首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tamoxifen is one of the major drugs used for the hormonotherapy of estrogen receptor positive breast cancers. However, its therapeutic efficacy can be limited by acquired resistance and tumor recurrence can occur after several years of treatment. Tamoxifen is known as the prototypical modulator of estrogen receptors, but other targets have been identified that could account for its pharmacology. In particular, tamoxifen binds with high affinity to the microsomal antiestrogen binding site (AEBS) and inhibits cholesterol esterification at therapeutic doses. We have recently shown that the AEBS was a hetero-oligomeric complex composed of 3β-hydroxysterol-Δ(8)-Δ(7)-isomerase and 3β-hydroxysterol-Δ(7)-reductase, that binds different structural classes of ligands, including selective estrogen receptor modulators, several sigma receptor ligands, poly-unsaturated fatty acids and ring B oxysterols. We established a link between the modulation of cholesterol metabolism by tamoxifen and other AEBS ligands and their capacity to induce breast cancer cell differentiation, apoptosis and autophagy. Moreover, we showed that the AEBS carries out cholesterol-5,6-epoxide hydrolase activity and established that cholesterol-5,6-epoxide hydrolase is a new target for tamoxifen and other AEBS ligands. Finally in this review, we report on recent data from the literature showing how the modulation of cholesterol and oxysterol metabolism can be linked to the antitumor and chemopreventive properties of tamoxifen, and give new perspectives to improve the clinical outcome of the hormonotherapy of breast cancers.  相似文献   

2.
Liver and intestinal cytosol contain abundant levels of long chain fatty acyl-CoA binding proteins such as liver fatty acid binding protein (L-FABP) and acyl-CoA binding protein (ACBP). However, the relative function and specificity of these proteins in microsomal utilization of long chain fatty acyl-CoAs (LCFA-CoAs) for sequential transacylation of glycerol-3-phosphate to form phosphatidic acid is not known. The results showed for the first time that L-FABP and ACBP both stimulated microsomal incorporation of the monounsaturated oleoyl-CoA and polyunsaturated arachidonoyl-CoA 8–10-fold and 2–3-fold, respectively. In contrast, these proteins inhibited microsomal utilization of the saturated palmitoyl-CoA by 69% and 62%, respectively. These similar effects of L-FABP and ACBP on microsomal phosphatidic acid biosynthesis were mediated primarily through the activity of glycerol-3-phosphate acyltransferase (GPAT), the rate limiting step, rather than by protecting the long chain acyl-CoAs from microsomal hydrolase activity. In fact, ACBP but not L-FABP protected long chain fatty acyl-CoAs from microsomal acyl-CoA hydrolase activity in the order: palmitoyl-CoA>oleoyl-CoA>arachidonoyl-CoA. In summary, the data established for the first time a role for both L-FABP and ACBP in microsomal phosphatidic acid biosynthesis. By preferentially stimulating microsomal transacylation of unsaturated long chain fatty acyl-CoAs while concomitantly exerting their differential protection from microsomal acyl-CoA hydrolase, L-FABP and ACBP can uniquely function in modulating the pattern of fatty acids esterified to phosphatidic acid, the de novo precursor of phospholipids and triacylglycerols. This may explain in part the simultaneous presence of these proteins in cell types involved in fatty acid absorption and lipoprotein secretion.  相似文献   

