isoform in human serum.  相似文献   

18.
To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.  相似文献   

19.
The complexity and expense of producing anti-hapten monoclonals via the traditional hybridoma route and the preferential selection of antibodies that recognise the conjugated form of the hapten, over antibodies that specifically recognise free hapten, are two of the more important problems that have limited the development and application of anti-hapten antibodies. The advent of phage display technology allows the rapid isolation of monoclonal antibody fragments from libraries of different antibodies (>108) displayed on the surface of filamentous bacteriophages. Much of the power of this new approach lies in the flexibility with which these libraries can be screened for suitable binders. Using an optimised selection procedure, we have isolated from a sheep antibody phage display library, super-sensitive anti-hapten antibodies specific for the herbicide and environmental pollutant, atrazine. In particular, two phage clones have been isolated that can be expressed cheaply and in quantity in Escherichia coli, demonstrate excellent stability in nonphysiological conditions and are exciting prospects for immunoassay applications including ELISA, dip-stick formats, on-line monitoring and biosensor technologies. In ELISA formats they show low levels of cross reactivity with related molecules and a limit of detection of a 1–2 parts per trillion (p.p.t.), well within the 100 p.p.t. required by EC legislation.  相似文献   

20.
Improving antibody affinity by mimicking somatic hypermutation in vitro.   总被引:15,自引:0,他引:15  
In vivo affinity maturation of antibodies involves mutation of hot spots in the DNA encoding the variable regions. We have used this information to develop a strategy to improve antibody affinity in vitro using phage display technology. In our experiment with the antimesothelin scFv, SS(scFv), we identified DNA sequences in the variable regions that are naturally prone to hypermutations, selected a few hot spots encoding nonconserved amino acids, and introduced random mutations to make libraries with a size requirement between 10(3) and 10(4) independent clones. Panning of the hot spot libraries yielded several mutants with a 15- to 55-fold increase in affinity compared with a single clone with a fourfold increased affinity from a library in which mutagenesis was done outside the hot spots. The strategy should be generally applicable for the rapid isolation of higher-affinity mutants of Fvs, Fabs, and other recombinant antibodies from antibody phage libraries that are small in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号