首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An on‐line, laser photo‐acoustic, trace gas detection system in combination with a stepper motor‐controlled monochromator was used to record semicontinuous light action spectra of nitrogenase activity in heterocystous cyanobacteria. Action spectra were made of cultures of Nodularia spumigena Mertens ex Bornet & Flahault, Aphanizomenon flos‐aquae Ralfs ex Bornet & Flahault, and Anabaena sp. and from field samples of a cyanobacterial bloom in the Baltic Sea. Nitrogenase activity was stimulated by monochromatic light coinciding the red and blue peaks of chl a, the phycobiliproteins phycocyanin (allophycocyanin) and phycoerythrin, and several carotenoids. Because nitrogenase is confined to the heterocyst, it was concluded that all photopigments must have been present in these cells, were involved in light harvesting and photosynthesis, and supplied the energy for N2 fixation. The species investigated showed marked differences in their nitrogenase action spectra, which might be related to their specific niches and to their success in cyanobacterial blooms. Moreover, light action spectra of nitrogenase activity shifted during the day, probably as the result of changes in the phycobiliprotein content of the heterocyst relative to chl a. Action spectra of nitrogenase and changes in pigment composition are essential for the understanding of the competitive abilities of species and for the estimation of N2 fixation by a bloom of heterocystous cyanobacteria.  相似文献   

2.
In this work, we estimate the contributions of the different sources of N incorporated by two N2-fixing cyanobacterial blooms (Anabaena sp. and Microchaete sp.) in the rice fields of Valencia (Spain) during the crop cycles of 1999 and 2000, and evaluate the response of nitrogenase and C assimilation activities to changing irradiances. Our results show that, far from the generally assumed idea that the largest part of the N incorporated by N2-fixing cyanobacterial blooms in rice fields comes from N2 fixation, both cyanobacterial blooms incorporated about three times more N from dissolved combined compounds than from N2 fixation (only about 33–41% of the N incorporated came from N2 fixation). Our results on the photodependence of C and N2 fixation indicate that in both cyanobacterial blooms, N2 fixation showed a steeper initial slope (α) and was saturated with less irradiance than C fixation, suggesting that N2 fixation was more efficient than photosynthesis under conditions of light limitation. At saturating light, N2 fixation and C fixation differed depending on the bloom and on the environmental conditions created by rice plant growth. Carbon assimilation but not nitrogenase activity appeared photoinhibited in the Anabaena but not in the Microchaete bloom in August 1999, when the plants were tall and the canopy was important, and there was no limitation of dissolved inorganic carbon. The opposite was found in the Microchaete bloom of June 2000, when plants were small and produced little shade, and dissolved inorganic carbon was very low.  相似文献   

3.
Intertidal stromatolites, covered by cyanobacterial mats, were recently discovered at Stocking Island, Exuma Cays, Bahamas. Ecophysiological responses (CO2 fixation, N2 fixation, and photoacclimation) of these cyanobacterial mats to experimental manipulations were examined to identify potential environmental variables controlling community structure and function. The mats exhibit horizontal zonation that shifts from soft to crusty to hard in a seaward direction. Cluster analysis of chemotaxonomic photopigments (chlorophylls and carotenoids) revealed that visually distinct mat types are composed of distinct phototrophic assemblages. Under reduced irradiance, diatoms within the mats photoacclimated by increasing accessory photopigments (diadinoxanthin, fucoxanthin, and chlorophyll c 1 c 2) and cyanobacteria reduced the photoprotective carotenoid echinenone. In a 4-day nutrient addition bioassay experiment, nitrate, phosphate, dissolved organic carbon, and trace metal enrichments did not enhance CO2 fixation, but phosphate enrichments tripled N2 fixation rates. The addition of DCMU increased N2 fixation rates relative to nonamended light and dark rates, indicating light (photosystem I) enhanced nitrogenase activity. Soft mats appear to represent the early stages of colonization and stabilization of mat communities. Active growth following stabilization results in the formation of partially-lithified crusty mats, which eventually become highly-lithified and form hard mats. Collectively, our results suggest that Stocking Island stromatolitic mats have low growth rates and consequently exhibit slow responses to increased nutrient availability and changes in ambient irradiance. In general, intertidal stromatolitic mats at Stocking Island appear to exhibit low rates of CO2 and N2 fixation relative to nonlithifying temperate cyanobacteral mats. Although production is low, respiration is likewise low, leading to the suggestion that high production to respiration ratios (P:R) may be necessary for lithification of intertidal stromatolitic mats.  相似文献   