3.
Tamoxifen is a selective estrogen receptor modulator widely used for the prophylactic treatment of breast cancer. In addition to the estrogen receptor (ER), tamoxifen binds with high affinity to the microsomal antiestrogen binding site (AEBS), which is involved in ER-independent effects of tamoxifen. In the present study, we investigate the modulation of the biosynthesis of cholesterol in tumor cell lines by AEBS ligands. As a consequence of the treatment with the antitumoral drugs tamoxifen or PBPE, a selective AEBS ligand, we show that tumor cells produced a significant concentration- and time-dependent accumulation of cholesterol precursors. Sterols have been purified by HPLC and gas chromatography, and their chemical structures determined by mass spectrometric analysis. The major metabolites identified were 5alpha-cholest-8-en-3beta-ol for tamoxifen treatment and 5alpha-cholest-8-en-3beta-ol and cholesta-5,7-dien-3beta-ol, for PBPE treatment, suggesting that these AEBS ligands affect at least two enzymatic steps: the 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase. Steroidal antiestrogens such as ICI 182,780 and RU 58,668 did not affect these enzymatic steps, because they do not bind to the AEBS. Transient co-expression of human 3beta-hydroxysterol-Delta8-Delta7-isomerase and 3beta-hydroxysterol-Delta7-reductase and immunoprecipitation experiments showed that both enzymes were required to reconstitute the AEBS in mammalian cells. Altogether, these data provide strong evidence that the AEBS is a hetero-oligomeric complex including 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase as subunits that are necessary and sufficient for tamoxifen binding in mammary cells. Furthermore, because selective AEBS ligands are antitumoral compounds, these data suggest a link between cholesterol metabolism at a post-lanosterol step and tumor growth control. These data afford both the identification of the AEBS and give new insight into a novel molecular mechanism of action for drugs of clinical value.  相似文献   

4.
The properties of an antioestrogen binding site (AEBS), which has high affinity and specificity for nonsteroidal antioestrogens and structurally related compounds, have been studied in rat liver microsomes. When subcellular organelles were separated on Percoll density gradients the distribution of the AEBS paralleled that of NADPH-cytochrome c reductase, indicating that the AEBS is associated with the endoplasmic reticulum. Saturation analysis showed that [3H]tamoxifen was bound to a single class of saturable binding sites in liver microsomes with a KD of 0.9 +/- 0.1 nM at 0 degrees C. The equilibrium KD was not significantly different at 22 degrees C. The KD calculated from the association and dissociation rate constants for [3H]tamoxifen binding at 0 degrees C and 22 degrees C was compatible with the KD measured at equilibrium. Ligand specificity studies using tamoxifen analogues showed qualitatively similar structure-affinity relationships for the AEBS from both rat liver and the MCF 7 breast cancer cell line. In general structural modifications caused correspondingly greater changes in affinity for rat liver AEBS than for MCF 7 AEBS. The AEBS was solubilized from microsomal membranes with sodium cholate. This was the only detergent of nine tested that solubilized the site in high yield without loss of activity. Solubilization using cholate was more effective in the presence of 1 M-NaCl. In the solubilized state there was an apparent loss of [3H]tamoxifen binding activity which could be restored by dilution of the detergent. Gel filtration indicated an Mr of 440,000-490,000 for the AEBS-cholate complex. These studies demonstrate that rat liver contains high concentrations of a microsomal AEBS which has similar properties and specificity to the AEBS previously described in human breast cancer cells. This site can be solubilized by sodium cholate to supply material suitable for further purification.  相似文献   

5.
New compounds have been synthesized based on the structure of the anti-tumoral drug tamoxifen and its diphenylmethane derivative, N,N-diethyl-2-[(4-phenyl-methyl)-phenoxy]-ethanamine, HCl (DPPE). These new compounds have no affinity for the estrogen receptor (ER) and bind with various affinity to the anti-estrogen binding site (AEBS). Compounds 2, 10, 12, 13, 20a, 20b, 23a, 23b, 29 exhibited 1.1-69.5 higher affinity than DPPE, and compounds 23a and 23b have 1.2 and 3.5 higher affinity than tamoxifen. Three-dimensional structure analysis, performed using the intersection of the van der Waals volume occupied by tamoxifen in its crystallographic state and the van der Waals volume of these new compounds in their calculated minimal energy conformation, correlated well with their pKi for AEBS (r = 0.84, P<0.0001, n = 18). This is the first structure-affinity relationship (SAR) ever reported for AEBS ligands. Moreover in this study we have reported the synthesis of new compounds of higher affinity than the lead compounds and that are highly specific for AEBS. Since these compounds do not bind ER they will be helpful to study AEBS mediated cytotoxicity. Moreover our study shows that our strategy is a new useful guide to design high affinity and selective ligands for AEBS.  相似文献   

