首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本试验旨在探究普安银鲫(Carassius auratus )卵黄囊仔鱼发育过程中ACC、FAS及CPT I活性变化及葡萄糖和维生素C溶液分别浸泡对它们的影响。采用酶学方法研究了普安银鲫卵黄囊仔鱼过程中ACC、FAS及CPT I活性变化的变化特点。结果显示:在卵黄囊仔鱼发育过程中,对照组与维生素C组中ACC和FAS活性呈上升趋势,CPT I活性呈“下降-上升”变化趋势,而葡萄糖组ACC、FAS及CPT I活性均呈上升趋势,且3种酶的活性均显著高于对照组(P<0.05)。维生素C组ACC活性在内源营养期显著高于对照组,FAS活性在混合营养期和外源营养期显著高于对照组,CPT I活性在内源营养期和外源营养期显著高于对照组(P<0.05)。研究表明:ACC、FAS及CPT I在维持普安银鲫卵黄囊仔鱼发育中脂质代谢的动态平衡起着重要作用,15g/L的葡萄糖溶液可通过调节仔鱼体内脂质代谢酶的活性而形成新的脂质代谢水平,以满足仔鱼生长发育需要;而30mg/L的维生素C对维持仔鱼发育中体内正常的脂质代谢具有重要作用。  相似文献   

2.
The hormonal regulation of two regulatory enzymes of fatty acid synthesis acetyl-CoA carboxylase (EC 6.4.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49), has been investigated in human diploid fibroblasts. There was a 35% increase in acetyl-CoA carboxylase activity, 72 h following addition of 10 microU/ml insulin to the culture medium. Addition of 1 microgram/ml of 3,3'5-triiodothyronine for 72 h resulted in an increase in acetyl-CoA carboxylase activity to 166% of the controls. The simultaneous addition of 1 microgram/ml triiodothyronine and 10 mU/ml insulin caused the enzyme activity to rise to 240% of the controls. A dose-dependent reduction in acetyl-CoA carboxylase activity was brought about by 1 X 10(-4) to 1 X 10(-3) M dibutyryl cyclic AMP. The earliest effect of dibutyryl cyclic AMP was observed within 24 h. Glucose-6-phosphate dehydrogenase followed qualitatively the same pattern of response, whereas the constitutive enzyme, lactate dehydrogenase (EC 1.1.1.27), did not show significant changes in these experiments. The data demonstrate common features of hormonal regulation of lipogenesis in human fibroblasts with liver and adipose tissue and substantiate the growing evidence that thyroid hormones are of major importance for the regulation of this process.  相似文献   

3.
UDPglucose pyrophosphorylase activity was detected in cell-free extracts of the diatom Cyclotella cryptica TI3L Reimann, Lewin and Guillard. When assayed in the direction of UDPglucose formation, the enzyme had maximal activity at pH 7.8 and was stimulated by Mg2+and Mn2+ions. 3-Phosphoglycerate and inorganic phosphate had little effect on enzymatic activity, and the enzyme was relatively insensitive to feedback inhibition from UDPglucose (K, > I millimolar). A glucan was formed from UDP-[14C]glucose in cell-free extracts of C. cryptica. This glucan had a median molecular weight of 4600 (as determined by gel filtration chromatograbhy) and could be hydrolyzed by laminarinase. Partial acid hydrolysis of the glucan resulted in the formation of glucose and laminaribiose. but not cellobiose. These results suggest that the synthesis of chrysolaminarin (the major storage carbohydrate of diatoms) occurs via the activity of UDPglucose pyrophosphorylase. followed by glucosyl transfer from UDPglucose to the growing β-(1–3)-linked glucan.  相似文献   