4.
Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.  相似文献   

5.
Cyanobacteria capable of fixing dinitrogen exhibit various strategies to protect nitrogenase from inactivation by oxygen. The marine Crocosphaera watsonii WH8501 and the terrestrial Gloeothece sp. PCC6909 are unicellular diazotrophic cyanobacteria that are capable of aerobic nitrogen fixation. These cyanobacteria separate the incompatible processes of oxygenic photosynthesis and nitrogen fixation temporally, confining the latter to the dark. Although these cyanobacteria thrive in fully aerobic environments and can be cultivated diazotrophically under aerobic conditions, the effect of oxygen is not precisely known due to methodological limitations. Here we report the characteristics of nitrogenase activity with respect to well‐defined levels of oxygen to which the organisms are exposed, using an online and near real‐time acetylene reduction assay combined with sensitive laser‐based photoacoustic ethylene detection. The cultures were grown under an alternating 12–12 h light–dark cycle and acetylene reduction was recorded continuously. Acetylene reduction was assayed at 20%, 15%, 10%, 7.5%, 5% and 0% oxygen and at photon flux densities of 30 and 76 μmol m?2 s?1 provided at the same light–dark cycle as during cultivation. Nitrogenase activity was predominantly but not exclusively confined to the dark. At 0% oxygen nitrogenase activity in Gloeothece sp. was not detected during the dark and was shifted completely to the light period, while C. watsonii did not exhibit nitrogenase activity at all. Oxygen concentrations of 15% and higher did not support nitrogenase activity in either of the two cyanobacteria. The highest nitrogenase activities were at 5–7.5% oxygen. The highest nitrogenase activities in C. watsonii and Gloeothece sp. were observed at 29°C. At 31°C and above, nitrogenase activity was not detected in C. watsonii while the same was the case at 41°C and above in Gloeothece sp. The differences in the behaviour of nitrogenase activity in these cyanobacteria are discussed with respect to their presumed physiological strategies to protect nitrogenase from oxygen inactivation and to the environment in which they thrive.  相似文献   

6.
The potential for N2 fixation by heterocystous cyanobacteria isolated from soils of different geographical areas was determined as nitrogenase activity (NA) using the acetylene reduction assay. Morphology of cyanobacteria had the largest influence on NA determined under light conditions. NA was generally higher in species lacking thick slime sheaths. The highest value (1446 nmol/h C2H4 per g fresh biomass) was found in the strain of branched cyanobacterium Hassalia (A Has1) from the polar region. A quadratic relationship between NA and biomass was detected in the Tolypothrix group under light conditions. The decline of NA in dark relative to light conditions ranged from 37 to 100 % and differed among strains from distinct geographical areas. Unlike the NA of temperate and tropical strains, whose decline in dark relative to light was 24 and 17 %, respectively, the NA of polar strains declined to 1 % in the dark. This difference was explained by adaptation to different light conditions in temperate, tropical, and polar habitats. NA was not related to the frequency of heterocysts in strains of the colony-forming cyanobacterium Nostoc. Colony morphology and life cycle are therefore more important for NA then heterocyst frequency. NA values probably reflect the environmental conditions where the cyanobacterium was isolated and the physiological and morphological state of the strain.  相似文献   

7.
Nitrogen fixation (nitrogenase activity, NA) of a microbial mat and a living stromatolite from Cuatro Cienegas, Mexico, was examined over spring, summer, and winter of 2004. The goal of the study was to characterize the diazotrophic community through molecular analysis of the nifH gene and using inhibitors of sulfate reduction and oxygenic and anoxygenic photosynthesis. We also evaluated the role of ultraviolet radiation on the diazotrophic activity of the microbial communities. Both microbial communities showed patterns of NA with maximum rates during the day that decreased significantly with 3-3,4-dichlorophenyl-1′,1′-dimethylurea, suggesting the potential importance of heterocystous cyanobacteria. There is also evidence of NA by sulfur-reducing bacteria in both microbial communities suggested by the negative effect exerted by the addition of sodium molybdate. Elimination of infrared and ultraviolet radiation had no effect on NA. Both microbial communities had nifH sequences that related to group I, including cyanobacteria and purple sulfur and nonsulfur bacteria, as well as group II nitrogenases, including sulfur reducing and green sulfur bacteria.  相似文献   