6.
Disposition kinetics of [(3)H]palmitate and its low-molecular-weight metabolites in perfused rat livers were studied using the multiple-indicator dilution technique, a selective assay for [(3)H]palmitate and its low-molecular-weight metabolites, and several physiologically based pharmacokinetic models. The level of liver fatty acid binding protein (L-FABP), other intrahepatic binding proteins (microsomal protein, albumin, and glutathione S-transferase) and the outflow profiles of [(3)H]palmitate and metabolites were measured in four experimental groups of rats: 1) males; 2) clofibrate-treated males; 3) females; and 4) pregnant females. A slow-diffusion/bound model was found to better describe the hepatic disposition of unchanged [(3)H]palmitate than other pharmacokinetic models. The L-FABP levels followed the order: pregnant female > clofibrate-treated male > female > male. Levels of other intrahepatic proteins did not differ significantly. The hepatic extraction ratio and mean transit time for unchanged palmitate, as well as the production of low-molecular-weight metabolites of palmitate and their retention in the liver, increased with increasing L-FABP levels. Palmitate metabolic clearance, permeability-surface area product, retention of palmitate by the liver, and cytoplasmic diffusion constant for unchanged [(3)H]palmitate also increased with increasing L-FABP levels. It is concluded that the variability in hepatic pharmacokinetics of unchanged [(3)H]palmitate and its low-molecular-weight metabolites in perfused rat livers is related to levels of L-FABP and not those of other intrahepatic proteins.  相似文献   

7.
Estrogen-noncompatible antiestrogen binding sites (AEBS) as well as estrogen receptors (ER), and the growth-inhibitory effect of tamoxifen were investigated in two human endometrial cancer cell lines, IK-90 and HEC-IA cells. IK-90 cells contained specific AEBS, but no ER was found in these cells. Scatchard plot analysis of AEBS in 12,000 g supernatant from IK-90 cells showed a high affinity binding site for tamoxifen (Kd:5.6 +/- 1.0 nM) with the maximum binding site of 457 +/- 47 fmol/mg protein. However, no measurable ER or AEBS was found in HEC-IA cells. The effect of tamoxifen on the growth of cells was found to be identical in both cell lines; the addition of 10 microM tamoxifen to culture medium was cytocidal whereas tamoxifen at lower concentrations (1 nM-1 microM) did not significantly affect the growth of both IK-90 and HEC-IA cells. These results demonstrate for the first time the presence of AEBS in human endometrial cancer cells. The present results also suggest that AEBS does not play a fundamental role in mediating the growth-inhibitory effect of tamoxifen in endometrial cancer cells.  相似文献   

8.
Using as a probe [3H]-DPPE (N,N-diethyl-2-[(4-phenylmethyl)phenoxy]ethanamine HCl), a novel compound selective for the antiestrogen binding site (AEBS), new evidence is presented that this site could be a growth-promoting histamine receptor of a type not previously described (?H3). In the rat uterus, DPPE alone at a concentration of 4 mg/kg acts as an estrogen antagonist, unlike TAM alone which is a partial estrogen agonist. In the presence of exogenous estradiol, both TAM and DPPE are partial antagonists. This suggests that the "antiestrogenic" effects of tamoxifen are mediated through AEBS/?H3 while the estrogenic effects are mediated through ER.  相似文献   

