首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
pJW566是从丹麦乳酪生产菌株Lactococcus lactis subsp.cremoris W56中分离到的,一个22.4kb,具有限制和修饰作用的质粒,内切酶ClaⅠ和pJW566不完全消化,所得片段与来自于质粒pVC5的氯霉素抗性基因连接得到一个携带有完整限制和修饰酶基因的质粒pJK1。基因亚克隆分析发现该基因位于约5kb的Sph0Ⅰ-Hin dⅢDNA片段上。序列分析表明该片段包含一个4572bp的开放阅读框架、编码一个由1576/1584个氨基酸残基组成的蛋白质,该基因命名为Lla BⅢ。蛋白质同源性查询发现在该蛋白的N-末端有7个保守区域,与R/M系统Ⅰ型和Ⅲ型内切酶有较高同源性,在蛋白的中间区域有4个代表N^6-腺苷酰甲基转移酶的特征序列,而蛋白的C-末端不同于任何已知蛋白。这种具有限制、修饰和可能的DNA识别作用的多功能蛋白,可能是一新的R/M系统。  相似文献   

2.
Three genes coding for a type I R-M system related to the class C enzymes have been identified on the chromosome of Lactococcus lactis strain IL1403. In addition, plasmids were found that encode only the HsdS subunit that directs R-M specificity. The presence of these plasmids in IL1403 conferred a new R-M phenotype on the host, indicating that the plasmid-encoded HsdS is able to interact with the chromosomally encoded HsdR and HsdM subunits. Such combinational variation of type I R-M systems may facilitate the evolution of their specificity and thus reinforce bacterial resistance against invasive foreign unmethylated DNA.  相似文献   

3.
4.
AIMS: To study the ability of the plasmid-encoded restriction and modification (R/M) system LlaAI to function as a bacteriophage resistance mechanism in Lactococcus lactis during milk fermentations. METHODS AND RESULTS: Plasmid pAIcat4, carrying the R/M system LlaAI and a chloramphenicol resistance cassette, was introduced into the plasmid-free strain L. lactis MG1614 and the industrial strain L. lactis 964. By measuring changes in conductivity the influence of different phage on the growth was determined. CONCLUSIONS: The plasmid-encoded R/M system LlaAI significantly improves the bacteriophage resistance of L. lactis during milk fermentations. SIGNIFICANCE AND IMPACT OF THE STUDY: It is essential to determine the potential of a phage defence mechanism in L. lactis starter culture strains during growth in milk before steps are taken to improve starter cultures. This study shows that LlaAI is useful for improvement of starter cultures.  相似文献   

5.
Four plasmids encoding restriction and modification (R/M) systems are described that are different in the specificity of their restrictive activity toward the small isometric phage p2 and prolate phage c2. The R/M plasmids were cotransformed into Lactococcus lactis MG1363 with pVS2, encoding resistance to chloramphenicol and erythromycin, to indicate successful transformation events. Analysis of cotransformants showed that three different R/M plasmids could be combined in L. lactis MG1363. The efficiency at which phage plaqued on the transformants decreased as the number of R/M plasmids increased. Some plasmid combinations were unstable suggesting replicon incompatibility.  相似文献   

6.
We present here the results of an exploration of the bacteriophage content of dairy wheys collected from milk plants localized in various regions of Poland. Thirty-three whey samples from 17 regions were analyzed and found to contain phages active against L. lactis strains. High phage titer in all whey samples suggested phage-induced lysis to be the main cause of fermentation failures. In total, over 220 isolated phages were examined for their restriction patterns, genome sizes, genetic groups of DNA homology, and host ranges. Based on DNA digestions the identified phages were classified into 34 distinct DNA restriction groups. Phage genome sizes were estimated at 14-35 kb. Multiplex PCR analysis established that the studied phages belong to two out of the three main lactococcal phage types--c2 and 936, while P335-type phages were not detected. Yet, analyses of bacterial starter strains revealed that the majority of them are lysogenic and carry prophages of P335-type in their chromosome. Phage geographical distribution and host range are additionally discussed.  相似文献   