4.
The zonal distribution within rat liver of acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthase, the principal enzymes of fatty acid synthesis, was investigated by using dual-digitonin-pulse perfusion. Analysis of enzyme mass by immunoblotting revealed that, in normally feeding male rats, the periportal/perivenous ratio of acetyl-CoA carboxylase mass was 1.9. The periportal/perivenous ratio of ATP citrate-lyase mass was 1.4, and fatty acid synthase exhibited the largest periportal/perivenous mass gradient, having a ratio of 3.1. This pattern of enzyme distribution was observed in male rats only; in females, the periportal/perivenous ratio of enzyme mass was nearly equal. The periportal/perivenous gradients for acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthase observed in fed (and fasted) males were abolished when animals were fasted (48 h) and refed (30 h) with a high-carbohydrate/low-fat diet. As determined by enzyme assay of eluates obtained from the livers of normally feeding male rats, there is also periportal zonation of acetyl-CoA carboxylase activity, expressed either as units per mg of eluted protein or units per mg of acetyl-CoA carboxylase protein, suggesting the existence of gradients in both enzyme mass and specific activity. From these results, we conclude that the enzymes of fatty acid synthesis are zonated periportally in the liver of the normally feeding male rat.  相似文献   

5.
Measurement of acetyl-CoA carboxylase activity in isolated hepatocytes   总被引:7,自引:0,他引:7  
An assay is described for acetyl-CoA carboxylase activity in isolated hepatocytes. The assay is based on two principles: The hepatocytes are made permeable by digitonin. 64 micrograms of digitonin per mg of cellular protein were most effective in exposing enzyme activity without a significant effect on mitochondrial permeability. Enzyme activity is measured by coupling the carboxylase reaction to the fatty acid synthase reaction. The advantages offered by this procedure over existing assays are: rapidity, no need to prepare cell extracts, absence of product inhibition, no interference by mitochondrial enzymes, useful in systems with bicarbonate buffers, and simple separation of radioactive substrate from labelled products. Using this coupled enzyme assay a good correlation was observed between changes in the activity of acetyl-CoA carboxylase and changes in the rate of fatty acid synthesis in hepatocytes as effected by short-term modulators.  相似文献   

6.
The aim of this work was to determine the relative contributions of ADPglucose and UDPglucose to starch synthesis in two non-photosynthetic tissues, the developing club of the spadix of Arum maculatum and suspension cultures of Glycine max. Rates of starch accumulation during growth are compared with estimates of the maximum catalytic activities in vitro of ADPglucose starch synthase, ADPglucose pyrophosphorylase, UDPglucose pyrophosphorylase and UDPglucose starch synthase. The latter could only be measured at high concentrations (10–30 mM) of UDPglucose. Clubs of Arum and cells of Glycine contained 292 and 6.8 nmol UDPglucose per gram fresh weight, respectively. The corresponding figures for ADPglucose were 29 and 0.4. From the above data it is argued that in both Arum club and Glycine cells the activity of UDPglucose starch synthase is too low to make any quantitatively significant contribution to starch synthesis. The activities of ADPglucose starch synthase and pyrophosphorylase were high enough to mediate the observed rates of starch accumulation. It is suggested that starch synthesis in these tissues is via ADPglucose.  相似文献   

7.
The role of biotin-dependent enzymes in the fatty liver and kidney syndrome of young chicks was studied. Under conditions of a marginal deficiency of dietary biotin, the level of biotin in the liver has differing effects on the activities of two biotin-dependent enzymes, pyruvate carboxylase and acetyl-CoA carboxylase. The activity of acetyl-CoA carboxylase is increased, but when the dietary deficiency of biotin produces biotin levels which are below 0-8 mug/g of liver, the activity of pyruvate carboxylase may be insufficient to completely metabolize pyruvate via gluconeogenesis. There is an increase in liver size and in the activities of enzymes involved in alternate pathways for the removal of pyruvate. Blood lactate accumulates and there is increased synthesis of fatty acids, and an accumulation of palmitoleic acid; these steps are accomplished by increased activities of at least the following enzymes: acetyl-CoA carboxylase, malate dehydrogenase (decarboxylating) (NADP+) and the desaturase enzyme. When the biotin level is below 0-35 mug/g of liver and the chick is subjected to a stress, physiological defence mechanisms of the chick may be inadequate to maintain homeostasis and they finally collapse, resulting in accumulation of triacylglycerol in the liver and blood; the chick is unable to maintain blood glucose levels and death occurs, often only a few hours after the imposition of the stress.  相似文献   