9.
Human liver epoxide hydrolases were characterized by several criteria and a cytosolic cis-stilbene oxide hydrolase (cEHCSO) was purified to apparent homogeneity. Styrene oxide and five phenylmethyloxiranes were tested as substrates for human liver epoxide hydrolases. With microsomes activity was highest with trans-2-methylstyrene oxide, followed by styrene 7,8-oxide, cis-2-methylstyrene oxide, cis-1,2-dimethylstyrene oxide, trans-1,2-dimethylstyrene oxide and 2,2-dimethylstyrene oxide. With cytosol the same order was obtained for the first three substrates, whereas activity with 2,2-dimethylstyrene oxide was higher than with cis-1,2-dimethylstyrene oxide and no hydrolysis occurred with trans-1,2-dimethylstyrene oxide. Generally, activities were lower with cytosol than with microsomes. The isoelectric point for both microsomal styrene 7,8-oxide and cis-stilbene oxide hydrolyzing activity was 7.0, whereas cEHCSO had an isoelectric point of 9.2 and cytosolic trans-stilbene oxide hydrolase (cEHTSO) of 5.7. The cytosolic epoxide hydrolases could be separated by anion-exchange chromatography and gel filtration. The latter technique revealed a higher molecular mass for cEHCSO than for cEHTSO. Both cytosolic epoxide hydrolases showed higher activities at pH 7.4 than at pH 9.0, whereas the opposite was true for microsomal epoxide hydrolase. The effects of ethanol, methanol, tetrahydrofuran, acetonitrile, acetone and dimethylsulfoxide on microsomal epoxide hydrolase depended on the substrate tested, whereas both cytosolic enzymes were not at all, or only slightly, affected by these solvents. Effects of different enzyme modulators on microsomal epoxide hydrolase also depended on the substrates used. Trichloropropene oxide and styrene 7,8-oxide strongly inhibited cEHCSO whereas cEHTSO was moderately affected by these compounds. Immunochemical investigations revealed a close relationship between cEHCSO and rat liver microsomal, but not cytosolic, epoxide hydrolase. Interestingly, cEHTSO has no immunological relationship to rat microsomal, nor to rat cytosolic epoxide hydrolase. cEHTSO from human liver differed also from its counterpart in the rat in that it was only moderately affected by tetrahydrofuran, acetonitrile and trichloropropene oxide. Five steps were necessary to purify cEHCSO. The enzyme has a molecular mass (49 kDa) identical to that of rat liver microsomal epoxide hydrolase.  相似文献   

10.
N,N-Diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine HCl (DPPE) binds with high affinity to the antioestrogen binding site (AEBS), but not to the oestrogen receptor. There is an association of AEBS with a novel intracellular histamine receptor (H1C) of micromolar affinity through which histamine acts as a second messenger. An optimal dose of 4 mg DPPE/kg antagonized the uterine growth-stimulating effects of oestradiol in immature oophorectomized rats. Unlike tamoxifen, DPPE alone was not a partial agonist, but decreased uterine size and weight below control values at concentrations between 0.1 and 75 mg/kg. DPPE also antagonized oestradiol-stimulated uterine growth at 72 h; the inhibition observed was not significantly different from that seen with tamoxifen. Oestradiol-treated animals receiving the combination of DPPE (4 mg/kg) + low dose tamoxifen (0.04 mg/kg) for 72 h had significantly smaller uteri than did those receiving the same dose of DPPE or tamoxifen alone. Histologically, either DPPE or tamoxifen antagonized oestradiol stimulation of eosinophil migration and glandular epithelial proliferation; the latter inhibition was significantly greater for DPPE + tamoxifen (0.04 mg/kg) than for the same dose of DPPE or tamoxifen alone. Unlike tamoxifen, DPPE did not antagonize oestradiol stimulation of luminal epithelial proliferation, but in the presence of oestradiol, DPPE significantly decreased tamoxifen (0.65 mg/kg)-induced hypertrophy of the luminal epithelium. Based on these findings, we suggest that binding to the AEBS/intracellular histamine receptor is important to the action of antioestrogens.  相似文献   

11.
In principle, target inactivation analysis provides a means of determining the molecular weights (Mr) and states of aggregation of proteins in native environments where they are functionally active. We applied this irradiation technique to the rat liver microsomal membrane proteins: cytochrome b5, epoxide hydrolase, flavin-containing monooxygenase, NADH-ferricyanide reductase, NADPH-cytochrome P-450 reductase, and seven different forms of cytochrome P-450. Catalytic activities, spectral analysis of prosthetic groups, and sodium dodecyl sulfate-polyacrylamide electrophoresis/peroxidase-coupled immunoblotting were used to estimate apparent Mr values in rat liver microsomal membranes. Except in one case (cytochrome P-450PCN-E), the estimated Mr corresponded most closely to that of a monomer. Purified cytochrome P-450PB-B, NADPH-cytochrome P-450 reductase and epoxide hydrolase were also subjected to target inactivation analysis, and the results also suggested monomeric structures for all three proteins under these conditions. However, previous hydrodynamic and gel-exclusion results clearly indicate that all three of these proteins are oligomeric under these conditions. The discrepancy between target inactivation Mr estimates and hydrodynamic results is attributed to a lack of energy transfer between monomeric units. Thus, while P-450PCN-E may be oligomeric in microsomal membranes, target inactivation analysis does not appear to give conclusive results regarding the states of aggregation of these microsomal proteins.  相似文献   