7.
Aims: Characterization of four virulent Lactococcus lactis phages (CHD, QF9, QF12 and QP4) isolated from whey samples obtained from Argentinean cheese plants. Methods and Results: Phages were characterized by means of electron microscopy, host range and DNA studies. The influence of Ca2+, physiological cell state, pH and temperature on cell adsorption was also investigated. The double‐stranded DNA genomes of these lactococcal phages showed distinctive restriction patterns. Using a multiplex PCR, phage QP4 was classified as a member of the P335 polythetic species while the three others belong to the 936 group. Ca2+ was not needed for phage adsorption but indispensable to complete cell lysis by phage QF9. The lactococci phages adsorbed normally between pH 5 and pH 8, and from 0°C to 40°C, with the exception of phage QF12 which had an adsorption rate significantly lower at pH 8 and 0°C. Conclusions: Lactococcal phages from Argentina belong to the same predominant groups of phages found in other countries and they have the same general characteristics. Significance and Impact of the Study: This work is the first study to characterize Argentinean L. lactis bacteriophages.  相似文献   

8.
Abstract Streptococcus lactis subsp. cremoris W56 ( S. cremoris W56) is a strain partially resistant to phage attack. Derivatives which had lost either plasmid pJW563 or pJW566 no longer expressed the restriction and modification systems encoded by these plasmids. Genetic evidence for the correlation between the plasmids and the R/M systems was obtained by transformation. In addition, a third R/M system was discovered among the transformants and was shown to be encoded by pJW565. Thus, genetic evidence for at least 3 distinct R/M systems encoded by plasmids in S. cremoris W56 is presented. One of the R/M-systems showed stronger restriction of the isometric phage p2 than of the prolate phage c2. The other two systems restricted both classes of phages with equal efficiencies.  相似文献   

9.
S G Kim  C A Batt 《Gene》1991,98(1):95-100
A genetic element which is conserved in the genomes of numerous Lactococcus lactis bacteriophage isolates has been identified and its nucleotide sequence determined. Approximately 95-99% of all L. lactis bacteriophages collected over a period of six years from two geographically distinct sources carry this conserved DNA fragment. Genetic variation in other regions of the genomes of these bacteriophages is exhibited by changes in the overall restriction patterns. The complete nt sequence for a 1.6-kb region from nine independent L. lactis bacteriophage isolates was determined and only five changes in the nt sequence were observed within a span of 1536 bp. This region has a single large 1356-bp open reading frame (ORF) coding for a 51-kDa protein. Three out of the five changes occur in a 187-bp region, 5' to this large ORF. The two additional changes are found within the 1356-bp ORF, which results in two amino acid substitutions that do not, however, change the net charge of the protein. The encoded protein is extremely charged and shares some homology with yeast translation initiation factor. In addition, there is a potential zinc-binding domain within this protein, similar to those observed in genes from bacteriophages T4 and T7.  相似文献   

10.
The natural 7.8-kb plasmid pSRQ700 was isolated from Lactococcus lactis subsp. cremoris DCH-4. It encodes a restriction/modification system named LlaDCHI [corrected]. When introduced into a phage-sensitive L. lactis strain, pSRQ700 confers strong phage resistance against the three most common lactococcal phage species, namely, 936, c2, and P335. The LlaDCHI [corrected] endonuclease was purified and found to cleave the palindromic sequence 5'-GATC-3'. It is an isoschizomer of Streptococcus pneumoniae DpnII. The plasmid pSRQ700 was mapped, and the genetic organization of LlaDCHI [corrected] was localized. Cloning and sequencing of the entire LlaDCHI [corrected] system allowed the identification of three open reading frames. The three genes (llaIIA, llaIIB, and llaIIC) overlapped and are under one putative promoter. A putative terminator was found at the end of llaIIC. The genes llaIIA and llaIIB coded for m6A methyltransferases, and llaIIC coded for an endonuclease. The LlaDCHI [corrected] system shares strong genetic similarities with the DpnII system. The deduced amino acid sequence of M.LlaIIA was 75% identical with that of M.DpnII, whereas M.LlaIIB was 88% identical with M.DpnA. However, R.LlalII shared only 31% identity with R.DpnII.  相似文献   

