首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DAPI-inducible common fragile sites   总被引:1,自引:0,他引:1  
DAPI, a compound specific for the AT bases of DNA, causes gaps and breaks in three human chromosome sites, at the 1q41-1q42 interface, 2q31, and 7p22. It also induces undercondensation of a chromosome site at the 13q21-13q22 interface. The first three sites have the characteristics of "common fragile sites" and are present as gaps and breaks on the chromosomes of seven individuals.  相似文献   

2.
B Kaina 《Mutation research》1977,43(3):401-413
Chromatid gaps, breaks and aberrations involved in interchanges induced by N-methyl-N-nitrosourea (MNU) were found non-randomly distributed on individual chromosomes and chromosome segments (G bands) both in human diploid fibroblasts with trisomy 21 cultured in vitro. Aberration events were located exclusively in pale G bands. Considering cells in the first post-treatment mitosis, the pattern of aberration distribution, as revealed by the position of hot spots, varied with recovery time and was different in diploid and Down's cells. In comparison with diploid cells, the X chromosomes of Down's cells were not involved in aberrations. Despite the higher aberration frequencies of Down's cells, the number of hot spots and the proportion of aberrations located in hot spots were not increased in this cell type. Therefore, the increased chromosomal sensitivity to MNU of Down's cells does not reflect an increased sensitivity of special chromosomes or chromosome sites.  相似文献   

3.
Spontaneous chromosomal fragility was detected in seven tumor patients and one healthy member from two families with a high recurrence of cancer. Major chromosome lesions, such as terminal deletions and rearranged chromosomes, were found at levels significantly higher than those reported for control individuals. The prevalence of these aberrations in comparison to minor ones (chromosome gaps and chromatid breaks) in this group of patients seems to indicate that the fragility observed is the end-point of a process of chromosomal instability, which may have already been brought to expression. Study of other parameters of genetic instability in the most unstable karyotypes showed that the chromosome damage observed was neither paralleled by abnormal SCE frequency nor sustained by defective DNA repair mechanisms or expression of inherited or constitutional fragile sites. As all the subjects investigated here had previously been shown to display intraindividual variations in the C-banded region of chromosome 1, it is possible that spontaneous fragility and acquired C-heterochromatin polymorphism may be markers that, combined with chromosomal instability, create genetic predisposition to cancer.  相似文献   

4.
The frequencies of chromosome and chromatid breaks and gaps were studied in blood lymphocytes of three groups of individuals: 21 males with X-linked mental retardation characterized by fragile X chromosome; 52 males with non-differentiated X-linked mental retardation having no fra(X) chromosome in their cells; 15 intellectually normal males. The lymphocytes were cultured both in medium 199 and in Eagle's medium supplemented with fluoro-deoxyuridine. The significantly higher frequencies of various autosomal lesions were observed in the individuals with the fragile X chromosome syndrome and in those with mental retardations without fra(X) chromosome, in comparison with normal males. The significant difference in some autosome lesions was also found between both groups of the patients. The distribution of chromosome lesions in autosomes of different groups was significantly higher in chromosomes A and lower in groups B, E, F and G, than expected in accordance with their relative length in the haploid set. In all the groups of individuals studied, the predominant localization of chromosome and chromatid breaks and gaps was observed in fragile sites 1p31, 3p14, 6q26 and 16q23.  相似文献   

5.
Common fragile sites as targets for chromosome rearrangements   总被引:4,自引:0,他引:4  
Arlt MF  Durkin SG  Ragland RL  Glover TW 《DNA Repair》2006,5(9-10):1126-1135
Common fragile sites are large chromosomal regions that preferentially exhibit gaps or breaks after DNA synthesis is partially perturbed. Fragile site instability in cultured cells is well documented and includes gaps and breaks on metaphase chromosomes, translocation and deletions breakpoints, and sister chromosome exchanges. In recent years, much has been learned about the genomic structure at fragile sites and the cellular mechanisms that monitor their stability. The study of fragile sites has merged with that of cell cycle checkpoints and DNA repair, with multiple proteins from these pathways implicated in fragile site stability, including ATR, BRCA1, CHK1, and RAD51. Since their discovery, fragile sites have been implicated in constitutional and cancer chromosome rearrangements in vivo and recent studies suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early tumorigenesis. Here we review the relationship of fragile sites to chromosome rearrangements, particularly in tumor cells, and discuss the mechanisms that may be involved.  相似文献   