12.
Cytosolic epoxide hydrolase was purified from the liver of untreated and clofibrate-treated male C57Bl/6 mice. The purification procedure involves chromatography on DEAE-cellulose, phenyl-Sepharose and hydroxyapatite, takes two days to perform and results in a 120-fold purification and approximately 35% yield of the enzyme from untreated mice. The purified enzyme is a dimer with a molecular mass of 120 kDa, a Stokes' radius of 4.2 nm, a frictional ratio of 1.0 and an isoelectric point of 5.5. The subunits behave identically upon isoelectric focusing in 8 M urea and only one band with a molecular mass of 60 kDa is seen after sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The form purified from clofibrate-treated mice had very similar properties and was apparently identical to the control form as judged by amino acid analysis and peptide mapping as well. These analyses also demonstrated that the cytosolic enzyme is clearly different from microsomal epoxide hydrolase isolated from rat liver. Furthermore, Ouchterlony immunodiffusion using antibodies raised in rabbits towards the control form of cytosolic epoxide hydrolase revealed identity between the two forms of cytosolic epoxide hydrolase, but no reaction with the microsomal epoxide hydrolase was observed. These findings indicate large structural differences between the cytosolic and microsomal forms of epoxide hydrolase in the liver.  相似文献   

13.
Antibodies raised to homogeneous rat liver microsomal epoxide hydrolase were used to distinguish microsomal epoxide hydrolase from epoxide hydrolase of cytosolic origin in mice and rats. Using double diffusion analysis in agarose gels, we show that anti-rat liver microsomal epoxide hydrolase forms a single precipitin line with solubilized microsomes from rat and mouse liver, but no reaction is seen with the corresponding cytosolic fractions. Rat or mouse microsomal epoxide hydrolase activity (using benzo[a]pyrene 4,5-oxide as substrate) can be completely precipitated out of solubilized preparations by the antibody, which is equipotent against rat and mouse microsomal epoxide hydrolase. No precipitation of cytosolic hydrolase activity (using trans-beta-ethyl styrene oxide as substrate) is seen with any concentration of the antibody tested. Thus, in the case of microsomal epoxide hydrolase, extensive immunological cross-reactivity exists between the two species, rat and mouse. In contrast, no cross-reactivity is detectable between cytosolic and microsomal epoxide hydrolase, even when enzymes from the same species are compared. We conclude that microsomal and cytosolic epoxide hydrolase activities represent distinct and immunologically non-cross-reactive protein species.  相似文献   

14.
The distribution of rat liver epoxide hydrolase in various subcellular fractions was investigated by immuno-electron-microscopy. Ferritin-linked monospecific anti-(epoxide hydrolase) immunoglobulins bound specifically to the cytoplasmic surfaces of total microsomal preparations and smooth and rough microsomal fractions as well as the nuclear envelope. Specific binding was not observed when the ferritin conjugates were incubated with peroxisomes, lysosomes and mitochondria. The average specific ferritin load of the individual subcellular fractions correlated well with the measured epoxide hydrolase activities. This correlation was observed with fractions prepared from control, phenobarbitone-treated and 2-acetamidofluorene-treated rats.  相似文献   