8.
Changes in the activities of acetyl-CoA carboxylase and HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase were studied in primary cultures of adult-rat hepatocytes after exposure of the cells to insulin and/or carbohydrates. To determine the contribution of protein synthesis to changes in enzyme activity, the relative rate of synthesis of each enzyme was measured and the amount of translatable mRNA coding for the enzymes was determined by translation in vitro and immunoprecipitation. Addition of insulin to the culture medium increased the activities of acetyl-CoA carboxylase and HMG-CoA reductase by approx. 4- and 3-fold respectively. Although similar increases in the relative rate of synthesis of each protein and template activity were noted, initial increases in the activity of each enzyme occurred before any changes in protein synthesis were observed, suggesting the involvement of post-translational modification of enzyme activity in addition to changes in protein synthesis. The addition of fructose to the culture medium, in the absence of insulin, increased the activity of the carboxylase and the reductase approx. 3-fold, similar to the effects of insulin. However, the effect of fructose was to increase the rate of synthesis and the amount of translatable mRNA coding for acetyl-CoA carboxylase, whereas the increase in the activity of HMG-CoA reductase was not accompanied by any changes in the rate of synthesis or template activity. The effects of fructose could not be mimicked by glucose unless insulin was also present in the culture medium. Similar to observations in vitro, the injection of insulin or the feeding of a high-fructose diet to rats made diabetic by the injection of streptozotocin produced an increase in the activities of acetyl-CoA carboxylase and HMG-CoA reductase, and only the increase in the activity of the carboxylase was accompanied by an increase in the amount of translatable mRNA coding for the enzyme. The results are discussed in terms of the effects of fructose on the synthesis of enzymes involved in lipogenesis.  相似文献   

9.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

10.
Acetyl-CoA Carboxylase 1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, the committed step of de novo fatty acid synthesis. As a master regulator of lipid synthesis, acetyl-CoA carboxylase 1 has been proposed to be a therapeutic target for numerous metabolic diseases. We have shown that acetyl-CoA carboxylase 1 activity is reduced in the absence of the lysine acetyltransferase NuA4 in Saccharomyces cerevisiae. This change in acetyl-CoA carboxylase 1 activity is correlated with a change in localization. In wild-type cells, acetyl-CoA carboxylase 1 is localized throughout the cytoplasm in small punctate and rod-like structures. However, in NuA4 mutants, acetyl-CoA carboxylase 1 localization becomes diffuse. To uncover mechanisms regulating acetyl-CoA carboxylase 1 localization, we performed a microscopy screen to identify other deletion mutants that impact acetyl-CoA carboxylase 1 localization and then measured acetyl-CoA carboxylase 1 activity in these mutants through chemical genetics and biochemical assays. Three phenotypes were identified. Mutants with hyper-active acetyl-CoA carboxylase 1 form 1 or 2 rod-like structures centrally within the cytoplasm, mutants with mid-low acetyl-CoA carboxylase 1 activity displayed diffuse acetyl-CoA carboxylase 1, while the mutants with the lowest acetyl-CoA carboxylase 1 activity (hypomorphs) formed thick rod-like acetyl-CoA carboxylase 1 structures at the periphery of the cell. All the acetyl-CoA carboxylase 1 hypomorphic mutants were implicated in sphingolipid metabolism or very long-chain fatty acid elongation and in common, their deletion causes an accumulation of palmitoyl-CoA. Through exogenous lipid treatments, enzyme inhibitors, and genetics, we determined that increasing palmitoyl-CoA levels inhibits acetyl-CoA carboxylase 1 activity and remodels acetyl-CoA carboxylase 1 localization. Together this study suggests yeast cells have developed a dynamic feed-back mechanism in which downstream products of acetyl-CoA carboxylase 1 can fine-tune the rate of fatty acid synthesis.  相似文献   

