共查询到20条相似文献,搜索用时 0 毫秒
1.
The actin-based motility of the facultative intracellular pathogen Listeria monocytogenes 总被引:13,自引:2,他引:11
Summary
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular parasite that invades and multiplies within diverse eukaryotic cell types. An essential pathogenicity determinant is its ability to move in the host cell cytoplasm and to spread within tissues by directly passing from one cell to another. The propulsive force for intracellular movement is thought to be generated by continuous actin assembly at the rear end of the bacterium. Moving bacteria that reach the plasma membrane induce the formation of long membranous protrusions that are internalized by neighbouring cells, thus mediating the spread of infection. The unrelated pathogens Shigella and Rickettsia use a similar process of actin-based motility to disseminate in infected tissues. This review focuses on the bacterial and cellular factors involved in the actin-based motility of L monocytogenes. 相似文献
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular parasite that invades and multiplies within diverse eukaryotic cell types. An essential pathogenicity determinant is its ability to move in the host cell cytoplasm and to spread within tissues by directly passing from one cell to another. The propulsive force for intracellular movement is thought to be generated by continuous actin assembly at the rear end of the bacterium. Moving bacteria that reach the plasma membrane induce the formation of long membranous protrusions that are internalized by neighbouring cells, thus mediating the spread of infection. The unrelated pathogens Shigella and Rickettsia use a similar process of actin-based motility to disseminate in infected tissues. This review focuses on the bacterial and cellular factors involved in the actin-based motility of L monocytogenes. 相似文献
2.
Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility 总被引:7,自引:3,他引:4
Listeria monocytogenes is a Gram-positive facultative intracytoplasmic bacterial pathogen that exhibits rapid actin-based motility in eukaryotic cells and in cell-free cytoplasmic extracts. The protein product of the actA gene is required for bacterial movement and is normally expressed in a polarized fashion on the bacterial surface. Here we demonstrate that the ActA protein is sufficient to direct motility in the absence of other L. monocytogenes gene products, and that polarized localization of the protein is required for efficient unidirectional movement. We have engineered a fusion protein combining ActA with the C-terminal domain of the LytA protein of Streptococcus pneumoniae , which mediates high-affinity binding to DEAE-cellulose and to choline moieties present in the S. pneumoniae cell wall. DEAE-cellulose fragments or S. pneumoniae coated uniformly with the ActA/LytA fusion protein nucleate actin filament growth in cytoplasmic extracts, but do not move efficiently. However, when ActA/LytA-coated S. pneumoniae is grown to polarize the distribution of the fusion protein, the bacteria exhibit unidirectional actin-based movement similar to the normal movement of L. monocytogenes . 相似文献
3.
R C May M E Hall H N Higgs T D Pollard T Chakraborty J Wehland L M Machesky A S Sechi 《Current biology : CB》1999,9(14):759-762
Actin polymerisation is thought to drive the movement of eukaryotic cells and some intracellular pathogens such as Listeria monocytogenes. The Listeria surface protein ActA synergises with recruited host proteins to induce actin polymerisation, propelling the bacterium through the host cytoplasm [1]. The Arp2/3 complex is one recruited host factor [2] [3]; it is also believed to regulate actin dynamics in lamellipodia [4] [5]. The Arp2/3 complex promotes actin filament nucleation in vitro, which is further enhanced by ActA [6] [7]. The Arp2/3 complex also interacts with members of the Wiskott-Aldrich syndrome protein (WASP) [8] family - Scar1 [9] [10] and WASP itself [11]. We interfered with the targeting of the Arp2/3 complex to Listeria by using carboxy-terminal fragments of Scar1 that bind the Arp2/3 complex [11]. These fragments completely blocked actin tail formation and motility of Listeria, both in mouse brain extract and in Ptk2 cells overexpressing Scar1 constructs. In both systems, Listeria could initiate actin cloud formation, but tail formation was blocked. Full motility in vitro was restored by adding purified Arp2/3 complex. We conclude that the Arp2/3 complex is a host-cell factor essential for the actin-based motility of L. monocytogenes, suggesting that it plays a pivotal role in regulating the actin cytoskeleton. 相似文献
4.