15.
It is known that synthetic anti-estrogens such as tamoxifen bind to specific high affinity anti-estrogen binding sites (AEBS), which are distinct from estrogen receptors. These binding sites are widely distributed in animal and human tissues, the highest concentrations being found in the liver. The physiological role of these intracellular binding sites, which are located predominantly in the microsomal fraction, is currently unknown, as is the nature and identity of their endogenous ligands. In an attempt to gain information which may provide clues to the possible physiological role of these binding sites, studies were carried out to determine whether the concentration of these binding sites in rat liver was affected by a number of physiological variables. The results of these studies indicated that in the rat (i) liver AEBS increased progressively with age; (ii) liver AEBS concentration tended to be higher among females than males after 100 days of age; (iii) there was no significant variation in liver AEBS level with different phases of the estrous cycle; (iv) liver AEBS level was not significantly affected by castration in both males and females or by estradiol replacement in castrated females; (v) liver AEBS concentration increased significantly with increases in ambient temperature; (vi) there was no clearly detectable alteration in liver AEBS levels with changes in the light:dark cycle; (vii) starvation for 24, 48, and 72 hr increased liver AEBS by approximately 1.5-, 3-, and 2-fold, respectively, while refeeding decreased its level; and (viii) liver AEBS was not affected by increasing dietary fat content from 0.5% to 20% (w/w), but was increased modestly by the addition of cholesterol (2% w/w) to the diet. These observations identify several physiological variables which are associated with changes in liver AEBS concentration and suggest possible avenues for future studies to define the physiological role of these binding sites.  相似文献   

16.
arachidonoyl-CoA. In summary, the data established for the first time a role for both L-FABP and ACBP in microsomal phosphatidic acid biosynthesis. By preferentially stimulating microsomal transacylation of unsaturated long chain fatty acyl-CoAs while concomitantly exerting their differential protection from microsomal acyl-CoA hydrolase, L-FABP and ACBP can uniquely function in modulating the pattern of fatty acids esterified to phosphatidic acid, the de novo precursor of phospholipids and triacylglycerols. This may explain in part the simultaneous presence of these proteins in cell types involved in fatty acid absorption and lipoprotein secretion.  相似文献   

17.
The ability of a number of known inhibitors of catalase activity to affect cytosolic and microsomal epoxide hydrolase activities in vitro, measured as enzymatic trans-stilbene oxide hydrolysis and styrene oxide hydrolysis, respectively, was investigated. Catalase and cytosolic epoxide hydrolase activities are inhibited by hydroxylated metabolites of 2-amino-4,5-diphenylthiazole (DPT). The metabolite hydroxylated on the 4-phenyl ring (4OH-DPT) and the metabolite hydroxylated on both phenyl rings (4,5-DIOH-DPT) are potent inhibitors of both enzymes; the metabolite hydroxylated on the 5-phenyl ring (5OH-DPT) is less potent. Unmetabolized DPT has no effect on either enzyme. 4OH-DPT inhibits, but 5OH-DPT enhances, microsomal epoxide hydrolase activity. 4,5-DIOH-DPT and DPT have no effect on this enzyme. Other compounds that inhibit both catalase and cytosolic epoxide hydrolase activities, but do not inhibit microsomal epoxide hydrolase activity, are nordihydroguaiaretic acid and 2-aminothiazole. Microsomal epoxide hydrolase activity is enhanced by 2-aminothiazole and levamisole in vitro. Thus these inhibitors of catalase are selective epoxide hydrolase inhibitors in that they inhibit cytosolic epoxide hydrolase activity in vitro, but have either no effect on, or increase the activity of, microsomal epoxide hydrolase in vitro. Conversely, the selective cytosolic epoxide hydrolase inhibitors 4-phenylchalcone oxide and 4'-phenylchalcone oxide do not inhibit catalase activity, nor does trichloropropene oxide, a selective microsomal epoxide hydrolase inhibitor.  相似文献   

18.
The triphenylethylene antiestrogens are very potent antagonists of estrogen action in the chicken and manifest little agonist activity compared to their action in other species. The estrogen antagonism is most probably mediated by the estrogen receptor, to which tamoxifen binds with a Ki of 2.6 nM. Tamoxifen is readily metabolized by liver to 4-hydroxytamoxifen, which binds the liver nuclear estrogen receptor with a Ki of 0.1 nM. The Kd of the receptor is 0.7 nM. Estrogen receptor concentrations in liver from immature chickens are relatively low both in nuclear and cytosol fractions. Treatment with estradiol results in 10-fold up-regulation of the nuclear levels to give a total receptor concentration of about 2 pmol/g tissue. Tamoxifen can promote this up-regulation to a limited extent, but interpretation of experimental results is compromised by difficulties with exchange assays in the face of the very high binding affinity of 4-hydroxytamoxifen. Tamoxifen also binds with high affinity (Kd 2-4 nM) and distinctive specificity to antiestrogen binding sites (AEBS) present in a wide variety of chicken tissues and in the highest concentration in the liver (800 pmol/g tissue). Liver and serum contain ether-soluble components which can compete for binding of [3H]tamoxifen to the AEBS. The serum AEBS inhibitory activity is chromatographically heterogeneous and is associated with a sterol-like fraction as well as with a fatty-acid-containing fraction. Tamoxifen treatment of cockerels results in dose- and time-dependent decreases in serum free and esterified cholesterol, and in phospholipids and triglycerides. These changes may reflect estrogen-receptor-independent interactions of tamoxifen.  相似文献   

