首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of exchange studies, in which 3H-labelled 50-S subunits and unlabelled 70-S ribosomes from Escherichia coli MRE 600 were used, it has been demonstrated that the 30-S subunit is the only target for IF-3 in the dissociation of 70-S ribosomes. The interference of IF-3 with the dynamic equilibrium of 70-S in equilibrium 50-S + 30-S occurs by binding of the factor to the 30-S subunit. The 30-S-IF-3 complex in impaired in the association reaction, which implies that IF-3 is acting as an anti-association factor. The action of IF-1 is two-fold. Firstly IF-1 increases the rate of exhcange of the ribosomal subparticles in the 70-S ribosome without changing the position of the equilibrium. Thus the spontaneous equilibrium is attained more rapidly in the presence of IF-1. This kinetic effect of IF-1 is also demonstrated in the IF-3-mediated dissociation of 70-S ribosomes. Secondly IF-1 is able to increase the IF-3-mediated dissociation. It seems likely that the explanation for the latter phenomenon must be sought in the binding of IF-1 to 70-S ribosomes, resulting in a loosening of the ribosomes structure, as well as to 30-S. IF-3 complex, thaereby slowing down the association reactions of the subunits.  相似文献   

2.
The subunit association capacity of 30S and 50S ribosomal subunits from Escherichia coli mutants lacking protein S20 or L11 as well as of 50S subunits depleted of L7/L12 was tested by sucrose gradient centrifugation and by a nitrocellulose filtration method based on the protection from hydrolysis with peptidyl-tRNA hydrolase of ribosome-bound AcPhe-tRNA. It was found that the subunits lacking either S20 or L11 display an altered association capacity, while the 50S subunits lacking L7/L12 have normal association behavior. The association of S20-lacking 30S subunits is quantitatively reduced, especially at low Mg2+ concentrations (5-12 mM), and produces loosely interacting particles which dissociate during sucrose gradient centrifugation. The association of L11-lacking 50S subunits is quantitatively near-normal at all Mg2+ concentrations and produces loosely associating particles only at low Mg2+ concentrations (5-8 mM); the mechanism of their association with 30S subunits, however, or the structure of the resulting 30S-50S couples is altered in such a way as to cause the ejection of an AcPhe-tRNA molecule pre-bound to the 30S subunits in response to poly(U).  相似文献   

3.
Summary The appearance of a protein (association factor I) in ribosomes from Bacillus stearothermophilus at stationary phase of growth is described. Association factor I is present on 30S subunits and 30S–50S ribosomal couples, but not on 50S subunits. This protein is responsible for the low levels of polyphenylalanine synthesis shown by stationary phase ribosomes. Association factor I is able to bind to free 30S–50S ribosomal couples but not to polysomes, and exerts its effect by inhibiting the initiation step of protein synthesis. Ribosomes preincubated with association factor I have a decreased ability for polypeptide snythesis directed phage mRNA or poly(U).  相似文献   

4.
The effect of the presence or absence of the methylgroups of the m2(6)Am2(6)A sequence near the 3' end of 16S rRNA of Escherichia coli on the interaction of the ribosomal subunits has been studied, using wild-type (methylated) and mutant (unmethylated) ribosomes. Subunit exchange experiments and competitive association experiments show a strong preference of the 50S subunit for association with methylated 30S subunits. The results indicate that the equilibrium constant of the reaction 70S in equilibrium with 30S + 50S is dependent on the methylgroups; mutant 30S.50S couples are less stable than wild-type 30S.50S couples. It is postulated that the methylgroups also stimulate the interaction between 30S subunits and initiation factor IF-3.  相似文献   

