首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nerve terminal anchorage protein from electric organ   总被引:8,自引:5,他引:3       下载免费PDF全文
The nerve terminal and the postsynaptic receptor-containing membranes of the electric organ are both linked to the basal lamina that runs between them. We have identified an extracellular matrix protein whose physical properties suggest it anchors the nerve terminal to the basal lamina. The protein was identified because it shares an epitope with a proteoglycan component of electric organ synaptic vesicles. It too behaves like a proteoglycan. It is solubilized with difficulty from extracellular matrix fractions, elutes from DEAE Sephacel at pH 4.9 only at high ionic strength, and binds to a laminin affinity column from which it can be eluted with heparin. Under denaturing conditions it sediments rapidly and has a large excluded volume although it can be included in Sephacryl S-1000 columns. This large, highly charged extracellular matrix molecule can be readily reconstituted into liposomes consistent with the presence of a hydrophobic tail. By immunoelectron microscopy the antigen is found both in synaptic vesicles and on the plasma membrane of the nerve terminal. Since this is the first protein described that links the nerve terminal membrane to the extracellular matrix, we propose calling it terminal anchorage protein one (TAP-1).  相似文献   

2.
Interactions between growing axons and synaptic basal lamina components direct the formation of neuromuscular junctions during nerve regeneration. Isoforms of laminin containing alpha5 or beta2 chains are potential basal lamina ligands for these interactions. The nerve terminal receptors are unknown. Here we show that SV2, a synaptic vesicle transmembrane proteoglycan, is complexed with a 900-kDa laminin on synaptosomes from the electric organ synapse that is similar to the neuromuscular junctions. Although two laminins are present on synaptosomes, only the 900-kDa laminin is associated with SV2. Other nerve terminal components are absent from this complex. The 900-kDa laminin contains an alpha5, a beta1, and a novel gamma chain. To test whether SV2 directly binds the 900-kDa laminin, we looked for interaction between purified SV2 and laminin-1, a laminin isoform with a similar structure. We find SV2 binds with high affinity to purified laminin-1. Our results suggest that a synaptic vesicle component may act as a laminin receptor on the presynaptic plasma membrane; they also suggest a mechanism for activity-dependent adhesion at the synapse.  相似文献   

3.
Kleinschmidt spreading, negative staining, and rotary shadowing were used to examine the large form of (basement membrane) heparan sulfate proteoglycan in the electron microscope. Heparan sulfate proteoglycan was visualized as consisting of two parts: the core protein and, emerging from one end of the core protein, the glycosaminoglycan side chains. The core protein usually appeared as an S-shaped rod with about six globules along its length. Similar characteristics were observed in preparations of core protein in which the side chains had been removed by heparitinase treatment ("400-kDa core") as well as in a 200-kDa trypsin fragment ("P200") derived from one end of the core protein. The core protein was sensitive to lyophilization and apparently also to the method of examination, being condensed following Kleinschmidt spreading (length means = 52 nm) and extended following negative staining (length means = 83 nm) or rotary shadowing (length means = 87 nm; 400-kDa core length means = 80 nm; P200 length means = 44 nm). Two or three glycosaminoglycan side chains (length means = 146 +/- 53 nm) were attached to one end of the core protein. The side chains often appeared tangled or to merge together as one. Thus, the large heparan sulfate proteoglycan from basement membrane is an asymmetrical molecule with a core protein containing globular domains and terminally attached side chains. This structure is in keeping with that previously predicted by enzymatic digestions and with the proposed orientation in basement membranes, i.e., the core protein bound in the lamina densa and the heparan sulfate side chains in the lamina lucida arranged along the surface of the basement membranes.  相似文献   