8.
Application of chemical fertilizers at the recommended level (medium fertility) or lower stimulated growth of the diazotrophic cyanobacterial population and nitrogenase activity in a paddy field. High fertilizer levels proved to be inhibitory to nitrogen-fixing cyanobacteria indicating that indiscriminate use of chemical fertilizers for a longer period drastically disturbed the natural ecological balance. The rice–mustard–moong (RMM) crop rotation was observed to be more suitable for cyanobacterial nitrogen fixation than rice–wheat–maize rotation. The cropped plots had higher nitrogenase activity than fallow plots. The low fertility coupled with RMM rotation were found to be best suited for promoting nitrogen fixation by cyanobacteria to supply the rice plants. A top dressing of chemical nitrogenous fertilizer drastically suppressed the cyanobacterial nitrogenase activity (ARA) within 12 h; the magnitude of inhibition varied with respect to the cropping system. The inhibition was overcome by the 10th day and the ARA value reached the preapplication value or even higher in the case of low fertility and medium fertility level plots. A regression equation was established to predict nitrogen fixation in a given soil ecosystem.  相似文献   

9.
The nitrogen-fixing cyanobacterium Anabaena flosaquae Lyngb.) De Breb. exhibited aggregation of heterocysts from different filaments in a eutrophic lake and when grown in unialgal culture. The resulting aggregated filaments formed unialgal flocculent masses having a thickness of several centimeters that apparently resulted from cohesive mucilage surrounding heterocysts. We tested the effects of heterocyst aggregation on nitrogenase activity (NA) and photosynthesis in relation to microscale environmental O2 gradients. The redox indicator 2,3,5-triphenyl tetrazolium chloride showed that aggregated heterocysts had lower intracellular redox potential than those that were dispersed. Microelectrode measurements showed that heterocyst aggregates in actively photosynthesizing flocculent masses were surrounded by a microzone of O2 30% higher than in the surrounding water: dispersed cells exhibited no such elevated O2 microzone. Despite high levels of O2, NA was greater in aggregated than dispersed samples, Microscale irradiance measurements made with a fiber optic light probe showed that 40% of the incident light was absorbed within the first 3 mm of a 1-cm-thick flocculent mass. The microscale irradiance data, together with nitrogenase and photosynthesis versus irradiance data, imply that the ratio of N:C fixation is lowest in filaments on the outside of 1.5–2.0-cm masses and increases toward the center.  相似文献   

10.
Abstract The effect og glyoxylate on nitrogenase activity (C2H2 reduction) and photosynthesis (H14CO3 fixation and O2 evolution) was in vestigated in the three heterocystous cyanobacteria Anabaena cylindrica, A. variabiltis and N. muscorum. Glyoxylate had virtually no effect on the rate of dark respiration and was unable to sustain photoheterotrophic growth, though some slight stimulation (= 30%) of photorophic growth was noted. A considerable stimulation of both nitrogenase and photosynthetic activities was observed in presence of glyoxylate. In the light the stimulation increased with time up to about 15-25 h after adding optimal concentrations of 4–6 mM glyoxylate. Placing glyoxylate treated samples in the dark or adding DCMU (30 μM) in the light, showed that glyoxylate initially supported significantly higher nitrogenase activity than did samples in absence of glyoxylate. However, after a prolonged incubation in the dark or in presence of DCMU glyoxylate is unable to relieve the adverse effects of such conditions. The stimulation of the nitrogenase activity was even more pronounced when the glyoxylate was added to cells preincubated in the dark (“carbon starved”) than for cells kept constantly in light. The results suggest that glyoxylate, or a metabolite, may act as an inhibitor of cyanobacterial photorespiration and this hypothesis is discussed.  相似文献   

11.
Algal turf communities are ubiquitous on coral reefs in the Caribbean and are often dominated by N2-fixing cyanobacteria. However, it is largely unknown (1) how much N2 is actually fixed by turf communities and (2) which factors affect their N2 fixation rates. Therefore, we compared N2 fixation activity by turf communities at different depths and during day and night-time on a degraded versus a less degraded coral reef site on the island of Curaçao. N2 fixation rates measured with the acetylene reduction assay were slightly higher in shallow (5–10-m depth) than in deep turf communities (30-m depth), and N2 fixation rates during the daytime significantly exceeded those during the night. N2 fixation rates by the turf communities did not differ between the degraded and less degraded reef. Both our study and a literature survey of earlier studies indicated that turf communities tend to have lower N2 fixation rates than cyanobacterial mats. However, at least in our study area, turf communities were more abundant than cyanobacterial mats. Our results therefore suggest that turf communities play an important role in the nitrogen cycle of coral reefs. N2 fixation by turfs may contribute to an undesirable positive feedback that promotes the proliferation of algal turf communities while accelerating coral reef degradation.  相似文献   