11.
1. The activity of acetyl-CoA carboxylase (EC 6.4.1.2) in extracts of freeze-clamped liver samples from fed or 24 h-starved virgin, pregnant, lactating and weaned rats was measured (i) immediately after preparation of extracts (;I activity'), (ii) after incubation of extracts with partially purified preparations of either rabbit muscle protein phosphatase 1 [Antoniw, Nimmo, Yeaman & Cohen (1977) Biochem. J.162, 423-433] or rabbit liver phosphatase [Brandt, Capulong & Lee (1975) J. Biol. Chem.250, 8038-8044] (;A activity') and (iii) after incubation with 20mm-potassium citrate before or after incubation with phosphatases (;C activity'). 2. Incubation of liver extracts at 30 degrees C without any additions resulted in activation of acetyl-CoA carboxylase that was shown to be due to dephosphorylation of the enzyme by endogenous protein phosphatase activity. This latter activity was not stimulated by Ca(2+) and/or Mg(2+) but was stimulated by 1 mm-Mn(2+). Incubation of extracts with either of the partially purified phosphatases (0.2-0.5 unit) resulted in faster dephosphorylation and activation. The activity achieved after incubation with either of the exogenously added phosphatases was similar. 3. The A and C activities increased during late pregnancy, were lower than in the virgin rat liver during early lactation and increased by 2-fold in liver of mid-lactating rats. Weaning of mid-lactating rats for 24 h resulted in no change in A and C activities but after 48 h weaning they were significantly lower than those in livers from suckled mothers. 4. The I activity followed a similar pattern of changes as the A and C activities during pregnancy and lactation such that, although the I/A and I/C activity ratios tended to be lower during late pregnancy and early lactation, there were no significant changes in I/A and I/C ratios between lactating and virgin animals. However, these ratios were significantly higher in liver from fed 24 h-weaned animals. 5. Starvation (24 h) resulted in a marked decrease in I activity for all animals studied except early-lactating rats. This was due to a combination of a decrease in the concentration of acetyl-CoA carboxylase in liver of starved animals (A and C activities) and a decrease in the fraction of the enzyme in the active form (lower I/C and I/A ratios). The relative importance of the two forms of regulation in mediating the starvation-induced fall in I activity was about equal in livers of virgin, pregnant and lactating animals. However, the decrease in I/A and I/C ratios was of dominating importance in livers of weaned animals. The A/C activity ratios were the same for livers from all animals studied. 6. The maximal activity of fatty acid synthase was also measured in livers and was highly and positively correlated with the A and C activities of acetyl-CoA carboxylase, suggesting that the concentrations of the two enzymes in the liver were controlled coordinately. 7. It is suggested that the lack of correlation between plasma insulin levels and rates of lipogenesis in the transition from the virgin to the lactating state may be explained by different effects of insulin and prolactin on the concentration of acetyl-CoA carboxylase in the liver and on the fraction of the enzyme in the active form.  相似文献   

12.
1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.  相似文献   

13.
1. Measurements have been made of the activities of acyl-CoA dehydrogenase, enoyl-CoA hydratase, beta-hydroxyacyl-CoA dehydrogenase and ketothiolase in the livers of rats treated for either 12hr. or 3 days with pituitary growth hormone. 2. There was a significant increase in the activity of acyl-CoA dehydrogenase in rats treated with the hormone for 3 days. 3. Measurements were also made of the lipogenic enzymes acetyl-CoA carboxylase and palmitate synthase in the livers of similarly treated animals. 4. There was a depression of the activity of both enzymes after 12hr. treatment and a further decline after 3 days. 5. The results are discussed in relation to the known increase in the rate of fatty acid oxidation and inhibition of fatty acid synthesis in rats treated with growth hormone.  相似文献   