4.
Proteoglycans may be implicated in the process of aggregation of acetylcholine receptors in the basal lamina of skeletal muscle and possibly in the mechanism of reinnervation at the neuromuscular junction. In order to further deduce the role of such proteoglycans, we have sought to isolate them and define their molecular structures. In this study, proteoglycans were extracted from rabbit skeletal muscle by using 4 M guanidine hydrochloride and were purified by sequential cesium chloride density gradient ultracentrifugation, DEAE-cellulose ion-exchange chromatography, and Sepharose CL-6B and CL-2B gel filtration under dissociative conditions. A chondroitin sulfate proteoglycan which constituted about 44% of the total hexuronic acid content of the muscle tissue was isolated. This proteoglycan was found to have an apparent molecular weight [by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)] of 95,000, consistent with its small hydrodynamic size (Kav = 0.8 on Sepharose CL-2B), and to consist of peptide and glycosaminoglycan in a weight ratio of 1.0/0.8. The average molecular weight of its core protein-oligosaccharide remnants is 50,000, as estimated by SDS-PAGE of the chondroitinase ABC digested proteoglycan. Alkaline NaB3H4 treatment of the intact proteoglycan released chondroitin sulfate chains with an average molecular weight of 21,000. Pronase digestion of the intact proteoglycan generated glycosaminoglycan-peptides with an average of two chondroitin sulfate chains per peptide. These two saccharide units account for the total glycosaminoglycans per molecule and appear to be closely spaced on the core protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Proteoglycans are constituents of the cell surface that may play important roles in the regulation of cell behavior. Here we report that the 250-kDa receptor subunit that binds the multifunctional protein, transforming growth factor-beta 1 (TGF-beta 1), contains chains of heparan sulfate and chondroitin sulfate and thus is a proteoglycan. Digestion of TGF-beta 1-receptor complexes with glycosaminoglycan (GAG)-specific degradative enzymes yield core proteins of 115-140 kDa. Cell monolayers that had been predigested with GAG-specific degradative enzymes were capable of binding high levels of TGF-beta 1, but the size of the binding components was shifted from the high molecular weight species to the lower molecular weight core proteins, indicating that GAG chains are not necessary for TGF-beta 1 binding to the cell. The presence of GAG chains on the receptor subunit indicates that it has the potential for interaction with the extracellular matrix.  相似文献   

6.
Proteoglycans were extracted from human uterine cervix with 4 M-guanidinium chloride in the presence of proteinase inhibitors. They were purified by density-gradient centrifugation in 4 M-guanidinium chloride/CsCl (starting density 1.32 g/ml) followed by DEAE-cellulose and Sepharose chromatography. Only one polydisperse proteoglycan was found. s020,w was 2.1S and the weight-average molecular weight was 73 000 (sedimentation-equilibrium centrifugation) to 110 500 (light-scattering). The core protein was monodisperse, with an apparent molecular weight of 47 000. The proteoglycan contained about 30% protein and probably two or three glycosaminoglycan side chains per molecule. High contents of aspartate, glutamate and leucine were found. The glycan moiety of the proteoglycan was exclusively dermatan sulphate, with a co-polymeric structure with approximately equal quantities of iduronic acid- and glucuronic acid-containing disaccharides.  相似文献   

7.
Primary cultures that contain only Schwann cells and sensory nerve cells synthesize basal lamina. The assembly of this basal lamina appears to be essential for normal Schwann cell development. In this study, we demonstrate that Schwann cells synthesize two major heparan sulfate-containing proteoglycans. Both proteoglycans band in dissociative CsCl gradients at densities less than 1.4 g/ml, and therefore, presumably, have relatively low carbohydrate-to-protein ratios. The larger of these proteoglycans elutes from Sepharose CL-4B in 4 M guanidine hydrochloride (GuHCl) at a Kav of 0.21 and contains heparan sulfate and chondroitin sulfate chains of Mr 21,000 in a ratio of approximately 3:1. This proteoglycan is extracted from cultures by 4 M GuHCl but not Triton X-100 and accumulates only when Schwann cells are actively synthesizing basal lamina. The smaller proteoglycan elutes from Sepharose CL-4B at a Kav of 0.44 and contains heparan sulfate and chondroitin sulfate chains of Mr 18,000 in a ratio of approximately 4:1. This proteoglycan is extracted by 4 M GuHCl or by Triton X-100. The accumulation of this proteoglycan is independent of basal lamina production.  相似文献   

