首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial assemblage in an n-alkanes-dependent thermophilic methanogenic enrichment cultures derived from production waters of a high-temperature petroleum reservoir was investigated in this study. Substantially higher amounts of methane were generated from the enrichment cultures incubated at 55 °C for 528 days with a mixture of long-chain n-alkanes (C15–C20). Stoichiometric estimation showed that alkanes-dependent methanogenesis accounted for about 19.8% of the total amount of methane expected. Hydrogen was occasionally detected together with methane in the gas phase of the cultures. Chemical analysis of the liquid cultures resulted only in low concentrations of acetate and formate. Phylogenetic analysis of the enrichment revealed the presence of several bacterial taxa related to Firmicutes, Thermodesulfobiaceae, Thermotogaceae, Nitrospiraceae, Dictyoglomaceae, Candidate division OP8 and others without close cultured representatives, and Archaea predominantly related to uncultured members in the order Archaeoglobales and CO2-reducing methanogens. Screening of genomic DNA retrieved from the alkanes-amended enrichment cultures also suggested the presence of new alkylsuccinate synthase alpha-subunit (assA) homologues. These findings suggest the presence of poorly characterized (putative) anaerobic n-alkanes degraders in the thermophilic methanogenic enrichment cultures. Our results indicate that methanogenesis of alkanes under thermophilic condition is likely to proceed via syntrophic acetate and/or formate oxidation linked with hydrogenotrophic methanogenesis.  相似文献   

2.
The sludge digestate stabilized by mesophilic anaerobic digestion was further degraded through thermophilic anaerobic digestion using 0–10 % (v/v) of thermophilic, proteolytic Coprothermobacter proteolyticus, and/or methanogenic granular sludge. The results demonstrated that the temperature shift to thermophilic condition promoted abiotic solubilization of proteins and reactivated the fermentative bacteria and methanogens indigenous in the sludge digestate, resulting in a final methane yield of 6.25 mmol-CH4/g-volatile suspended solid (VSS) digestate. The addition of C. proteolyticus accelerated the hydrolysis and fermentation of proteins and polysaccharides in the digestate during the early stage of thermophilic anaerobic digestion and stimulated methane production by syntrophic cooperation with methanogenic granular sludge. In the treatment with granular sludge and inoculated with 10 % (v/v) of C. proteolyticus, a final methane yield of 7 mmol-CH4/g-VSS digestate was obtained, and 48.4 % proteins and 27.0 % polysaccharides were degraded. The dissolved proteins were contributed by abiotic factor, C. proteolyticus, and indigenous digestate bacteria, respectively, by around 16, 28, and 56 %.  相似文献   

3.
Cold-loving microorganisms developed numerous adaptation mechanisms allowing them to survive in extremely cold habitats, such as adaptation of the cell membrane. The focus of this study was on the membrane fatty acids of Antarctic Flavobacterium spp., and their adaptation response to cold-stress. Fatty acids and cold-response of Antarctic flavobacteria was also compared to mesophilic and thermophilic members of the genus Flavobacterium. The results showed that the psychrophiles produced more types of major fatty acids than meso- and thermophilic members of this genus, namely C15:1 iso G, C15:0 iso, C15:0 anteiso, C15:1 ω6c, C15:0 iso 3OH, C17:1 ω6c, C16:0 iso 3OH and C17:0 iso 3OH, summed features 3 (C16:1 ω7cand/or C16:1 ω6c) and 9 (C16:0 10-methyl and/or C17:1 iso ω9c). It was shown that the cell membrane of psychrophiles was composed mainly of branched and unsaturated fatty acids. The results also implied that Antarctic flavobacteria mainly used two mechanisms of membrane fluidity alteration in their cold-adaptive response. The first mechanism was based on unsaturation of fatty acids, and the second mechanism on de novo synthesis of branched fatty acids. The alteration of the cell membrane was shown to be similar for all thermotypes of members of the genus Flavobacterium.  相似文献   