12.
Abstract Zonations of photosynthesis and photopigments in artificial cyanobacterial mats were studied with (i) oxygen and pH microsensors, (ii) fiber-optic microprobes for field radiance, scalar irradiance, and PSII fluorescence, and (iii) a light microscope equipped with a spectrometer for spectral absorbance and fluorescence measurements. Our analysis revealed the presence of several distinct 1–2 mm thick cyanobacterial layers mixed with patches of anoxygenic photosynthetic bacteria. Strong attenuation of visible light confined the euphotic zone to the uppermost 3 mm of the mat, where oxygen levels of 3–4 times air saturation and a pH peak of up to pH 8.8 were observed under saturating irradiance (413 μmol photon m−2 s−1). Oxygen penetration was 5 mm in light and decreased to 1 mm in darkness. Volumetric oxygen consumption in the photic and aphotic zones of illuminated mat was 5.5 and 2.9 times higher, respectively, than oxygen consumption in dark incubated mats. Scalar irradiance reached 100–150% of incident irradiance in the upper 0.5 mm of the mat due to intense scattering in the matrix of cells, exopolymers, and carbonate precipitates. In deeper mat layers scalar irradiance decreased nearly exponentially, and highest attenuation coefficients of 6–7 mm−1 were found in cyanobacterial layers, where photosynthesis and photopigment fluorescence also peaked. Visible light was attenuated >100 times more strongly than near infrared light. Microscope spectrometry on thin sections of mats allowed detailed spectral absorbance and fluorescence measurements at defined positions relative to the mat surface. Besides strong spectral signals of cyanobacterial photopigments (Chl a and phycobiliproteins), the presence of both green and purple photosynthetic bacteria was evident from spectral signals of Bchl a and Bchl c. Microprofiles of photopigment absorbance correlated well with microdistributions of phototrophs determined in an accompanying study. Received: 20 December 1999; Accepted: 10 June 2000; Online Publication: 28 August 2000  相似文献   

13.
Abstract Phototrophic microbial communities present in the Roman Catacombs were characterized and different species of terrestrial epilithic cyanobacteria were found to occur as dominant organisms. Eucapsis, Leptolyngbya, Scytonema, and Fischerella were the most frequently encountered cyanobacterial taxa, while a few species of green algae and the diatom Diadesmis gallica occurred in minor amounts. Streptomyces strains, a few genera of eubacteria, and to a lesser extent fungi were always present in the same microhabitats and contributed to the deterioration of stone surfaces. The combined use of light and electron microscopy evidenced the structural relationships among rod-shaped or filamentous bacteria and cyanobacterial cells, as well as the presence of polysaccharide capsules and sheaths, and of mineral precipitates on S. julianum filaments. The significance of the intimate association among the microorganisms was discussed in relation to the damage caused by the growth of biological patinas on stone surfaces. Received: 17 February 1999; Accepted: 19 May 1999  相似文献   

14.
Daily integrals of photosynthesis by a cyanobacterial bloom in the Baltic Sea, during the summer of 1993, were calculated from the vertical distributions of light, temperature and the organisms in the water column and from photosynthesis/irradiance curves of picoplanktonic and diazotrophic cyanobacteria isolated from the community. The distribution of chlorophyll a in size-classes <20?µm and >20?µm was monitored over 9 days that included a deep mixing event followed by calm. Picocyanobacteria formed 70% of the cyanobacterial biomass and contributed 56% of the total primary production. Of the filamentous diazotrophs that formed the other 30%, Aphanizomenon contributed 28% and a Nodularia-containing fraction 16% of the primary production. For the whole population there was little change in standardized photosynthetic O2 production, which remained at about 31?mmol?m?2 before and after the mixing event. There were differences, however, between the classes of cyanobacteria: in picocyanobacteria primary production hardly changed, while in Aphanizomenon it increased by 2.6 and in Nodularia it fell below zero. Total phytoplankton photosynthesis was strongly dependent on total daily insolation with the compensation point at a photon insolation of 22.7?mol?m?2?d?1. Similar analyses of N2 fixation showed much less dependence on depth distribution of light and biomass: Aphanizomenon fixed about twice as much N2 as Nodularia their; their fixation exceeded their own N demand by about 12%. Together, these species contributed 49% of the total N demand of the phytoplankton population. Computer models based on the measured light attenuation and photosynthetic coefficients indicate that growth of the cyanobacterial population could occur only in the summer months when the critical depth of the cyanobacteria exceeds the depth of mixing.  相似文献   