6.
The antihypertensive drug atenolol was found to induce chromosome loss, detected as micronuclei in the peripheral lymphocytes of treated patients. The fundamental question which chromosomes the micronuclei were derived from remains to be answered. Analysis of structural chromosomal aberrations (CAs) and expression of fragile sites (FS) were pursued in this study. They revealed a significantly higher incidence of chromosomal aberrations (chromatid and chromosome breaks) in patients compared with controls, where 10 FS emerged as specific. Also, the band 17q12–21, where known fragile sites have not been reported, was only expressed in atenolol-treated patients. Fluorescence in situ hybridization using chromosome-specific probes revealed the preferential involvement of chromosomes 7, 11, 17 and X in the micronuclei (MN) of patients. The results also suggest a correlation between chromosomal fragility and content of MN, and support the findings for a linkage between hypertension and a locus on chromosome 17.  相似文献   

7.
Aphidicolin (APC)-induced chromosomal gaps and breaks were analyzed for ten deer mice (Peromyscus maniculatus) from a natural population. The FSM statistical methodology was used to identify fragile sites as chromosomal loci exhibiting significantly non-random numbers of gaps/breaks in each individual and enabled an assessment of variation in fragile sites among the individuals. The individual deer mice exhibited as few as 7 to as many as 19 of the populational total of 34 sites. Two sites were fragile in all individuals and 13 sites were fragile in single individuals only. Defined by populational frequencies of greater than 50%, high-frequency fragile sites constituted 26% of the populational total. Approximately 35% of the total fragile sites were fragile in 20–40% of the population (low-frequency fragile sites) and about 38% were fragile in single individuals only. Analysis of the data pooled over all individuals identified significantly non-random breakage at 80 sites, 47 of which were not identified as fragile in any single individual. It appears, therefore, that fragile site identifications from pooled data have fostered an inflated estimate of the numbers and frequencies of common fragile sites. Comparison of the fragile site and spontaneous breakage (control) data suggest that APC-induced fragile sites represent regions of chromosomes that experience elevated levels of somatic mutation. Additionally, the occurrence of APC-induced fragile sites at or near the interstitial breakpoints of two pericentric-inversion polymorphisms in this population supports the hypothesis that fragile sites experience an increased rate of meiotic chromosomal mutation and are predisposed to undergo phylogenetic rearrangement. Received: 22 January 1997 / Accepted: 24 February 1997  相似文献   

8.
A total of 130 stable, two-break reciprocal translocations were scored in G-banded karyotypes prepared from 375 metaphase spreads from a strain of human diploid fibroblasts irradiated with 400 or 600 rads and analyzed 1-20 mean population doublings later. The chromosomal location of each of the 260 breakpoints was mapped. The sites of 121 chromosomal breaks and deletions in the first postirradiation mitosis were also scored. Unlike the random distribution of these latter events, the translocation breakpoints showed not only a nonrandom distribution among chromosomes but also the existence of specific sites within chromosomes that were more frequently involved in translocations. The most notable finding was a marked excess of translocations involving the short arm of chromosome 1, in particular, band 1p22. The specific types of translocations were random, although the breakpoints were not. Eight of the 12 most frequently involved chromosomal sites were regions in which fragile sites have been mapped in human lymphocytes.  相似文献   