4.
Lipids from a thermophilic methanogen and the associated hydrothermal vent sediment (Guaymas Basin, Gulf of California) were analyzed by gas chrmotography-mass spectrometry (GC-MS) and supercritical fluid chromatography (SFC). The neutral lipids of the thermophilic methagonen consisted of straight chain alkanes (nC22 to nC36), with nC24, nC28, nC32 and nC36 predominating and C25, C30 and C35-isoprenoids and hydroisoprenoids. The squalene (C30) series was the most abundant (95.6%). The backbone structure of the novel C35-isoprenouds was tentatively identified as 2,6,10,14,19,23,27-heptamethyloctacosane. Polar lipids of the thermophilic methanogen were analyzed by SFC and consisted fo diphytanyl glyceril diether (61.6%), macrocyclic glycerol diether (15.3%), dibiphytanyl diglycerol tetraether (11.8%) and an unidentified component (11.4%).Biomarker analysis of the Guaymas Basin sediment revealed the presence of small amounts of polyunsaturated C30-isoprenoids, with a distribution similar to the C30-isoprenoids of the thermophilic methanogen. In addition, the sediment contained ‘free’ diphytanyl glycerol diether as predominant ether lipid. Low levels of polar ether lipids, indicative of ‘active’ archaebacteria, were also detected. Results suggest that Guaymas Basin sediment recently contained active microbial populations with a lipid profile similar to the isolated thermophilic methanogen.  相似文献   

5.
The lipids of the Caldariella group of extremely thermophilic acidophilic bacteria are based on a 72-membered macrocyclic tetraether made up from two C40 diol units and either two glycerol units or one glycerol and one nonitol. The C40 components have the 16,16′-biphytanyl skeleton and the detailed structure of three of them is established.  相似文献   

6.
Three prenyl transferases in Micrococcus luteus were recovered in the soluble fraction following cell disruption. Undecaprenyl pyrophosphate (C55-PP) synthetase chromatographed on DEAE-cellulose independently from geranylgeranyl-PP and octaprenyl-PP synthetases. Further purification of C55-PP synthetase resulted in an approximate 250-fold purification over the crude lysate. The molecular weight of the synthetase was estimated to be between 47,000 and 49,000 by Sephadex G-100 chromatography. The enzyme had a broad specificity toward the allylic pyrophosphate substrate. The reactivities of the allylic substrates increased with chain length, C10 < C15 < C20, except for trans-solanesyl-PP, which was unreactive. Moreover, the enzyme was active on allylic substrates having both cis- and trans-stereochemistry. Although C55-PP and C50-PP were the major products, some shorter chain products were also produced, when t,t-farnesyl pyrophosphate and Δ3sopentenyl pyrophosphate (IPP) were used as substrates. The stereochemistries of the products formed with C55-PP synthetase were established, using [14C]IPP and 2R-[2-3H] and 2S-[2-3H]IPP. Each new isoprene unit added had a cis-configuration. The enzyme was inactive in the absence of added effectors. It was stimulated by Triton X-100, egg lecithin, and a whole phospholipid extract from M. luteus. Cardiolipin and deoxycholate were poor activators of the enzyme. The product chain length distribution observed with the phospholipid-activated enzyme showed highly favored production of the C55-PP product over the C50-PP product.  相似文献   

7.
Thermophilic bacteria are regarded as attractive production organisms for cost-efficient conversion of renewable resources to green chemicals, but their genetic accessibility is a major bottleneck in developing them into versatile platform organisms. In this study, we aimed to isolate thermophilic, facultatively anaerobic bacilli that are genetically accessible and have potential as platform organisms. From compost, we isolated 267 strains that produced acids from C5 and C6 sugars at temperatures of 55°C or 65°C. Subsequently, 44 strains that showed the highest production of acids were screened for genetic accessibility by electroporation. Two Geobacillus thermodenitrificans isolates and one Bacillus smithii isolate were found to be transformable with plasmid pNW33n. Of these, B. smithii ET 138 was the best-performing strain in laboratory-scale fermentations and was capable of producing organic acids from glucose as well as from xylose. It is an acidotolerant strain able to produce organic acids until a lower limit of approximately pH 4.5. As genetic accessibility of B. smithii had not been described previously, six other B. smithii strains from the DSMZ culture collection were tested for electroporation efficiencies, and we found the type strain DSM 4216T and strain DSM 460 to be transformable. The transformation protocol for B. smithii isolate ET 138 was optimized to obtain approximately 5 × 103 colonies per μg plasmid pNW33n. Genetic accessibility combined with robust acid production capacities on C5 and C6 sugars at a relatively broad pH range make B. smithii ET 138 an attractive biocatalyst for the production of lactic acid and potentially other green chemicals.  相似文献   