15.
Bacterial Life and Dinitrogen Fixation at a Gypsum Rock   总被引:1,自引:0,他引:1       下载免费PDF全文
The organisms of a bluish-green layer beneath the shards of a gypsum rock were characterized by molecular techniques. The cyanobacterial consortium consisted almost exclusively of Chroococcidiopsis spp. The organisms of the shards expressed nitrogenase activity (C2H2 reduction) aerobically and in light. After a prolonged period of drought at the rock, the cells were inactive, but they resumed nitrogenase activity 2 to 3 days after the addition of water. In a suspension culture of Chroococcidiopsis sp. strain PCC7203, C2H2 reduction required microaerobic conditions and was strictly dependent on low light intensities. Sequencing of a segment of the nitrogenase reductase gene (nifH) indicated that Chroococcidiopsis possesses the alternative molybdenum nitrogenase 2, expressed in Anabaena variabilis only under reduced O2 tensions, rather than the widespread, common molybdenum nitrogenase. The shards apparently provide microsites with reduced light intensities and reduced O2 tension that allow N2 fixation to proceed in the unicellular Chroococcidiopsis at the gypsum rock, unless the activity is due to minute amounts of other, very active cyanobacteria. Phylogenetic analysis of nifH sequences tends to suggest that molybdenum nitrogenase 2 is characteristic of those unicellular or filamentous, nonheterocystous cyanobacteria fixing N2 under microaerobic conditions only.  相似文献   

16.
We report a study of nitrogenase activity (acetylene reduction) and hydrogen gas metabolism in intact smooth cyanobacterial mats from Hamelin Pool, Shark Bay, Western Australia. The predominant cyanobacterial population in these mats is Microcoleus chthonoplastes. The mats had a significant capacity for nitrogen fixation, predominantly attributable to the photosyn‐thetic component. By physical and chemical perturbation we revealed an active hydrogen metabolism within the mats. Most of the H2 formation was attributed to fermentative processes, whereas hydrogen was consumed in light‐dependent, together with oxygen‐ and sulfate‐dependent respiratory processes. It was concluded that H2 formed by fermentative bacteria in the dark drives a significant proportion of sulfate reduction in the mats, but there was little H2 transfer from the cyanobacteria to the sulfate‐reducing bacteria. Thus photosynthetically produced H2 gas is unlikely to significantly alter the previously measured carbon: sulfur ratio relating photosynthesis to sulfate reduction.  相似文献   

17.
Benthic nitrogen fixation has been estimated to contribute 15 Tg N year(-1) to the marine nitrogen budget. With benthic marine nitrogen fixation being largely overlooked in more recent surveys, a refocus on benthic diazotrophy was considered important. Variations in nitrogenase activity (acetylene reduction-gas chromatography) in a tropical lagoon in the western Indian Ocean (Zanzibar, Tanzania) were monitored over a 3-year period (2003-2005) and related to cyanobacterial and diazotrophic microbial diversity using a polyphasic approach. Different nitrogenase activity patterns were discerned, with the predominant pattern being high daytime activities combined with low nighttime activities. Analyses of the morphological and 16S rRNA gene diversity among cyanobacteria revealed filamentous nonheterocystous (Oscillatoriales) and unicellular (Chroococcales) representatives to be predominant. Analyses of the nifH gene diversity showed that the major phylotypes belonged to noncyanobacterial prokaryotes. However, as shown by cyanobacterial selective nifH-denaturing gradient gel electrophoresis analysis, cyanobacterial nifH gene sequences were present at all sites. Several nifH and 16S rRNA gene phylotypes were related to uncultured cyanobacteria or bacteria of geographically distant habitats, stressing the widespread occurrence of still poorly characterized microorganisms in tropical benthic marine communities.  相似文献   