9.
10.
Summary Peripheral lymphocytes from 16 healthy adults, 9 pregnant women, and 3 fragile X syndrome patients were cultured in Eagle's minimum essential medium without folic acid (MEM-FA). The addition of 2mM, 4mM, or 8mM uridine 24h or 72h prior to harvest resulted in increases of chromosome gaps or breaks, especially at hot points 3p14, 16q23-24, and at fragile site Xq27. Pregnant women showed higher frequencies of 3p14 breaks and total chromosome breaks than men and non-pregnant women. The other chromosome regions, such as 6q26, 7q23, 7q35, 6p25, Xp22, 14q23 and 11p13, also frequently showed gaps or breaks. The results indicated that the unbalance of nucleotide pools was one of the causes of chromosome breakages. The higher frequencies of chromosome gaps and breaks under the condition of thymidylate stress may be due to the misincorporation of uracil instead of thymine into DNA.  相似文献   

11.
Human papillomaviruses (HPV) 16 and 18 are closely linked with human genital cancer. In most cervical carcinomas, viral sequences are integrated into the host genome. HeLa, a cervical carcinoma cell line, has multiple copies of integrated HPV 18 DNA. In this study, in situ chromosome hybridization was used to assign the integration sites of HPV 18 DNA sequences on HeLa cell chromosomes. Four sites of hybridization were identified at 8q23----q24, 9q31----q34, p11----p13 on an abnormal chromosome 5, and q12----q13 on an abnormal 22. Three of these sites correspond with the locations of MYC, ABL, and SIS protooncogenes, and are at or in close proximity to fragile sites. The chromosomal localization of HPV 18 DNA may be useful in assessing the role of viral integration in the development of this malignancy.  相似文献   

12.
13.
The Epstein-Barr virus genome is present in more than 95% of the African cases of Burkitt lymphoma. In this tumor, the viral genome is usually maintained in multiple episomal copies. Viral integration has been described only for Namalwa, a cell line lacking episomes. In this study, we have addressed the question of whether integrated and episomal copies can coexist in Burkitt lymphoma cells. Gel electrophoresis was used to demonstrate the presence of episomal as well as free linear DNA in three Burkitt lymphoma cell lines. The numbers of episomal copies per cell were estimated to be 5 to 10 in BL36 and BL137 cells and below 1 in BL60 cells, indicating that BL60 does not represent a homogeneous cell population. Fluorescence in situ hybridization was combined with chromosomal banding to study the association of the viral DNA with metaphase chromosomes. A symmetrical pattern of signals at both chromatids located at the same chromosomal sites in many if not all metaphases was taken as evidence for viral integration. In each of the three cell lines, one site of integration was identified: at chromosome 11p15 in BL36 cells, at chromosome 1p34 in BL137 cells, and at the site of a reciprocal t(11;19) translocation in BL60 cells. Integrated, episomal and linear copies of Epstein-Barr virus DNA thus coexist in Burkitt lymphoma cells. The biological significance of viral integration in Burkitt lymphoma cells remains to be elucidated.  相似文献   

14.
Genomic instability is observed in tumors and in a large fraction of the progeny surviving irradiation. One of the best-characterized phenotypic manifestations of genomic instability is delayed chromosome aberrations. Our working hypothesis for the current study was that if genomic instability is in part attributable to cis mechanisms, we should observe a non-random distribution of chromosomes or sites involved in instability-associated rearrangements, regardless of radiation quality, dose, or trans factor expression. We report here the karyotypic examination of 296 instability-associated chromosomal rearrangement breaksites (IACRB) from 118 unstable TK6 human B lymphoblast, and isogenic derivative, clones. When we tested whether IACRB were distributed across the chromosomes based on target size, a significant non-random distribution was evident (p < 0.00001), and three IACRB hotspots (chromosomes 11, 12, and 22) and one IACRB coldspot (chromosome 2) were identified. Statistical analysis at the chromosomal band-level identified four IACRB hotspots accounting for 20% of all instability-associated breaks, two of which account for over 14% of all IACRB. Further, analysis of independent clones provided evidence within 14 individual clones of IACRB clustering at the chromosomal band level, suggesting a predisposition for further breaks after an initial break at some chromosomal bands. All of these events, independently, or when taken together, were highly unlikely to have occurred by chance (p < 0.000001). These IACRB band-level cluster hotspots were observed independent of radiation quality, dose, or cellular p53 status. The non-random distribution of instability-associated chromosomal rearrangements described here significantly differs from the distribution that was observed in a first-division post-irradiation metaphase analysis (p = 0.0004). Taken together, these results suggest that genomic instability may be in part driven by chromosomal cis mechanisms.  相似文献   