19.
Our studies were conducted to explore the role of hepatic fatty acid-binding protein (L-FABP) in fatty acid transport to the nucleus. Purified rat L-FABP facilitated the specific interaction of [(3)H]oleic acid with the nuclei. L-FABP complexed with unlabeled oleic acid decreased the nuclear association of [(3)H]oleic acid:L-FABP; however, oleic acid-saturated bovine serum albumin (BSA) or fatty acid-free L-FABP did not. The peroxisome-proliferating agents LY171883, bezafibrate, and WY-14,643 were also effective competitors when complexed to L-FABP. Nuclease treatment did not affect the nuclear association of [(3)H]oleic acid:L-FABP; however, proteinase treatment of the nuclei abolished the binding. Nuclei incubated with fluorescein-conjugated L-FABP in the presence of oleic acid were highly fluorescent whereas no fluorescence was observed in reactions lacking oleic acid, suggesting that L-FABP itself was binding to the nuclei. The nuclear binding of FABP was concentration dependent, saturable, and competitive. LY189585, a ligand for L-FABP, also facilitated the nuclear binding of fluorescein-conjugated L-FABP, although it was less potent than oleic acid. A structural analog that does not bind L-FABP, LY163443, was relatively inactive in stimulating the nuclear binding. Potential interactions between L-FABP and nuclear proteins were analyzed by Far-Western blotting and identified a 33-kDa protein in the 500 mm NaCl extract of rat hepatocyte nuclei that bound strongly to biotinylated L-FABP. Oleic acid enhanced the interaction of L-FABP with the 33-kDa protein as well as other nuclear proteins.We propose that L-FABP is involved in communicating the state of fatty acid metabolism from the cytosol to the nucleus through an interaction with lipid mediators that are involved in nuclear signal transduction.  相似文献   

20.
The binding of [3H]estradiol and [3H]hydroxytamoxifen to the cytosol and microsomal fractions of several human breast tumors was investigated. By washing microsomal membranes with a KCl-free or a KCl-containing medium we could distinguish between intrinsic, extrinsic and contaminant estradiol binding sites in these membranes. We observed that treatment of the microsomes with low salt medium removes about 80% of the total estradiol binding sites, whereas 20% are not extractable. The concentration of unextractable [3H]estradiol binding sites in the microsomes varies in proportion to the level of cytosolic estrogen receptors (ER). About 10% of the total extranuclear specific estrogen binding sites was consistently found tightly associated to the microsomal fraction, which displays an affinity for estradiol (Kd = 0.1-0.6 nM) similar to that of the cytosolic ER. The displacement of [3H]estradiol with unlabeled hormone or with the antiestrogens, nafoxidine, enclomiphene and tamoxifen (TAM) exhibits identical IC50 values either in the cytosol or in the microsomal membranes. On the other hand, the microsomal fraction of breast tumors also binds [3H]hydroxyTAM, but with higher capacity and lower affinity than those of the cytosolic fraction. Furthermore, we did not observe correlation between the concentrations of ER and of antiestrogen binding sites (AEBS) in the tumors. These results indicate that microsomal membranes of human breast tumors contain estrogen binding sites which may be related to the cytosol ER recycling and that specific AEBS are predominantly localized in this membrane system. Furthermore, it is shown that the magnitude of estradiol binding to microsomes depends on the ER positive degree of the tumors, whereas the magnitude of the antiestrogen binding to the microsomes is independent of the ER status of the tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号