8.
Anaerobic alkalithermophiles, a novel group of extremophiles   总被引:2,自引:0,他引:2  
Although some anaerobic and aerobic mesophiles have long been known to grow at alkaline pH (above 9.5), little was known until recently about thermophilic alkaliphiles, termed now alkalithermophiles. This minireview describes presently known and recently validly described anaerobic alkalithermophilic bacteria (pHopt 55C > 8.5; Topt > 55°C) and alkalitolerant thermophiles (pHopt 55C < 8.5 but pHmax 55C above 9.0). Some of these are widely distributed, but others have been isolated (thus far) only from one specific location. This novel group of anaerobic bacteria is comprised of physiologically different genera and species which, so far, all belong to the Gram-type positive Bacillus-Clostridium phylogenetic subbranch. An interesting feature of these anaerobic alkalithermophiles is that most of the isolates have short doubling times. The fastest growing among them are strains of Thermobrachium celere, with doubling times as short as 10 min while growing above pH 9.0 and above 55°C. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

9.
Several integral membrane proteins exhibiting undecaprenyl-pyrophosphate (C55-PP) phosphatase activity were previously identified in Escherichia coli that belonged to two distinct protein families: the BacA protein, which accounts for 75% of the C55-PP phosphatase activity detected in E. coli cell membranes, and three members of the PAP2 phosphatidic acid phosphatase family, namely PgpB, YbjG and LpxT. This dephosphorylation step is required to provide the C55-P carrier lipid which plays a central role in the biosynthesis of various cell wall polymers. We here report detailed investigations of the biochemical properties and membrane topology of the BacA protein. Optimal activity conditions were determined and a narrow-range substrate specificity with a clear preference for C55-PP was observed for this enzyme. Alignments of BacA protein sequences revealed two particularly well-conserved regions and several invariant residues whose role in enzyme activity was questioned by using a site-directed mutagenesis approach and complementary in vitro and in vivo activity assays. Three essential residues Glu21, Ser27, and Arg174 were identified, allowing us to propose a catalytic mechanism for this enzyme. The membrane topology of the BacA protein determined here experimentally did not validate previous program-based predicted models. It comprises seven transmembrane segments and contains in particular two large periplasmic loops carrying the highly-conserved active site residues. Our data thus provide evidence that all the different E. coli C55-PP phosphatases identified to date (BacA and PAP2) catalyze the dephosphorylation of C55-PP molecules on the same (outer) side of the plasma membrane.  相似文献   

10.
11.
Previously, a thermophilic obligate methane-oxidizing bacterium, H-2 (type I), was isolated in our laboratory. H-2 is a new type of methylotroph because of the G+C content of DNA; it uses both the ribulose monophosphate pathway and the serine pathway for carbon assimilation and possesses a new quinone. In addition, we found that resting cell suspensions of H-2 had the ability to oxidize a variety of compounds different from the other methane-oxidizing bacteria as follows. (i) C1 to C8n-alkanes are hydroxylated and further oxidized, yielding mixtures of the corresponding alcohols, aldehydes, acids, and ketones. Liquid alkanes are transformed through a different oxidative pathway from that of gaseous ones. (ii) Both gaseous (C2 to C4) and liquid (C5, C6) n-alkenes are oxidized to their corresponding 1,2-epoxides. (iii) Liquid monochloro and dichloro n-alkanes (C5, C6) are oxidized, yielding their corresponding acids or haloacids. (iv) Diethyl ether is oxidized to acetic acid; no ethanol and acetaldehyde are detected. (v) Cyclic and aromatic compounds are also oxidized. (vi) Secondary alcohols (C3 to C10) are oxidized to their corresponding methyl ketones.  相似文献   

12.
Microbial fermentation is a promising technology for hydrogen (H2) production. H2 producers in marine geothermal environments are thermophilic and halotolerant. However, no one has surveyed an environment specifically for thermophilic bacteria that produce H2 through Fe–Fe hydrogenases (H2ase). Using heterotrophic medium, several microflora from a seaweed bed associated with marine hot springs were enriched and analyzed for H2 production. A H2-producing microflora was obtained from Sargassum sp., 16S rRNA genes and Fe–Fe H2ase diversities of this enrichment were also analyzed. Based on 16S rRNA genes analysis, 10 phylotypes were found in the H2-producing microflora showing 90.0–99.5 % identities to known species, and belonged to Clostridia, Gammaproteobacteria, and Bacillales. Clostridia were the most abundant group, and three Clostridia phylotypes were most related to known H2 producers such as Anaerovorax odorimutans (94.0 % identity), Clostridium papyrosolvens (98.4 % identity), and Clostridium tepidiprofundi (93.1 % identity). For Fe–Fe H2ases, seven phylotypes were obtained, showing 63–97 % identities to known Fe–Fe H2ases, and fell into four distinct clusters. Phylotypes HW55-3 and HM55-1 belonged to thermophilic and salt-tolerant H2-producing Clostridia, Halothermothrix orenii-like Fe–Fe H2ases (80 % identity), and cellulolytic H2-producing Clostridia, C. papyrosolvens-like Fe–Fe H2ases (97 % identity), respectively. The results of both 16S rRNA genes and Fe–Fe H2ases surveys suggested that the thermophilic and halotolerant H2-producing microflora in seaweed bed of hot spring area represented previously unknown H2 producers, and have potential application for H2 production.  相似文献   