15.
A cytogenetic study was performed on workers of a leather tanning industry. Two different approaches for the biological monitoring of the individuals were used: chromosomal aberration analysis in peripheral lymphocytes and the frequency of micronucleated cells exfoliated in urine samples. 26 men working in the sections considered to present a greater risk were included in the study. Controls were 20 men that were not exposed to chemicals. The percentage of abnormal cells was higher in workers than in controls. Smokers showed higher values of chromosome breaks than non-smokers in both groups. These differences were not statistically significant. The percentage of cells with chromatid and chromosome gaps in workers and controls was different (p less than 0.01). A slight but not significant increase in the mean percentage of micronuclei was observed in the exposed group. We conclude that exposure to chemicals during leather tanning did not produce genotoxic effects measured by chromosomal aberrations in peripheral lymphocytes and micronuclei in urine in this group of workers.  相似文献   

16.
Huang J  Ma L  Yang F  Fei SZ  Li L 《PloS one》2008,3(5):e2167

Background

In humans, chromosome fragile sites are regions that are especially prone to forming non-staining gaps, constrictions or breaks in one or both of the chromatids on metaphase chromosomes either spontaneously or following partial inhibition of DNA synthesis and have been well identified. So far, no plant chromosome fragile sites similar to those in human chromosomes have been reported.

Methods and Results

During the course of cytological mapping of rDNA on ryegrass chromosomes, we found that the number of chromosomes plus chromosome fragments was often more than the expected 14 in most cells for Lolium perenne L. cv. Player by close cytological examination using a routine chromosome preparation procedure. Further fluorescent in situ hybridization (FISH) using 45S rDNA as a probe indicated that the root-tip cells having more than a 14-chromosome plus chromosome fragment count were a result of chromosome breakage or gap formation in vitro (referred to as chromosome lesions) at 45S rDNA sites, and 86% of the cells exhibited chromosome breaks or gaps and all occurred at the sites of 45S rDNA in Lolium perenne L. cv. Player, as well as in L. multiflorum Lam. cv. Top One. Chromatin depletion or decondensation occurred at various locations within the 45S rDNA regions, suggesting heterogeneity of lesions of 45S rDNA sites with respect to their position within the rDNA region.

Conclusions

The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes, and thus we conclude that the high frequency of chromosome lesions in vitro in Lolium species is the result of the expression of 45S rDNA fragile sites. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are discussed.  相似文献   

17.
Chromosomal anomalies associated with the use of the organic phosphate pesticide guthion were investigated in Chinese hamster cells (line CHO-K1). Most commonly observed were chromatid breaks and exchanges. Infrequently, mild failure of condensation, despiralization, secondary constriction, gaps, pulverization, ring and dicentric chromosomes were noted. The mean number of chromosome breaks per cell was significantly higher in treated cells than in control cells. Autoradiographic studies revealed that while higher dosages of the chemical (80–120 μg/ml) arrested cells and prevented their movement out of S phase, a lower dosage (60 μg/ml) caused a progression delay. In relation to the relative length of no. 1 and no. 2 chromosomes, no apparent difference existed in the incidence of total breaks between them. However, significant differences in the nonrandom distribution of breaks in no. 1 and no. 2 chromosomes indicated linear differentiation of breakage susceptibility along the chromosomes. An increased concentration of breaks was observed in the long arms of both no. 1 and no. 2 chromosomes. The experimental results suggest that guthion, as well as inducing chromosomal anomalies, may produce a viable mutant.  相似文献   