5.
The activity of a 30-S CsCl core lacking proteins S1, S2, S3, S5, S9, S10, S14, S20 and S21 has been studied in the ribosome-dependent FTPase reactions in the presence of the 50-S subunit with and without methanol. Without methanol, the 30-S CsCl core was unable to sustain GTPase activity dependent on elongation factor G (EF-G), while it was only slightly active in the presence of elongation factor T (EF-T). With EF-T, addition of methanol induced in the presence of either 30-S subunits or 30-S CsCl cores an activity which was more than 10-fold higher than that observed with the 30-S subunit in the absence of methanol. Methanol lowered the Mg2+ optimum of the EF-T-dependent GTPase reaction from approximately 20 mM to approximately 10 mM. In the absence of methanol the EF-G-dependent (GTPase reaction at low concentration of monovalent cations depends on the 50-S subunit alone (30-S-uncoupled EF-G GTPase). Addition of the intact 30-S subunit but not of its CsCl core abolished inhibition of the 30-S-uncoupled EF-G-GTPase by NH4+. The 30-S CsCl core caused the same effect as the 30-S subunit when methanol was present. 30-S-uncoupled EF-G GTPase activity was lower than the GTPase activity dependent on 30-S plus 50-S subunits at [EF-G]/[50-S] below 5 but was considerably higher in the presence of a large excess of EF-G. In the presence of methanol the 30-S CsCl core behaved similarly to the 30-S subunit. Our results indicate that the action of the 30-S subunit in elongation-factor-dependent GTPases is supported by structural features that are preserved in the 30-S CsCl core. The 30-S split proteins are therefore not essential for EF-G and EF-T activities in the hydrolysis of GTP. With EF-T, in all conditions tested association of the ribosomal subunits appeared to accompany GTPase activity. Association seems also to be a prerequisite of the EF-G GTPase activity that depends on both ribosomal subunits.  相似文献   

6.
The 133,000 X g supernatant fraction prepared from ascites cells in 20 mM KCl (low CKl supernatant) contained the initiation factors EIF-1 and EIF-2 (and the elongation factore EF-1 and EF-2) but lacked EIF-3; thus, low KCl supernatant could be used to assay for EIF-3. EIF-3 was prepared from a crude initiation factor perparation (a 250 mM KCl extract of ascites cell ribosomes precipitated with 70% saturated ammonium sulfate) by chromatography on DEAE-Sephadex A-50 and hydroxylapatite. The EIF-O had no detectable EIF-1 and little or no EIF-2. Factor EIF-3 was required fro translation of encephalomyocarditis virus RNA. The molecular weight of EIF-3 was estimated by Sephadex G-200 filtration to be 139,000; the sedimentation coefficient was calculated to be about 5.8. EIF-3 formed a binary complex specifically with the initiator tRNA, Met-tRNAf, and if GTP was present the factor formed a ternary complex (EIF-3-Met-tRNAf-GTP). The EIF-3 preparation had no methionyl-tRNA synthetase activity to account for binding. Complex-formation was with eukaryotic Met-tRNAf and no other aminoacyl-tRNA. The binary and ternary complexes were retained quantitatively on Millipore filters (which was the most convenient assay), but they could also be demonstrated by filtration through Sephadex G-100 or by glycerol gradient centrifugation. GTP increased the rate, the amount, and the stability of complex formed; the ration of GTP to Met-tRNAf in the ternary complex appeared to be 1. The binary and the ternary complexes transferred Met-tRNAf to the 40 S ribosomal subunits, but not to 60 S subparticles. The factor-dependent binding of Met-tRNAf to the 40 S subunit did not require mRNA (or GTP). In the presence of 60 S subunits, the initiator tRNA bound to 40 S subunits was not transferred to 80 S ribosomes even if mRNA was added--that reaction may require another initiation factor. Treatment of EIF-3 with N-ethylmaleimide led to loss of its activity in complex formation and in support of the translation of encephalomyocarditis virus RNA. In addition to forming the binary and ternary complexes, and supporting the translation of encephalomyocarditis virus RNA, EIF-3 also increases the number of free ribosomal subunits by either preventing their association or causing dissociation of 80 S couples.  相似文献   

7.
It has been found that preparations of Escherichia coli (MRE-600) ribosomes can display GTPase and ATPase activities independent of elongation factors EF-Tu and EF-G. The GTPase and ATPase are localized on ribosomal 50S subparticles, whereas 30S subparticles are free of the activities and do not stimulate them upon association with the 50S subparticles to form complete ribosomes. The GTPase and ATPase can be removed from the ribosomes and their 50S subparticles by treatment with 1 M NH4Cl or 50% ethanol in the cold. Ribosomal preparations freed from the factor-independent GTPase and ATPase retain their basic functional features. The data obtained do not permit to solve finally whether the factor-independent GTPase and ATPase revealed are components of ribosomes or represent a contamination rather firmly bound to the ribosomes. However, in any case this finding can contribute to an uncoupled hydrolysis of GTP and should be considered when studying the stoichiometry of triphosphate expenditure in the process of ribosomal protein synthesis.  相似文献   