Phosphoinositide 3-kinase is required for aldosterone-regulated sodium reabsorption 总被引:10,自引:0,他引:10
Blazer-Yost Bonnie L.; Helman Sandy I.; Lee Kimberly D.; Vlahos Chris J. 《American journal of physiology. Cell physiology》1999,277(3):C531
Aldosterone, a steroid hormone, regulates renalNa+ reabsorption and, therefore,plays an important role in the maintenance of salt and water balance.In a model renal epithelial cell line (A6) we have found thatphosphoinositide 3-kinase (PI 3-kinase) activity is required foraldosterone-stimulated Na+reabsorption. Inhibition of PI 3-kinase by the specific inhibitor LY-294002 markedly reduces both basal and aldosterone-stimulated Na+ transport. Further, one of theproducts of PI 3-kinase, phosphatidylinositol 3,4,5-trisphosphate, isincreased in response to aldosterone in intact A6 monolayers. Thisincrease occurs just before the manifestation of the functional effectof the hormone and is also inhibited by LY-294002. With the use ofblocker-induced noise analysis, it has been demonstrated thatinhibition of phosphoinositide formation causes an inhibition ofNa+ entry in both control andaldosterone-pretreated cultures by reducing the number of openfunctional epithelial Na+ channels(ENaCs) in the apical membrane of the A6 cells. These novelobservations indicate that phosphoinositides are required for ENaCexpression and suggest a mechanism for aldosterone regulation ofchannel function. 相似文献
5.
McGrath JL Eungdamrong NJ Fisher CI Peng F Mahadevan L Mitchison TJ Kuo SC 《Current biology : CB》2003,13(4):329-332
The intracellular movement of the bacterial pathogen Listeria monocytogenes has helped identify key molecular constituents of actin-based motility (recent reviews ). However, biophysical as well as biochemical data are required to understand how these molecules generate the forces that extrude eukaryotic membranes. For molecular motors and for muscle, force-velocity curves have provided key biophysical data to distinguish between mechanistic theories. Here we manipulate and measure the viscoelastic properties of tissue extracts to provide the first force-velocity curve for Listeria monocytogenes. We find that the force-velocity relationship is highly curved, almost biphasic, suggesting a high cooperativity between biochemical catalysis and force generation. Using high-resolution motion tracking in low-noise extracts, we find long trajectories composed exclusively of molecular-sized steps. Robust statistics from these trajectories show a correlation between the duration of steps and macroscopic Listeria speed, but not between average step size and speed. Collectively, our data indicate how the molecular properties of the Listeria polymerization engine regulate speed, and that regulation occurs during molecular-scale pauses. 相似文献
6.
Flagellar motility is critical for Listeria monocytogenes biofilm formation 总被引:2,自引:0,他引:2 下载免费PDF全文
The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined. 相似文献
7.
Frank Ebel Manfred Rohde Christoph von Eichel-Streiber Jürgen Wehland Trinad Chakraborty 《FEMS microbiology letters》1999,176(1):117-124
In this study, we analyzed whether the actin-based motility of intracellular Listeria monocytogenes is controlled by the small GTP-binding proteins of the Rho- and Ras-subfamilies. These signalling proteins are key regulatory elements in the control of actin dynamics and their activity is essential for the maintenance of most cellular microfilament structures. We used the Clostridium difficile toxins TcdB-10463 and TcdB-1470 to specifically inactivate these GTP-binding proteins. Treatment of eukaryotic cells with either of these toxins led to a dramatic breakdown of the normal actin cytoskeleton, but did not abrogate the invasion of epithelial cells by L. monocytogenes and had no effect on the actin-based motility of this bacterial parasite. Our data indicate that intracellular Listeria reorganize the actin cytoskeleton in a way that circumvents the control mechanisms mediated by the members of the Rho- and Ras-subfamilies that can be inactivated by the TcdB-10463 and TcdB-1470 toxins. 相似文献
8.
Studies of the actin-based motility of pathogens have provided important insights into the events occurring at the leading edge of motile cells [1] [2] [3]. To date, several actin-cytoskeleton-associated proteins have been implicated in the motility of Listeria or Shigella: vasodilator-stimulated phosphoprotein (VASP), vinculin and the actin-related protein complex of Arp2 and Arp3 [4] [5] [6] [7]. To further investigate the underlying mechanism of actin-tail assembly, we examined the localization of components of the actin cytoskeleton including Arp3, VASP, vinculin and zyxin during vaccinia, Listeria and Shigella infections. The most striking difference between the systems was that a phosphotyrosine signal was observed only at the site of vaccinia actin-tail assembly. Micro-injection experiments demonstrated that a phosphotyrosine protein plays an important role in vaccinia actin-tail formation. In addition, we observed a phosphotyrosine signal on clathrin-coated vesicles that have associated actin-tail-like structures and on endogenous vesicles in Xenopus egg extracts which are able to nucleate actin tails [8] [9]. Our observations indicate that a host phosphotyrosine protein is required for the nucleation of actin filaments by vaccinia and suggest that this phosphoprotein might be associated with cellular membranes that can nucleate actin. 相似文献
9.