8.
A proteoglycan was isolated from fetal membranes which had been separated from human postpartum placenta. The glycosaminoglycan side chains (Mr = 55,000) were found to be composed of 75% chondroitin sulfate and 23% dermatan sulfate as determined by chondroitinase ABC or AC II digestion. NH2-terminal microsequencing of the intact proteoglycan revealed a single amino acid sequence of (sequence; see text) A rabbit antiserum raised against the intact proteoglycan reacted in sodium dodecyl sulfate-polyacrylamide gel electrophoresis immunoblotting with Mr = 45,000 and 43,000 core polypeptides from chondroitinase-treated proteoglycan. Affinity-purified antibodies from this antiserum precipitated from human embryonic fibroblast culture fluid a proteoglycan which has an approximate Mr = 120,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This proteoglycan has on the average two polysaccharide side chains. As defined by chondroitinase digestion, these chains consist of 66% dermatan sulfate and 20% chondroitin sulfate. Digestion of the glycosaminoglycan with chondroitinase ABC converted the proteoglycan to a Mr = 45,000 major and a Mr = 43,000 minor core polypeptide. Tissue immunofluorescence localized the proteoglycan to interstitial matrices, suggesting that it is a product of mesenchymal cells. The methods we have devised for the purification of the fetal membrane proteoglycan in chemical amounts and the antibodies we have prepared against it will allow studies on the structural and functional properties of the proteoglycan and on the expression of immunologically cross-reactive proteoglycans by various cells and tissues.  相似文献   

9.
Agrin is a large, multidomain heparan sulfate proteoglycan that is associated with basement membranes of several tissues. Particular splice variants of agrin are essential for the formation of synaptic structures at the neuromuscular junction. The binding of agrin to laminin appears to be required for its localization to synaptic basal lamina and other basement membranes. Here, electron microscopy was used to determine the structure of agrin and to localize its binding site in laminin-1. Agrin appears as an approximately 95 nm long particle that consists of a globular, N-terminal laminin-binding domain, a central rod predominantly formed by the follistatin-like domains and three globular, C-terminal laminin G-like domains. In a few cases, heparan sulfate glycosaminoglycan chains were seen emerging from the central portion of the core protein. Moreover, we show that agrin binds to the central region of the three-stranded, coiled-coil oligomerization domain in the long arm of laminin-1, which mediates subunit assembly of the native laminin molecule. In summary, our data show for the first time a protein-protein interaction of the extracellular matrix that involves a coiled-coil domain, and they assign a novel role to this domain of laminin-1. Based on this, we propose that agrin associates with basal lamina in a polarized way.  相似文献   

10.
Mouse mammary epithelial cells (NMuMG cells) deposit at their basal surfaces an extracellular heparan sulfate-rich proteoglycan that binds to type I collagen. The binding of the purified proteoglycan to collagen was studied by (i) a solid phase assay, (ii) a suspension assay using preformed collagen fibrils, and (iii) a collagen fibril affinity column. The binding interaction occurs at physiological pH and ionic strength and can be inhibited only by salt concentrations that greatly exceed those found physiologically. Binding requires the intact proteoglycan since the protein-free glycosaminoglycan chains will not bind under the conditions of these assays. However, binding is mediated through the heparan sulfate chains as it can be inhibited by block-sulfated polysaccharides, including heparin. Binding requires native collagen structure which may be optimal when the collagen is in a fibrillar configuration. Binding sites on collagen fibrils are saturable, high affinity (Kd approximately 10(-10) M), and selective for heparin-like glycosaminoglycans. Because a culture substratum of type I collagen fibrils causes NMuMG cells to accumulate heparan sulfate proteoglycan into a basal lamina-like layer, binding of heparan sulfate proteoglycans to type I collagen may lead to the formation of a basal lamina and may link the basal lamina to the connective tissue matrix, an association found in basement membranes.  相似文献   