8.
The distribution of ribosomal particles has been studied in a polyamine-deficient mutant of Escherichia coli by sucrose gradient centrifugation analysis. Lysates from starved cells contained less 70S monomers and 30S subunits but more 50S particles than those prepared from bacteria supplemented with putrescine. The addition of the polyamine to putrescine-depleted cells induced a rapid change of the ribosomal profile. A similar effect could be obtained in vitro by equilibrium dialysis against a polyamine-containing solution. The ribosomal pattern obtained from starved bacteria was specific for polyamine deficiency. We conclude that the changes in ribosomal profiles upon restoration of putrescine levels in previously starved cells denote a shift of the equilibrium between 30S-50S couples and ribosomal subunits.  相似文献   

9.
The binding of labeled initiation factor IF-1 to ribosomal particles has been studied in relation to the mode of action of this factor in the dissociation of 70-S ribosomes. It is demonstrated that IF-1 interacts specifically with active 70-S tight couples and free 30-S subunits. The binding of IF-1 to both 70-S and 30-S particles is not influenced by the Mg2+ concentration and the affinity of the factor for both particles is about the same. The interaction of IF-1 with these particles is highest at low Tris-HCl concentrations. Under these conditions IF-1 shows a slight dissociating activity. Using 3H-labeled IF-1 and 14C-labeled IF-3 the formation of a 30-S-subunit.IF-1 . IF-3 complex from 70-S ribosomes is demonstrated. Our studies show that IF-3 enhances the binding of IF-1 to the 30-S subunit. In contrast to IF-1, which binds about equally well to 70-S and 30-S particles in the absence of IF-3, 14C-labeled IF-3 binds predominantly to the 30-S subunit. This finding confirms the view that IF-3 acts as an anti-association factor. On the other hand, IF-1 enhances the supply of 30-S subunits in the presence of IF-3 by acting on the 30-S moiety of the 70-S ribosome.  相似文献   

10.
Previous studies in this series (M. Noll et al., 1973a,b; Noll & Noll, 1974) have established that in Escherichia coli the ability of subunits to form vacant 70 S ribosome couples at 10 mm-Mg2+ is a stringent condition for activity in the translation of natural messenger (R17 RNA). The present study examines the structural basis of subunit interaction. It is found that vacant ribosome couples prepared by various methods fall into two classes, “tight” couples and “loose” couples, that differ in the affinity of their subunits for each other. Detection and separation of the two particle species is possible by ultracentrifugation. When analyzed on sucrose gradients at 6 mm-Mg2+ and moderate speed (30,000 revs/min), tight couples sediment as undissociated 70 S ribosomes, whereas loose couples are completely dissociated and sediment as 30 S and 50 S subunits. At 15 mm-Mg2+ in the gradient, both species sediment as a 70S peak. At 10 mm-Mg2+ and 60,000 revs/min, two peaks (63 S and 55 S) are seen because the high hydrostatic pressure causes more pronounced dissociation of the loose than of the tight couples.Association is dependent on the state of each subunit. Removal of Mg2+ produces 30 S b-particles that are unable to associate with 50 S subunits unless reconverted to the 30 S a-form by thermal activation according to Zamir et al. (1971). In the dissociated state, 50 S subunits tend to change irreversibly to a 50 S b-modification that produces loose couples upon association with 30 S a-subunits. The 50 S a → 50 S b transition could not be related to breaks in 23 S RNA detectable by sedimentation analysis. However, mild treatment of 50 S a-subunits with RNase produces particles that associate with 30 S a-subunits to couples that are less stable than the loose couples resulting from a dissociation/association step.Fresh S-30 extracts contain only tight couples (approx. 80%) and subunits (approx. 20%). Our results suggest that loose couples are artefacts derived from tight couples by a structural or conformational modification.Interaction-free subunits that previously were found to form a primitive initiation complex with poly(U) and tRNAPhe (Schreier & Noll, 1970,1971), and to be active in phenylalanine polymerization, are shown to consist of the b-form of each subunit.It is likely that conflicting results obtained in the study of the mechanism of initiation and other aspects of ribosome function are due to the lack of structural criteria required for standardizing the ribosome preparation used by different investigators. This study provides simple methods and criteria to classify and separate physically all ribosome and ribosome subunits that have been observed into well-defined classes of predictable activity.  相似文献   