10.
How does subcellular architecture influence the intracellular movements of large organelles and macromolecular assemblies? To investigate the effects of mechanical changes in cytoplasmic structure on intracellular motility, we have characterized the actin-based motility of the intracellular bacterial pathogen Listeria monocytogenes in normal mouse fibroblasts and in fibroblasts lacking intermediate filaments. The apparent diffusion coefficient of L. monocytogenes was two-fold greater in vimentin-null fibroblasts than in wild-type fibroblasts, indicating that intermediate filaments significantly restrict the Brownian motion of bacteria. However, the mean speed of L. monocytogenes actin-based motility was statistically identical in vimentin-null and wild-type cells. Thus, environmental drag is not rate limiting for bacterial motility. Analysis of the temporal variations in speed measurements indicated that bacteria in vimentin-null cells displayed larger fluctuations in speed than did trajectories in wild-type cells. Similarly, the presence of the vimentin meshwork influenced the turning behavior of the bacteria; in the vimentin-null cells, bacteria made sharper turns than they did in wild-type cells. Taken together, these results suggest that a network of intermediate filaments constrains bacterial movement and operates over distances of several microns to reduce fluctuations in motile behavior. 相似文献
11.
Bacterial shape and ActA distribution affect initiation of Listeria monocytogenes actin-based motility 下载免费PDF全文
We have examined the process by which the intracellular bacterial pathogen Listeria monocytogenes initiates actin-based motility and determined the contribution of the variable surface distribution of the ActA protein to initiation and steady-state movement. To directly correlate ActA distributions to actin dynamics and motility of live bacteria, ActA was fused to a monomeric red fluorescent protein (mRFP1). Actin comet tail formation and steady-state bacterial movement rates both depended on ActA distribution, which in turn was tightly coupled to the bacterial cell cycle. Motility initiation was found to be a highly complex, multistep process for bacteria, in contrast to the simple symmetry breaking previously observed for ActA-coated spherical beads. F-actin initially accumulated along the sides of the bacterium and then slowly migrated to the bacterial pole expressing the highest density of ActA as a tail formed. Early movement was highly unstable with extreme changes in speed and frequent stops. Over time, saltatory motility and sensitivity to the immediate environment decreased as bacterial movement became robust at a constant steady-state speed. 相似文献
12.
BACKGROUND: During vertebrate gastrulation, cell polarization and migration are core components in the cellular rearrangements that lead to the formation of the three germ layers, ectoderm, mesoderm, and endoderm. Previous studies have implicated the Wnt/planar cell polarity (PCP) signaling pathway in controlling cell morphology and movement during gastrulation. However, cell polarization and directed cell migration are reduced but not completely abolished in the absence of Wnt/PCP signals; this observation indicates that other signaling pathways must be involved. RESULTS: We show that Phosphoinositide 3-Kinases (PI3Ks) are required at the onset of zebrafish gastrulation in mesendodermal cells for process formation and cell polarization. Platelet Derived Growth Factor (PDGF) functions upstream of PI3K, while Protein Kinase B (PKB), a downstream effector of PI3K activity, localizes to the leading edge of migrating mesendodermal cells. In the absence of PI3K activity, PKB localization and cell polarization are strongly reduced in mesendodermal cells and are followed by slower but still highly coordinated and directed movements of these cells. CONCLUSIONS: We have identified a novel role of a signaling pathway comprised of PDGF, PI3K, and PKB in the control of morphogenetic cell movements during gastrulation. Furthermore, our findings provide insight into the relationship between cell polarization and directed cell migration at the onset of zebrafish gastrulation. 相似文献
13.