13.
《Experimental mycology》1989,13(4):380-391
The thermophilic fungusPenicillium duponti has an active sulfate permease system derepressible by growth in cysteic acid or by sulfur starvation. The system is sensitive to ionic strength and is optimal at 45°C, pH 6.5. It is saturable with an apparent Km for sulfate of 55 μM. It is activated strongly by divalent cations and inhibited by inhibitors of mitochondrial ATP production and the group VI oxyanions.  相似文献   

14.
The compositions of glycolipids in the following seven strains of green photosynthetic bacteria were investigated at the molecular level using LC–MS coupled with an evaporative light scattering detector: Chlorobium (Chl.) limicola strains Larsen (30 °C as the optimal cultivation temperature) and DSM245 (30 °C), Chlorobaculum (Cba.) tepidum strain ATCC49652 (45 °C), Cba. parvum strain NCIB8327 (30 °C), Cba. limnaeum strain 1549 (30 °C), Chl. phaeovibrioides DSM269 (30 °C), and Chloroflexus (Cfl.) aurantiacus strain J-10-fl (55 °C). Dependence of the molecular structures of glycolipids including the chain-length of their acyl groups upon bacterial cultivation temperatures was clearly observed. The organisms with their optimal temperatures of 30, 45, and 55 °C dominantly accumulated glycolipids possessing the acyl chains in the range of C15–C16, C16–C17, and C18–C20, respectively. Cba. tepidum with an optimal temperature of 45 °C preferred the insertion of a methylene group to produce finally a C17-cyclopropane chain. Cfl. aurantiacus cultured optimally at 55 °C caused a drastic increase in the chain-length. Notably, the length of such acyl groups corresponded to that of the esterifying chain in the 17-propionate residues of self-aggregative bacteriochlorophylls-c/d/e, indicating stabilization of their supramolecular structures through hydrophobic interactions among those hydrocarbon chains. Based on the detailed compositions of glycolipids, a survival strategy of green photosynthetic bacteria grown in the wide range of temperatures is discussed.  相似文献   

15.
Shape of the protein stability curves changes to achieve higher melting temperature. Broadly, these changes have been classified as upward shift (increased ?Gs), rightward shift (increase in Ts) and flattening of the stability curves (decrease in ?Cp). Comparative studies on homologous mesophilic–thermophilic protein pairs highlighted the differential contribution of these three strategies amongst proteins. But unambiguous way of identification of the strategies, which will be preferred for a protein, is still not achieved. We have performed comparative thermodynamic studies using differential scanning calorimeter (DSC) on thermostable variants of a lipase from Bacillus subtilis. These variants are products of 1, 2, 3 and 4 rounds of directed evolution and harbor mutations having definite contribution in thermostability unlike natural thermophilic proteins. We have shown that upward and rightward shift in stability curves are prime strategies in this lipase. Our results along with that from the other study on laboratory evolved xylanase A suggest that optimization of suboptimal thermodynamic parameters is having a dominant influence in selection of thermodynamic strategies for higher thermostability.  相似文献   

16.
The fatty acids from Grevillea robusta seed oil triglycerides contain 22.5 % ω-5 monoenes ranging in chain length from C14 to C28. C16 to C26 saturates (18 %), C18 to C24 ω-9 monoenes (55 %), C18 diene (2.3 %) and C18 triene (0.7 %) make up the remainder of the acids.  相似文献   