11.
The effect of bacteriocin (cloacin DF13) treatment of Escherichia coli ribosomes on initiation of protein synthesis has been studied in detail. In agreement with our previous findings [Baan et al. (1976) Proc. Natl Acad. Sci. U.S.A. 73, 702--706] it is shown that 70-S initiation complexes can be formed with cloacin-treated ribosomes, but that the initiation factor IF-1 does not function properly. The following pleiotropic effects of this factor have been studied: (a) the acceleration of ribosomal subunit exchange with 70-S couples; (b) the stimulation of the IF-3-mediated dissociation of 70-S ribosomes; (c) the stimulation of 30-S initiation complex formation; (d) the enhancement of the rate of release of IF-2 from 70-S initiation complexes. The effects (a) and (b) are virtually abolished after cleavage of 16-S rRNA. The effect (d) is only partially reduced whereas effect (c) seems to be unimpaired. It is concluded that 70-S initiation complex formation with cloacin-treated ribosomes suffers from improper functioning of IF-1 in the generation of active subunits from 70-S tight couples. This is the only effect on initiation. It can be compensated for by adding more IF-3. The data provide functional evidence that 16-S rRNA is involved in ribosomal subunit interaction.  相似文献   

12.
At 5 mM Mg2+, spermidine stimulation of polyphenylalanine synthesis by cell-free extracts of Escherichia coli was found to be about 30 times greater than that by extracts of Pseudomonas sp. strain Kim, a unique organism which lacks detectable levels of spermidine. By means of reconstitution experiments, the target of spermidine stimulation was localized to the protein fraction of the highspeed supernatant component (S-100) of E. coli and was absent from, or deficient in, the S-100 fraction of Pseudomonas sp. strain Kim. The spermidine stimulation did not appear to be due to the presence in the E. coli S-100 fraction of ribosomal protein S1, elongation factors, or E. coli aminoacyl-tRNA synthetases. The failure to observe spermidine stimulation by the Pseudomonas sp. strain Kim S-100 fraction was also not due to a spermidine-enhanced polyuridylic acid degradation. The synthesis of polyphenylalanine by Pseudomonas sp. strain Kim extracts was stimulated by putrescine and by S-(+)-2-hydroxyputrescine to a greater degree than was synthesis by E. coli extracts. The enhancement by putrescine and by S-(+)-2-hydroxyputrescine with Pseudomonas sp. strain Kim extracts was found to be due to effects on its ribosomes.  相似文献   

13.
Ribosomes from Streptococcus pyogenes, group A, strain 29 were studied. A comparison of different methods of ribosomal isolations has shown that the homogenous ribosomal samples can be obtained by the method of differential ultracentrifugation using tris-HCl buffer. The ribosomes of S. pyogenes had the sedimentation coefficient of 70S and consisted of 65% of protein and 35% of nucleic acids; the ribosomes dissociated into subparticles with the sedimentation coefficients of 50S and 30S under a low magnesium concentration. Thus the S. pyogenes ribosomes do not differ from the ribosomes of procaryotes. It was shown that the ratios of 70S, 50S and 30S ribosomal subparticles in the cells depend on the growth phase of S. pyogenes. The cells of the middle and the late logarithmic phase contained 50S and 30S particles in a stoichiometric ratio. In the cells of the late stationary growth phase there was a deficiency of 30S ribosomal subparticles which does not result from a loss during the isolation procedure, as it was already observed in the initial 30S fraction.  相似文献   