11.
Milk contamination by phages, the susceptibility of the phages to pasteurization, and the high levels of resistance to phage infection of starter strains condition the evolution dynamics of phage populations in dairy environments. Approximately 10% (83 of 900) of raw milk samples contained phages of the quasi-species c2 (72%), 936 (24%), and P335 (4%). However, 936 phages were isolated from 20 of 24 (85%) whey samples, while c2 was detected in only one (4%) of these samples. This switch may have been due to the higher susceptibility of c2 to pasteurization (936-like phages were found to be approximately 35 times more resistant than c2 strains to treatment of contaminated milk in a plate heat exchanger at 72 degrees C for 15 s). The restriction patterns of 936-like phages isolated from milk and whey were different, indicating that survival to pasteurization does not result in direct contamination of the dairy environment. The main alternative source of phages (commercial bacterial starters) does not appear to significantly contribute to phage contamination. Twenty-four strains isolated from nine starter formulations were generally resistant to phage infection, and very small progeny were generated upon induction of the lytic cycle of resident prophages. Thus, we postulate that a continuous supply of contaminated milk, followed by pasteurization, creates a factory environment rich in diverse 936 phage strains. This equilibrium would be broken if a particular starter strain turned out to be susceptible to infection by one of these 936-like phages, which, as a consequence, became prevalent.  相似文献   

12.
13.
Liu CQ  Charoechai P  Khunajakr N  Deng YM  Widodo  Dunn NW 《Gene》2002,297(1-2):241-247
A plasmid-borne copper resistance operon (lco) was identified from Lactococcus lactis subsp. lactis LL58-1. The lco operon consists of three structural genes lcoABC. The predicted products of lcoA and lcoB were homologous to chromosomally encoded prolipoprotein diacylglyceral transferases and two uncharacterized proteins respectively, and the product of lcoC is similar to several multicopper oxidases, which are generally plasmid-encoded. This genetic organization represents a new combination of genes for copper resistance in bacteria. The three genes are co-transcribed from a copper-inducible promoter, which is controlled by lcoRS encoding a response regulator and a kinase sensor. The five genes are flanked by two insertion sequences, almost identical to IS-LL6 from L. lactis. Transposon mutagenesis and subcloning analysis indicated that the three structural genes were all required for copper resistance. Copper assay results showed that the extracellular concentration of copper of L. lactis LM0230 containing the lco operon was significantly higher than that of the host strain when copper was added at concentrations from 2 to 3 mM. The results suggest that the lco operon conferred copper resistance by reducing the intracellular accumulation of copper ions in L. lactis.  相似文献   

14.
15.
98 Lactococcus lactis strains were isolated from traditional fermented milk products in Turkey tested against 60 lactococcal lytic phages to determine their resistance levels. While 82 L. lactis strains were sensitive against lactic phages at different levels, 16 L. lactis strains showed resistance to all phages tested. Types of phage resistance among 16 L. lactis strains were identified as phage adsorption inhibition in eight strains, restriction/modification in six strains and abortive infection (heat sensitive phage resistance) in two strains, using three broad-spectrum phages phi pll 98-32, phi pld 67-42 and phi pld 67-44.  相似文献   

16.
E Skrzypek  A Piekarowicz 《Plasmid》1989,21(3):195-204
The Escherichia coli plasmid pDXX1 codes for a type I restriction and modification system, EcoDXX1. A 15.5-kb BamHI fragment from pDXX1 has been cloned and contains the hsdR, hsdM, and hsdS genes that encode the EcoDXX1 system. The EcoDXX1 hsd genes can complement the gene products of the EcoR124 and EcoR124/3 hsd systems, but not those of EcoK and EcoB. Hybridization experiments using EcoDXX1 hsd genes as a probe demonstrate homology between EcoDXX1 and EcoR124 and EcoR124/3 restriction-modification systems, but weak or no homology between EcoDXX1 and EcoK or EcoB systems.  相似文献   

17.
18.
19.
Lactococcus lactis—a food-grade nonpathogenic lactic acid bacterium—is used widely in the food industry. In this report, we describe an approach to construct deficient strains in L. lactis utilizing the λ-Red recombination system. Three kinds of recombinant proteins, λ exonuclease, β protein and γ protein, were induced by l-arabinose in L. lactis MG1363 harboring the plasmid pKD46. A chloramphenicol-resistant cassette was amplified from pGj103 containing homology arms of 50 nt to the thyA gene. The PCR-generated DNA fragment was then electroporated into L. lactis MG1363, which expressed the recombination proteins. ThyA-null strains resistant to chloramphenicol were obtained and their growth characteristics were analyzed in relation to thymidine requirement. The results revealed that the thyA gene in L. lactis MG1363 was successfully knocked out. This is the first time that the Red system has been used in a Gram-positive bacterium, and use of the techniques presented here should prompt rapid and efficient mutagenesis or modification of L. Lactis chromosomal genes.  相似文献   

20.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号