17.
The 3′ half molecule of yeast tRNAAla (nucleotides 36–75) was hybridized with a DNA fragment (5′GGAATCGAACC 3′) and the hybrid was then digested withE. coli RNase H (from Boehringer). The enzyme can specifically cleave the 3′ half molecule at the 3′ side of nucleotide Ψ55, thus a fragment C3655 was prepared. The 3′-terminal T or TΨ of this fragment was removed by one or two cycles of periodate oxidation and β-elimination. The products were fragments C36-T54 and C36-G53. Three yeast tRNAAla fragments C56-A76, U55-A76 (with Ψ55 replaced by U), U54-A76 (with T54Ψ55 replaced by UU) were synthesized and ligated with three prepared fragments (C3655, C36-T54 and C36-G53) respectively by T4 RNA ligase. The products were further ligated with the 5′ half molecule (nu-cleotides 1–35). Using this method, one reconstituted yeast tRNAAla (tRNAr) and two yeast tRNAALa analogs: (i) tRNAa with U55 instead of Ψ55; (ii) tRNAb with U54U55 instead of T54Ψ55 were synthesized. The charging and incorporation activities of these three tRNAs were determined. In comparison with the reconstituted tRNA, the charging activity was 75% for tRNAa and 45% for tRNAb and the incorporation activity was 65% for tRNAa and 70% for tRNAb. These results suggest that the modified nucleotides T54 and Ψ55 play an important role in yeast tRNAAla function.  相似文献   

18.
A moderately thermophilic, strictly anaerobic, chemoautotrophic bacterium, designated strain HS1857T, was isolated from a deep-sea hydrothermal vent at the Noho site in the Mid-Okinawa Trough. Strain HS1857T grew between 35 and 63 °C (optimum 55 °C), in the presence of 10–55 g l?1 NaCl (optimum 25 g l?1), and pH 5.5–7.1 (optimum 6.4). Growth occurred with molecular hydrogen as the electron donor and elemental sulfur, nitrate, or selenate as the electron acceptors. Formate could serve as an alternative electron donor with nitrate as an electron acceptor. During growth with nitrate as the electron acceptor, strain HS1857T produced ammonium and formed a biofilm. CO2 was utilized as the sole carbon source. The G + C content of the genomic DNA was 33.2 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain HS1857T is a member of the order Nautiliales, showing a sequence similarity of 95.0% with Lebetimonas acidiphila Pd55T. The fatty acid composition was similar to that of L. acidiphila, which was dominated by C18:0 (47.0%) and C18:1 (23.7%). Based on the genomic, chemotaxonomic, phenotypic characteristics, the name Lebetimonas natsushimae sp. nov., is proposed. The type strain is HS1857T (= NBRC 112478T = DSM 104102T).  相似文献   

19.
The thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain VC-16 (DSM 4304), which is known to oxidize fatty acids and n-alkenes, was shown to oxidize saturated hydrocarbons (n-alkanes in the range C10–C21) with thiosulfate or sulfate as a terminal electron acceptor. The amount of n-hexadecane degradation observed was in stoichiometric agreement with the theoretically expected amount of thiosulfate reduction. One of the pathways used by anaerobic microorganisms to activate alkanes is addition to fumarate that involves alkylsuccinate synthase as a key enzyme. A search for genes encoding homologous enzymes in A. fulgidus identified the pflD gene (locus-tag AF1449) that was previously annotated as a pyruvate formate lyase. A phylogenetic analysis revealed that this gene is of bacterial origin and was likely acquired by A. fulgidus from a bacterial donor through a horizontal gene transfer. Based on three-dimensional modeling of the corresponding protein and molecular dynamic simulations, we hypothesize an alkylsuccinate synthase activity for this gene product. The pflD gene expression was upregulated during the growth of A. fulgidus on an n-alkane (C16) compared with growth on a fatty acid. Our results suggest that anaerobic alkane degradation in A. fulgidus may involve the gene pflD in alkane activation through addition to fumarate. These findings highlight the possible importance of hydrocarbon oxidation at high temperatures by A. fulgidus in hydrothermal vents and the deep biosphere.  相似文献   

20.
The degradation of xylan during methane fermentation proceeded as a first-order reaction. The rate constants were calculated to be 0.40–0.09 day–1 at 37° C and 0.341 day–1 at 55° C. From calculations based on the experimental data, K A and C A values in the expression of the velocity of xylose consumption changed as the fermentation progressed. In the mesophilic fermentation, the degradation of xylan slowed down after 2 days of incubation, but the rate of consumption of xylose increased between days 3 and 4 of incubation and slow again at the 5th day of incubation. In the thermophilic fermentation, the degradation of xylan proceeded at a constant rate and the rate of consumption of xylose increased slightly on the 3rd day of incubation. When the velocity of gas evolution was determined, the C G value for acetate at 55° C was about 1.8 times larger than the value at 37° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号