14.
Effect of polyamines on in vitro reconstitution of ribosomal subunits   总被引:1,自引:0,他引:1  
The effect of polyamines on in vitro reconstitution of Escherichia coli 30S and 50S ribosomal subunits has been studied. Spermidine stimulated the reconstitution of 30S particles from 16S rRNA lacking the methyl groups on two neighboring adenines and total proteins of 30S subunits at least 1.6-fold. The reconstitution of 30S particles from normal 16S rRNA and total proteins of 30S subunits exhibited only slight spermidine stimulation. However, the optimal Mg2+ concentration of the reconstitution was decreased from 20 mM to 16 mM in the presence of 3 mM spermidine. In the absence of spermidine the assembly of 30S particles from normal 16S rRNA was more rapid than the assembly from 16S rRNA lacking the methyl groups on two neighboring adenines. The reconstitution of 50S particles from 23S and 5S rRNA and total proteins of 50S subunits was not influenced greatly by spermidine. Gel electrophoresis results, from reconstitution experiments of 30S particles from 16S rRNA lacking the methyl groups on two neighboring adenines and total proteins of 30S subunits, showed that the assembly of S1 and S9 proteins to 23S core particles was stimulated by spermidine during reconstitution. The relationship of polyamine effects on in vitro ribosome assembly from its constituents to in vivo ribosome assembly is discussed. The reconstitution of Bacillus subtilis 30S particles from 16S rRNA and total proteins of 30S subunits was also stimulated approximately 1.3-fold by 3 mM spermidine.  相似文献   

15.
The ribonucleoprotein particles released from isolated nuclei of regenerating rat liver in two in vitro systems were studied and the following results were obtained. 1. When the isolated nuclei of regenerating rat liver labeled in vivo with [14C] orotic acid were incubated in medium containing ATP and an energy-regenerating system (medium I) release of labeled 40-S particles was observed. Analysis of these 40-S particles showed that they contained heterogeneous RNA but no 18 S or 28 S ribosomal RNAs and their buoyant density in CsCl was 1.42-1.45 g/cm3, suggesting that they were nuclear informosome-like particles released during incubation. 2. When the same nuclei were incubated in the same medium fortified with dialyzed cytosol, spermidine and yeast RNA (medium II), release of labeled 60-S and 40-S particles was observed. Using CsCl buoyant density gradient centrifugation, two components were found in the labeled ribonucleoprotein particles released from nuclei in this medium. The labeled 60-S particles were found to contain 28-S RNA as the main component and their buoyant density in CsCl was 1.61 g/cm3, suggesting that they were labeled large ribosomal subunits. The labeled 40-S particles contained both 18 S RNA and heterogeneous RNA and they formed two discrete bands in CsCl, at 1.40 and 1.56 g/cm3, suggesting that they contained small ribosomal subunits and nuclear informosome-like particles. 3. These results clearly indicate that addition of dialyzed cytosol, spermidine and low molecular yeast RNA to medium I causes the release of ribosomal subunits or their precursors from isolated nuclei in the in vitro system.  相似文献   

16.
The small negative CD bands around 297 nm of isolated 30-S and 50-S ribosomal subunits were precisely measured for three bacteria, Bacillus stearothermophilus, Bacillus subtilis and Escherichia coli Q 13. The intensities of the negative CD bands of 30-S subunits were always much greater than those of 50-S subunits irrespective of the bacterial strains, which may be related to the difference in comformations of rRNAs and proteins in the complexes between these subribosomal particles. The dissociation of 70-S ribosomes into two subunits by lowering Mg2+ concentration caused evident enhancement of intensity of the 297 nm CD band, which was completely reversed by the association of the two subunits into 70-S particles. The melting profiles of CD spectra 3 B. stearothermophilus and E. coli were compared and both subunits of the former were found to be more heat stable than those of the latter. It was found that 5 M urea and 0.5% sodium dodecyl sulfate (SDS) treatment caused considerable reduction of the negative CD intensity around 297 nm of 30-S subunits but no significant change of 50-S subunits, while no significant change was observed for the CD spectra of isolated 16-S and 23-S rRNAs by the same treatment. Effects of EDTA treatment and then addition of Mg2+ on the CD spectra and fluorescence emission spectra of the subunits were also observed and the contribution by the interaction between rRNA s and proteins in ribosomes to the small negative band around 297 nm was discussed.  相似文献   

17.
At a high concentration of MgCl2 (30 mM) and a low concentration of proteins from the 50-S subunit (0.2 mg/ml), only three proteins, L15, L18 and L25, bind to 5-S RNA in significant amounts. On the other hand, in a buffer containing only 1 mM Mg Cl2, but otherwise at the same ionic strength (0.2 M), or at a protein concentration about 1.5 mg/ml, a large, stable complex can form between immobilized 5-S RNA and 50-S ribosomal proteins. This complex contains proteins L2, L3, L5, L15, L16, L17, L18, L21, L22, L25, L33 and L34, and it possess properties relevant to the function of the 50-S subunit; it has a binding site for deacylated tRNA, with a dissociation constant of 4.5 x 10(-7) M. The complex formed with 5-S RNA immobilized on an affinity column interacts also with 30-S subunits. The 5-S RNA-protein complex is interpreted as a sub-ribosomal domain which includes a considerable fraction of the peptidyl transferase center of the Escherichia coli ribosome.  相似文献   