14.
The activities of lipogenic enzymes, such as acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase, and glycerolipid synthesis increased significantly in mammary explants of 11-day-pseudopregnant rabbits in response to prolactin, in the presence of near-physiological concentrations of insulin and corticosterone in culture. Increasing the concentration of progesterone in culture resulted in suppression of glycerolipid synthesis and activities of acetyl-CoA carboxylase and fatty acid synthetase, but not the pentose phosphate dehydrogenases. However, at near-physiological concentration of progesterone, only acetyl-CoA carboxylase activity was decreased. Injection of prolactin intraductally into 11-day-pseudopregnant rabbits stimulated glycerolipid synthesis, fatty acid synthesis and enzymes involved in fatty acid synthesis, after 3 days. Intraductal injection of progesterone separately or together with prolactin had no significant effect on basal or stimulated lipogenesis in mammary glands. Intramuscular injection of progesterone at 10 mg/day did not suppress fatty acid synthesis stimulated when prolactin was injected intraductally, but a significant inhibition was observed at a higher dose (80 mg/day).  相似文献   

15.
Initiation of lipogenic enzyme activities in rat mammary glands.   总被引:13,自引:3,他引:10       下载免费PDF全文
The activities of acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthetase remained low until parturition at 22 days of gestation and increased significantly within 1 day post partum. Administration of progesterone on days 20 and 21 and at parturition abolished the increases for at least 48 h after parturition. Removal of the pups of normal rats prevented the increases in activities of acetyl-CoA carboxylase and ATP citrate-lyase, but not of fatty acid synthetase, and administration of prolactin corticosterone or insulin did not stimulate activity. Tissue from suckled glands in which the ducts had been ligated at parturition showed no increase in the activities of acetyl-CoA carboxylase and ATP citrate-lyase within 24 h, whereas fatty acid synthetase activity was similar to that in the sham-operated contralateral glands. Foetoplacentectomy on day 18 increased the activity of fatty acid synthetase but not of acetyl-CoA carboxylase and ATP citrate-lyase; suckling of these dams by foster pups increased both acetyl-CoA carboxylase and ATP citrate-lyase.  相似文献   

16.
Conditioned medium from Reuber H-35 or Fao hepatoma cells contains autocrine factors that both stimulate DNA synthesis and activate acetyl-coenzyme A (CoA) carboxylase in serum-deprived Fao cells. The factor(s), which appears within 4 h of serum-free culture, also increases the cell number and the mitotic index. The effects of the conditioned medium are insulinomimetic, both with respect to stimulation of DNA synthesis and acetyl-CoA carboxylase activity. However, no induction of tyrosine aminotransferase activity or stimulation of aminoisobutyric acid uptake is seen in response to the conditioned medium. Insulin over a 4-h period does not increase the concentration of DNA synthesis stimulating activity that is observed in the medium. This activity is dialyzable and is resistant to acid treatment or to heating to 60-100 degrees C and to trypsin digestion; it is not extracted with chloroform/methanol nor adsorbed by charcoal or by a C18 reverse-phase column. Fractionation of the conditioned medium derived from Reuber H-35 hepatoma cells by gel filtration chromatography reveals two low molecular weight (less than 1000) compounds that both stimulate DNA synthesis in Fao hepatoma cells. The larger compound (peak I) also stimulates the activity of acetyl-CoA carboxylase. The stimulatory effects of the peak I compound are destroyed by nitrous acid deamination, periodate oxidation, and methanolysis. Biosynthetic labeling studies indicate the probable presence of glucosamine, galactose, and perhaps phosphate in the peak I-activating material. No significant incorporation of either myoinositol or mannose into the active material has been observed. These data, taken together, are consistent with a glycan structure for this autocrine factor, which bears strong resemblance to similar insulinomimetic factors generated in BC3H1 myocytes and H-35 hepatoma cells in response to insulin and on digestion of membranes with a phosphatidylinositol-specific phospholipase C. Further characterization of this factor may provide insight into different pathways of insulin action and could provide a strategy to check autocrine-stimulated tumor growth.  相似文献   