18.
Summary Two members of the human zinc finger Krüppel family, ZNF 12 (KOX 3) and ZNF 26 (KOX 20), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization. The presence of individual human zinc finger genes in mouse-human hybrid DNAs was correlated with the presence of specific human chromosomes or regions of chromosomes in the corresponding cell hybrids. Analysis of such mouse-human hybrid DNAs allowed the assignment of the ZNF 12 (KOX 3) gene to chromosome region 7p. The ZNF 26 (KOX 20) gene segregated with chromosome region 12q13-qter. The zinc finger genes ZNF 12 (KOX 3) and ZNF 26 (KOX 20) were localized by in situ chromosomal hybridization to human chromosome regions 7p22-21 and 12q24.33, respectively. These genes and the previously mapped ZNF 24 (KOX 17) and ZNF 29 (KOX 26) genes, are found near fragile sites.  相似文献   

19.
The chromosomal aberration test was employed to investigate the effect in vitro of a known antioxidant and food preservative, ethoxyquin (EQ, 1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline) on human chromosomes. The studies were undertaken because there are no published in vitro data on genotoxicity of EQ in mammalian cells and there are many reports pointing out that it may be harmful to animals and human beings. Lymphocytes obtained from three healthy donors were incubated with EQ (0.01-0.5mM) both with and without metabolic activation. Stability studies performed by HPLC analysis showed that EQ was stable under the conditions of the lymphocyte cultures. The results of the chromosome aberration assay showed that EQ induces chromosome aberrations: gaps and breaks as well as dicentrics and atypical translocation chromosomes.  相似文献   

20.
Tumor suppressor p53 protein mediates checkpoint controls and the apoptotic program that are critical for maintaining genomic integrity and preventing tumorigenesis. Forced-induction of MCT-1 decreased p53 expression before and after genomic insults. While inhibiting protein synthesis, the levels of ubiquinated-p53 and the phospho-MDMA2 were significantly increased in ectopic MCT-1 cells. Abrogation of the proteosome degradation process attenuated p53 destabilization and p21 down-regulation by MCT-1. Concomitantly, MCT-1 overexpression enhanced the phosphorylation status of MAPK (ERK1/ERK2). While MCT-1 gene knockdown or MEK/ERK pathway inhibition dramatically reduced MAPK phosphorylation, the genotoxin-induced p53 and p21 production were noticeably elevated. Upon Etoposide treatment, ectopic MCT-1 cells relaxed S-phase and G2/M checkpoints followed by G1 phase progressing. Moreover, cells inducing with MCT-1 abridged accumulations of G2/M populations in the response to gamma-irradiation. The polyploidy (DNA content>4N) populations were increased in association with p53 loss in MCT-1 oncogenic cells. Alkaline comet assay validated that ectopic MCT-1 cells were less susceptibility to the genotoxicity. Furthermore, the allocation of nuclear MCT-1 induced by the genotoxic stress was moderately coincided with gamma-H2AX appearances. Throughout damage-repairing process, ectopic MCT-1 cells displayed many larger chromosomes and multiple chromosomal fusions compared to the controls that showed increase in chromosomal breaks/gaps and minute chromosomal fragments. Spectral karyotyping analysis precisely identified the acquisition of a single extra copy of chromosome 14 together with a complex genome organizations in ectopic MCT-1 cells, including extra copies of chromosome segments that had been translocated to derivative chromosomes 6 [der(6)] and 9 [der(9)]. In conclusion, MCT-1 deregulates p53-p21 network and impairs the damage checkpoints those are robustly connected to oncogenic chromosomal abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号