Listeria monocytogenes actin-based motility varies depending on subcellular location: a kinematic probe for cytoarchitecture 下载免费PDF全文
Intracellular Listeria monocytogenes actin-based motility is characterized by significant individual variability, which can be influenced by cytoarchitecture. L. monocytogenes was used as a probe to transmit information about structural variation among subcellular domains defined by mitochondrial density. By analyzing the movement of a large population of L. monocytogenes in PtK2 cells, we found that mean speed and trajectory curvature were significantly larger for bacteria moving in mitochondria-containing domains (generally perinuclear) than for bacteria moving in mitochondria-free domains (generally peripheral). Analysis of bacteria that traversed both mitochondria-containing and mitochondria-free domains revealed that these motile differences were not intrinsic to bacteria themselves. Disruption of mitochondrial respiration did not affect bacterial mean speed, speed persistence, or trajectory curvature. In contrast, microtubule depolymerization lead to decreased mean speed per bacterium and increased mean speed persistence of L. monocytogenes moving in mitochondria-free domains compared with untreated cells. L. monocytogenes were also observed to physically collide with mitochondria and push them away from the bacterial path of motion, causing bacteria to slow down before rapidly resuming their speed. Our results show that subcellular domains along with microtubule depolymerization may influence the actin cytoskeleton to affect L. monocytogenes speed, speed persistence, and trajectory curvature. 相似文献
14.
Tissue transglutaminase (TGase) is a dual function enzyme that couples an ability to bind GTP with transamidation activity. Retinoic acid (RA) consistently induces TGase expression and activation, and it was recently shown that increased TGase expression protected cells from apoptosis. To better understand how RA regulates TGase, we considered whether RA employed pro-survival signaling pathways to mediate TGase expression and activation. It was found that RA stimulation of NIH3T3 cells activated ERK and phosphoinositide 3-kinase (PI3K); however, only PI3K activation was necessary for RA-induced TGase expression. The overexpression of a constitutively active form of PI3K did not induce TGase expression, indicating that PI3K signaling was necessary but not sufficient for TGase expression. The exposure of cells expressing exogenous TGase to the PI3K inhibitor, LY294002, reduced the ability of TGase to be photoaffinity-labeled with [alpha-(32)P]GTP, providing evidence that PI3K regulates the GTP binding activity of TGase as well as its expression. Moreover, cell viability assays showed that incubation of RA-treated cells with LY294002 together with the TGase inhibitor, monodansylcadaverine (MDC), converted RA from a differentiation factor to an apoptotic stimulus. These findings demonstrate that PI3K activity is required for the RA-stimulated expression and GTP binding activity of TGase, thereby linking the up-regulation of TGase with a well established cell survival factor. 相似文献
15.
We have examined the effect of covalently crosslinked profilin–actin (PxA), which closely matches the biochemical properties of ordinary profilin–actin and interferes with actin polymerization in vitro and in vivo, on Listeria monocytogenes motility. PxA caused a marked reduction in bacterial motility, which was accompanied by the detachment of bacterial tails. The effect of PxA was dependent on its binding to proline-rich sequences, as shown by the inability of PH133SxA, which cannot interact with such sequences, to impair Listeria motility. PxA did not alter the motility of a Listeria mutant that is unable to recruit Ena (Enabled)/VASP (vasodilator-stimulated phosphoprotein) proteins and profilin to its surface. Finally, PxA did not block the initiation of actin-tail formation, indicating that profilin–actin is only required for the elongation of actin filaments at the bacterial surface. Our findings provide further evidence that profilin–actin is important for actin-based processes, and show that it has a key function in Listeria motility. 相似文献
16.
Laurent V Loisel TP Harbeck B Wehman A Gröbe L Jockusch BM Wehland J Gertler FB Carlier MF 《The Journal of cell biology》1999,144(6):1245-1258
Intracellular propulsion of Listeria monocytogenes is the best understood form of motility dependent on actin polymerization. We have used in vitro motility assays of Listeria in platelet and brain extracts to elucidate the function of the focal adhesion proteins of the Ena (Drosophila Enabled)/VASP (vasodilator-stimulated phosphoprotein) family in actin-based motility. Immunodepletion of VASP from platelet extracts and of Evl (Ena/VASP-like protein) from brain extracts of Mena knockout (-/-) mice combined with add-back of recombinant (bacterial or eukaryotic) VASP and Evl show that VASP, Mena, and Evl play interchangeable roles and are required to transform actin polymerization into active movement and propulsive force. The EVH1 (Ena/VASP homology 1) domain of VASP is in slow association-dissociation equilibrium high-affinity binding to the zyxin-homologous, proline-rich region of ActA. VASP also interacts with F-actin via its COOH-terminal EVH2 domain. Hence VASP/ Ena/Evl link the bacterium to the actin tail, which is required for movement. The affinity of VASP for F-actin is controlled by phosphorylation of serine 157 by cAMP-dependent protein kinase. Phospho-VASP binds with high affinity (0.5 x 10(8) M-1); dephospho-VASP binds 40-fold less tightly. We propose a molecular ratchet model for insertional polymerization of actin, within which frequent attachment-detachment of VASP to F-actin allows its sliding along the growing filament. 相似文献
17.