11.
We have demonstrated previously that the neural cell adhesion molecule (NCAM) interacts with a neuronal heparan sulfate proteoglycan. The binding of this proteoglycan(s) by NCAM appears to be required for NCAM-mediated cell adhesion, although the mechanism is unclear. In the present study we show that a heparan sulfate proteoglycan copurifies with NCAM, and provide an initial biochemical characterization of the proteoglycan. The copurification of a heparan sulfate proteoglycan with NCAM was demonstrated following immunopurification of NCAM from a detergent extract of cell membranes derived from Na2(35)SO4-labeled neural retinal cells. A large-molecular-weight, 35SO4-labeled molecule copurified with NCAM isolated from these neural cell cultures, and was resistant to chondroitinase ABC treatment, but degraded completely by nitrous acid treatment. These results indicate that the molecule is a heparan sulfate proteoglycan. Although this proteoglycan copurifies with NCAM, it is not detected when the neuron-glia cell adhesion molecule (NgCAM) is immunopurified using the 8D9 monoclonal antibody. The heparan sulfate proteoglycan may also be a membrane-associated proteoglycan since it interacts with phenyl-Sepharose. Molecular weight characterization of the proteoglycan by gel filtration chromatography indicates a molecular weight of 400-520 kDa. The heparan sulfate glycosaminoglycan chains were shown to have an average molecular weight of approximately 40 kDa, and the polypeptide backbone was estimated to be 120 kDa by polyacrylamide gel electrophoresis. These data therefore demonstrate that a neuronal heparan sulfate proteoglycan copurifies with NCAM.  相似文献   

12.
An ultrastructural, histochemical, and biochemical study of the electric organ of the South American Torpedinid ray, Discopyge tschudii, was carried out. Fine structural cytochemical localization of acetylcholinesterase (AChE) indicated that most of the esterase was associated with the basal lamina. Electron microscopy indicated no marked differences in the electrocyte ultrastructure between Discopyge and Torpedo californica. Discopyge electric organ possessed three molecular forms, two asymmetric forms (16 S and 13 S) and one globular hydrophobic form (6.5 S). The asymmetric 16 S AChE form was solubilized by heparin, a sulfated glycosaminoglycan, suggesting that heparin-like macromolecules are involved in the binding of the enzyme to the basal lamina. Our results show that cell-free translated AChE peptides, synthesized using Discopyge electric organ poly(A+) RNA, correspond to a main band of 62,000 daltons which probably represents the catalytic subunit of the asymmetric AChE.  相似文献   

13.
《The Journal of cell biology》1983,97(5):1396-1411
Hybridoma techniques have been used to generate monoclonal antibodies to an antigen concentrated in the basal lamina at the Xenopus laevis neuromuscular junction. The antibodies selectively precipitate a high molecular weight heparan sulfate proteoglycan from conditioned medium of muscle cultures grown in the presence of [35S]methionine or [35S]sulfate. Electron microscope autoradiography of adult X. laevis muscle fibers exposed to 125I-labeled antibody confirms that the antigen is localized within the basal lamina of skeletal muscle fibers and is concentrated at least fivefold within the specialized basal lamina at the neuromuscular junction. Fluorescence immunocytochemical experiments suggest that a similar proteoglycan is also present in other basement membranes, including those associated with blood vessels, myelinated axons, nerve sheath, and notochord. During development in culture, the surface of embryonic muscle cells displays a conspicuously non-uniform distribution of this basal lamina proteoglycan, consisting of large areas with a low antigen site-density and a variety of discrete plaques and fibrils. Clusters of acetylcholine receptors that form on muscle cells cultured without nerve are invariably associated with adjacent, congruent plaques containing basal lamina proteoglycan. This is also true for clusters of junctional receptors formed during synaptogenesis in vitro. This correlation indicates that the spatial organization of receptor and proteoglycan is coordinately regulated, and suggests that interactions between these two species may contribute to the localization of acetylcholine receptors at the neuromuscular junction.  相似文献   

14.
A chondroitin sulfate - dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by β-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