18.
We have investigated the ecological importance of N2-fixation in cyanobacterial mats, dominated by oscillatorean species, in ponds of the Bratina Island area of the McMurdo Ice Shelf, Antarctica (78°S, 166°E). Nitrogenase activity, estimated as acetylene reducing activity (ARA), was found in all the mats investigated (n = 16). The average ARA was 75.9 mmol ethylene m-2 h-1, ranging from 6 to 201 mmol ethylene m-2 h-1. Nitrogenase activity was positively correlated with dissolved reactive phosphorus concentration in pondwater and the C/N ratio of the mat, and was negatively correlated with pondwater NH4+-N concentrations and natural abundance of 15N in the mats. ARA was restricted to the upper, oxic layer of the mats. Experiments conducted to ascribe ARA to different groups of prokaryotes suggested that ARA was mainly conducted by heterocystous cyanobacteria, since no activity was found in the dark and the activity was inhibited by the photosystem II inhibitor DCMU (3-[3,4-dichlorophenyl]-1,1-dimethyl urea). In spite of 24 h of daylight, nitrogenase activity showed a diel cycle with maximum activity at midday (10-18 h) and minimal activity at early morning (6-10 h) when pond temperatures were at their minima. Light dependency of nitrogenase activity for three cyanobacterial communities showed that the irradiance required for saturating ARA was low, in every case lower than 100 mmol photon m-2s-1. Irradiance rarely fell below 100 mmol photon m-2s-1 during Antarctic summer days and ARA was likely to be light saturated for much of the time. We estimate that N2 fixation represented on average a N input into the ponds of over 1 g m-2y-1. This value appears to be the highest N input to this Antarctic ecosystem.  相似文献   

19.
In situ nitrogen fixation associated with the seagrass Halophila stipulacea, at the northern Gulf of Elat (Red Sea), is eight to ten times higher than that of nearby plant-free areas. A daily cycle of nitrogen fixation is evident, with rates during the day being seven times greater than during the night. Removal of seagrass leaves only from a patch within a seagrass bed gradually decreases nitrogen fixation activity, reaching the rates of plant-free areas after ten hours. A method devised for the in situ measurement of nitrogen fixation rates using belljars is described in detail. Nitrogen fixation rates in situ are higher than in the laboratory and lack the lag period typical to laboratory measurements. In laboratory experiments using intact plant samples, glucose enhances nitrogen fixation rates both in light and dark. Photosystem II inhibitor (3-3,4-dichloro-phenyl-1,1-dimethylurea) doubles nitrogen fixation rates in light. Both field and laboratory results indicate that light is essential for nitrogen fixation activity in the H. stipulacea bed possibly through its effect on cyanobacterial population that occupy the aerobic niches of the phyllosphere and on photosynthetic Rhodospirillacean bacteria that inhabit the anaerobic ones. Nitrogen fixation rates evident in H. stipulacea beds in situ account for a considerable portion of the biomass production by the seagrasses. The dependence of high nitrogenase activity by the diazotrophs on the presence of the seagrasses indicates the great importance of the seagrass community to the nitrogen cycle in its highly oligotrophic surroundings of the Gulf of Elat.  相似文献   

20.
A method is described for the preparation of cyanobacterial heterocysts with high nitrogen-fixation (acetylene-reduction) activity supported by endogenous reductants. The starting material was Anabaena variabilis ATCC 29413 grown in the light in the presence of fructose. Heterocysts produced from such cyanobacteria were more active than those from photoautotrophically-grown A. variabilis, presumably because higher reserves of carbohydrate were stored within the heterocysts. It proved important to avoid subjecting the cyanobacteria to low temperatures under aerobic conditions, as inhibition of respiration appeared to lead to inactivation of nitrogenase. Low temperatures were not harmful in the absence of O2. A number of potential osmoregulators at various concentrations were tested for use in heterocyst isolation. The optimal concentration (0.2M sucrose) proved to be a compromise between adequate osmotic protection for isolated heterocysts and avoidance of inhibition of nitrogenase by high osmotic strength. Isolated heterocysts without added reductants such as H2 had about half the nitrogen-fixation activity expected on the basis of intact filaments. H2 did not increase the rate of acetylene reduction, suggesting that the supply of reductant from heterocyst metabolism did not limit nitrogen fixation under these conditions. Such heterocysts had linear rates of acetylene reduction for at least 2 h, and retained their full potential for at least 12 h when stored at 0°C under N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号