Phosphoinositide 3-kinase activation in late G1 is required for c-Myc stabilization and S phase entry 下载免费PDF全文
Phosphoinositide 3-kinase (PI3K) is one of the early-signaling molecules induced by growth factor (GF) receptor stimulation that are necessary for cell growth and cell cycle entry. PI3K activation occurs at two distinct time points during G(1) phase. The first peak is observed immediately following GF addition and the second in late G(1), before S phase entry. This second activity peak is essential for transition from G(1) to S phase; nonetheless, the mechanism by which this peak is induced and regulates S phase entry is poorly understood. Here, we show that activation of Ras and Tyr kinases is required for late-G(1) PI3K activation. Inhibition of late-G(1) PI3K activity results in low c-Myc and cyclin A expression, impaired Cdk2 activity, and reduced loading of MCM2 (minichromosome maintenance protein) onto chromatin. The primary consequence of inhibiting late-G(1) PI3K was c-Myc destabilization, as conditional activation of c-Myc in advanced G(1) as well as expression of a stable c-Myc mutant rescued all of these defects, restoring S phase entry. These results show that Tyr kinases and Ras cooperate to induce the second PI3K activity peak in G(1), which mediates initiation of DNA synthesis by inducing c-Myc stabilization. 相似文献
18.
19.
The Gram-positive pathogen Listeria monocytogenes induces its own internalization into some non-phagocytic mammalian cells by stimulating host tyrosine phosphorylation, phosphoinositide (PI) 3-kinase activity, and rearrangements in the actin cytoskeleton. Entry into many cultured cell lines is mediated by the bacterial protein InlB. Here we investigate the role of InlB in regulating mammalian signal transduction and cytoskeletal structure. Treatment of Vero cells with purified InlB caused rapid and transient increases in the lipid products of the PI 3-kinase p85-p110, tyrosine phosphorylation of the mammalian adaptor proteins Gab1, Cbl, and Shc, and association of these proteins with p85. InlB also stimulated large scale changes in the actin cytoskeleton (membrane ruffling), which were PI 3-kinase-dependent. These results identify InlB as the first reported non-mammalian agonist of PI 3-kinase and demonstrate similarities in the signal transduction events elicited by this bacterial protein and known agonists such as epidermal growth factor. 相似文献
20.
Nguyen BT Yang L Sanborn BM Dessauer CW 《Molecular endocrinology (Baltimore, Md.)》2003,17(6):1075-1084
The G protein-coupled receptors LGR7 and LGR8 have recently been identified as the primary receptors for the polypeptide hormone relaxin and relaxin-like factors. RT-PCR confirmed the existence of mRNA for both LGR7 and LRG8 in THP-1 cells. Whole cell treatment of THP-1 cells with relaxin produced a biphasic time course in cAMP accumulation, where the first peak appeared as early as 1-2 min with a second peak at 10-20 min. Selective inhibitors for phosphoinositide 3-kinase (PI3K), such as wortmannin and LY294002, showed a dose-dependent inhibition of relaxin-mediated increases in cAMP, specific for the second peak of the relaxin time course. Adenylyl cyclase activation by relaxin in purified plasma membranes from THP-1 cells was not inhibited by LY294002, consistent with a mechanism involving direct stimulation by a Galphas-coupled relaxin receptor. However, reconstitution of membranes with cytosol from THP-1 cells enhanced adenylyl cyclase activity and restored LY294002 sensitivity. In addition, relaxin increased PI3K activity in THP-1 cells. Neither the effects of relaxin nor the inhibition of relaxin by LY294002 was mediated by the activity of phosphodiesterases. Taken together, we show that PI3K is required for the biphasic stimulation of cAMP by relaxin in THP-1 cells and present a novel signal transduction pathway for the activation of adenylyl cyclase by a G protein-coupled receptor. 相似文献