15.
The appearance of a high molecular weight gelatinolytic enzyme (230 kDa) correlated with cartilage collagen loss in chick embryonic tibias cultured with lipopolysaccharide. This 230 kDa enzyme was purified and its activity was measured on synthetic and natural substrates. The enzyme was activated by aminophenylmercuric acetate and inhibited by ethylenediaminetetraacetic acid, phenanthroline, marimastat or tissue inhibitors of metalloproteinases. Amino acid sequences of peptides derived from the purified enzyme showed identity with avian MMP-9. Digestion of the intact enzyme with chondroitinase decreased the size of the molecule to 80 kDa on SDS-PAGE. When chick embryonic tibia cultures were radiolabeled with (35)S-sulfate, the radiolabel co-purified with the 230 kDa gelatinase. Chondroitinase treated 230 kDa gelatinase also reacted with specific anti-chondroitin sulfate antibodies and FACE analysis revealed a predominance of chondroitin-4-sulfate. These results demonstrate this avian matrix metalloproteinase contained glycosaminoglycan chains. To our knowledge, this is the first report of a matrix metalloproteinase in a proteoglycan form.  相似文献   

16.
Human vitreous gel is a special type of extracellular matrix, in which interpenetrating networks of collagen fibrils and hyaluronan are found. In this study, we report that apart from significant amounts of collagen, hyaluronan and sialylated glycoproteins, it was found that the human vitreous gel also contained low amounts of versican-like proteoglycan. The concentration of versican-like proteoglycan in the whole vitreous is 0.06 mg protein/ml of vitreous gel and represents a small percentage (about 5%) of the total protein content. The versican-like proteoglycan has a molecular mass of 380 kDa, as estimated by gel chromatography. Its core protein is substituted by chondroitin sulphate side chains (average molecular weight 37 kDa), in which 6-sulphated disaccharides predominated. According to the physicochemical data, the number of chondroitin sulphate chains is likely to be 5-7 per molecule. These proteoglycan monomers form large aggregates with endogenous hyaluronan. Versican, which is able to bind lectins via its C-terminal region, may bridge or interconnect various constituents of the extracellular matrix via its terminal domains in order to stabilize large supramolecular complexes at the vitreous, contributing towards the integrity and specific properties of the tissue.  相似文献   

17.
Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated [35S]sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (i) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (ii) link-stable proteoglycan aggregates are assembled, (ii) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (iv) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.  相似文献   

18.
A chondroitin sulfate-dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by beta-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

19.
An antiserum to cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata was purified by adsorption with fractions containing unwanted antigens. The adsorbed antiserum responds to the proteoglycan core material of the cholinergic synaptic vesicles. The major antigen migrates in an anomalous fashion on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), forming a broad band with an apparent molecular weight of approximately 120,000 - 300,000. The distribution of this antigen after sucrose density gradient centrifugation of synaptic vesicles is the same as that of vesicular ATP. The antigen comigrates with a substance that can be stained with Alcian-Blue after SDS-PAGE of highly purified synaptic vesicles. This substance is related to the low-molecular-weight, Alcian-Blue-positive glycosaminoglycan vesiculin, which is formed from the high-molecular-weight proteoglycan by prolonged dialysis against water or by protease treatment. No antibodies were detected against vesiculin itself, indicating that the antigenic determinants are restricted to the proteoglycan.  相似文献   

20.
We have isolated from the conditioned medium of an established endothelial cell line a heparan sulphate proteoglycan whose involvement in the inhibition of the extrinsic coagulation pathway was reported in previous studies [Colburn & Buonassisi (1982) Biochem. Biophys. Res. Commun. 104, 220-227]. The proteoglycan was purified by gel filtration and ion-exchange chromatography, and appears to be free of contaminating proteins as determined by polyacrylamide-gel electrophoresis of the radioiodinated protein core before and after removal of the glycosaminoglycan chains by treatment with heparitinase. By this procedure the Mr of the protein core was estimated to be 22000. The N-terminal end was sequenced up to amino acid 25. The 21st residue is likely to be glycosylated. Analysis of the purified proteoglycan by gel-filtration chromatography yielded Kd values of 0.2 for the whole molecule and 0.35 for the glycosaminoglycan chains. The structure that emerges from these data is that of a heparan sulphate proteoglycan characterized by a relatively small protein core and few glycosaminoglycan chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号