18.
The effects of polyamines on the equilibrium between prokaryotic ribosomal subunits and 70 S ribosomes have been studied as a function of concentration of Mg2+ from 2.5 to 7.5 mM. Run-off ribosomes were obtained from Escherichia coli and were washed with buffered 1 M NH4C1. Spermidine at 1 mm favors association of subunits at all concentrations of Mg2+. Putrescine, at concentrations above 8 mM, favors net dissociation at concentrations of Mg2+ below 4.5 mM. Streptomycin behaves like spermidine, while putrescine behaves like initiation factor 1 and initiation factor 3. The effect of putrescine on dissociation is time-dependent and appears to have a half-life of about 3.5 min at 30 degrees. When added after the effects of spermidine or streptomycin on association have occurred, putrescine still causes dissociation. The data suggests that putrescine may reduce net formation of vacant 70 S ribosomes. Another possibility is that putrescine and spermidine may act antagonistically to maintain a labile equilibrium between ribosomal subunits and vacant 70 S ribosomes. It may be significant that the putrescine effect is observed at the concentration of Mg2+ found to be optimum for initiation.  相似文献   

19.
Functional heterogeneity of the 30S ribosomal subunit of E. coli   总被引:4,自引:0,他引:4  
Summary When 30S ribosomal subunits from E. coli are incubated with poly U, two separable components are recovered by zonal centrifugation of the incubation mixture. The faster sedimenting component is an aggregate of 30S subunits and poly U, while the slower one corresponds to the 30S ribosomal subunit. One ribosomal protein, protein 30S-1 is predominantly present in the faster sedimenting aggregate. The amount of poly U-30S subunit complex formed in the incubation mixture is limited by the amount of protein 30S-1 present. Consequently the number of ribosomal binding sites available for Phe-tRNA is limited in a similar fashion by the presence of protein 30S-1. When 30S ribosomal subunits are reconstituted in the absence of protein 30S-1, very little poly U or Phe-tRNA binding capacity is manifest under our assay conditions. We conclude that protein 30S-1 is required for maximum capacity of ribosomes to bind mRNA. Since this protein is present only on a fraction of the ribosome at any one time, it must exchange from one ribosome to another during protein synthesis.Abbreviations Poly U (polyuridylic acid) - t-RNA (transfer ribonucleic acid) - mRNA (messenger ribonucleic acid) - Phe (phenylanine) - A260 unit (unit of material which gives an optical density of 1.0 at 260 nm in a one centimeter optical path)  相似文献   

20.
A two-dimensional polyacrylamide gel electrophoresis procedure has been used to identify initiation factors rapidly in the high-salt-wash fraction from reticulocyte ribosomes. Initiation factors are identified by relative mobility and by co-electrophoresis with purified factors. A creatine phosphate/ATP/GTP/Pi exchange system is described which has been used to maintain [gamma-32P]ATP and [gamma-32P]GTP at constant specific activity in the cell-free protein-synthesizing system. Phosphorylated proteins associated with the protein-synthesizing complex have been identified using a combination of the two procedures. The salt-wash fraction contains eight major phosphorylated proteins and a number of minor ones. Two phosphorylated proteins are observed to comigrate with two of the three subunits of eukaryotic initiation factor 2 (eIF-2), the initiation factor involved in binding Met-tRNAf onto the 40-S subunit and promoting dissociation of 80-S ribosomes. eIF-4B, one of the proteins involved in binding mRNA to 40-S subunits is also phosphorylated. The remainder of phosphorylated proteins in the high-salt-wash fraction are not previously characterized initiation factors and have not been identified further. Two of the six phosphoproteins associated with the salt-washed ribosomes comigrate with ribosomal proteins; one is the major phosphorylated protein in 40-S ribosomal subunits, the other is an acidic protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号