17.
Fasted (48 h) rats were killed at 0, 2, 4, 6, 8, 12, 16, 20 and 24 h after they were refed on a high-carbohydrate diet. An increase in the maximal activity and quantity of cystolic acetyl-CoA carboxylase was found in liver of refed rats after a lag time of about 8 h. The increased quantity of cytosolic enzyme was attributable primarily to mobilization of mitochondrial storage forms and not to substantial increase in the rate of synthesis of acetyl-CoA carboxylase.  相似文献   

18.
Acetyl-CoA carboxylase activity was measured in digitonin-permeabilized rat hepatocytes by coupling the carboxylase reaction to the fatty acid synthase reaction. Using this assay the activity of acetyl-CoA carboxylase was covariant with the rate of fatty acid synthesis. Insulin and the tumor promotor phorbol myristate acetate were found to stimulate, and glucagon and noradrenaline to inhibit both cellular parameters. The stimulation of acetyl-CoA carboxylase by insulin developed slowly (15 to 30 min) whereas the phorbol myristate acetate effect developed faster (within 15 min). The inhibition of the enzyme caused by glucagon was already apparent within 1 min after hormone addition. Inhibition by noradrenaline, in the presence of propranolol, was also quite rapid and occurred within 2 min after addition of the agonist.  相似文献   

19.
The activities of two lipogenic enzymes, acetyl-CoA carboxylase and fatty acid synthase, were determined in two transplantable mammary adenocarcinomas (13762 and R3230AC) carried by non-pregnant, pregnant and lactating rats, and in mammary tissue of control animals (non-tumour-carrying) of comparable physiological states. During mammary-gland differentiation of control or tumour-carrying animals, the activities of acetyl-CoA carboxylase and fatty acid synthase in the lactating gland increased by about 40--50-fold over the values found in non-pregnant animals. On the other hand, in tumours carried by lactating dams there were only modest increases (1.5--2-fold) in acetyl-CoA carboxylase and fatty acid synthase compared with the neoplasms carried by non-pregnant animals. On the basis of the Km values for different substrates and immunodiffusion and immunotitration data, the fatty acid synthase of neoplastic tissues appeared to be indistinguishable from the control mammary-gland enzyme. However, a comparison of the immunotitration and immunodiffusion experiments indicated that the mammary-gland acetyl-CoA carboxylase might differ from the enzyme present in mammary neoplasms.  相似文献   

20.
We measured acetyl-CoA carboxylase mRNA levels in various tissues of the rat under different nutritional and hormonal states using a cDNA probe. We surveyed physiological conditions which are known to alter carboxylase activity, and thus fatty acid synthesis, to determine whether changes in the levels of carboxylase mRNA are involved. The present studies include the effects of fasting and refeeding, diabetes and insulin, and lactation on carboxylase mRNA levels. Northern blot analysis of liver RNA revealed that fasting followed by refeeding animals a fat-free (high carbohydrate) diet dramatically increased the amount of carboxylase mRNA compared to the fasted condition. These changes in the level of mRNA correspond to changes in the activity and amount of acetyl-CoA carboxylase. Acetyl-CoA carboxylase mRNA levels in epididymal fat tissue decreased upon fasting and increased to virtually normal levels after 72 h of refeeding, closely resembling the liver response. The amount of acetyl-CoA carboxylase mRNA decreased markedly in epididymal fat tissue of diabetic rats as compared to nondiabetic animals. However, 6 h after injection of insulin the mRNA level returned to that of the nondiabetic animals. Gestation and lactation also affected the levels of carboxylase mRNA in both liver and mammary gland. Maximum induction in both tissues occurred 5 days postpartum. These studies suggest that these diverse physiological conditions affect fatty acid synthesis in part by altering acetyl-CoA carboxylase gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号