首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
水稻黄化幼苗用白光照射3~5小时后可诱导出乙醇酸氧化酶活性。绿色水稻幼苗在黑暗中乙醇酸氧化酶活性逐渐下降以至消失,再给以照光又恢复酶活性。亚胺环己酮对光的诱导及再诱导均有抑制作用。在黑暗中真空渗入乙醇酸于黄化幼苗可诱导出乙醇酸氧化酶活性,渗入乙醇酸加FMN能使酶活性迅速增强。弱的白光以及红、绿,蓝光均有诱导作用。因此认为光的诱导作用是使黄化幼苗形成乙醇酸——作为诱导物,以诱导乙醇酸氧化酶的新合成。光也可以加速叶组织内FMN的合成,从而提高乙醇酸氧化酶的活性。  相似文献   

2.
菜心乙醇酸氧化酶的纯化和催化特性分析   总被引:2,自引:0,他引:2  
徐杰 《植物学通报》1998,15(4):75-77
用改进后的方法,从菜心绿叶中分离纯化得到一个亚基分子量为42kD的乙醇酸氧化酶,用氧电极法测定该酶同时能催化乙醇酸和乙醛酸的氧化。  相似文献   

3.
提出一个用变色酸-硫酸显色浊同时测定核酮糖-1,5-二磷酸(RuBP)羧化酶/加氧酶活性的方法:RuBP羧化酶/加氧酶与底物作用后,用碱性磷酸酯酶将其产物水解生成乙醇酸和甘油酸,然后与变色酸试剂在1:5的体积比下,沸水浴中显色反应90min,乙醇酸与变色酸反应生成红紫色化合物,甘油酸生成淡棕色化合物,分别在573nm,745nm各有一特征吸收峰。根据A_(573),A_(745)与乙醇酸和甘油酸浓度间的函数关系式,求出RuBP羧化酶/加氧酶活性。  相似文献   

4.
用焦磷酸作为磷酰化试剂制备了椰油酸单乙醇酰胺磷酸酯,并讨论了在此合成工艺中反应时间、反应温度、原料配比等因素对原料转化率和单酯含量的影响。结果表明,椰油酸单乙醇酰胺磷酸酯有较好的起泡性、稳泡性、乳化性和表面活性。  相似文献   

5.
乙醇酸是一种应用广泛的精细化工品。生物转化法生产乙醇酸具有工艺简单、反应条件温和、设备要求低等优点。本文对一株高产腈水解酶基因工程菌转化羟基乙腈生产乙醇酸的工艺进行了初步研究。结果显示,野生菌株转化72 h乙醇酸浓度达到11.6%,而采用基因工程菌进行转化,20 h乙醇酸浓度即可达到36%,催化效率显著提升,显示出该基因工程菌株在工业生产中的应用价值。  相似文献   

6.
光呼吸乙醇酸途径的阐明,使人们对光合碳途径的认识前进了一步。从现知的乙醇酸途径来看,它似乎是一个损耗光合固定的碳素和能量的过程。据推算,在正常的大气条件下(此时 RuDP 羧化酶和加氧酶活性比例为4:1),由乙醇酸途径放出的C0_2占光合固定的 CO_2 14%。实测的结果表明,C_3植物光呼吸放CO_2可达净光合所固定的CO_2的14—75%。因此人们曾设想,若用某些  相似文献   

7.
采用正交设计L9(34)方法,考察乙醇浓度(A)、超声时间(B)、超声功率(C)、料液比(D)对乌索酸提取率的影响,用高效液相色谱法测定含量,并与常规提取法进行对比,确定了毛泡桐中乌索酸的最佳超声提取工艺条件。所考察的因素对毛泡桐中乌索酸提取的影响按各因素作用主次顺序为:乙醇浓度>料液比>超声时间>超声功率;乌索酸超声提取的最佳条件为:A3B3C2D1,即毛泡桐叶粉末用6倍量体积分数95%乙醇超声提取2 h,超声功率为200 w。与常规的提取方法相比,超声提取具有提取时间短、操作简单、提取率高、无需加热等优点。优选的工艺条件稳定,操作简便,方法可行,可用于毛泡桐中乌索酸的提取。  相似文献   

8.
将菠菜乙醇酸氧化酶基因片段克隆至表达载体pPIC3.5k。提取重组质粒,进行限制性酶切鉴定。重组质粒用Sal I酶切线性化,电导入法转化毕赤酵母(Pichia pastoris),在缺乏组氨酸的RDB平板筛选重组子,提取酵母的染色体基因组进行PCR扩增鉴定整合情况,用甲醇诱导表达。结果表明,SDS-PAGE电泳显示表达蛋白的分子量约为39.8kD,与文献报道的乙醇酸氧化酶分子量接近。酶的活力达到了40.8IU/g湿菌体,比不含有目的片断的对照菌酶活提高了17倍,确认了导入的乙醇酸氧化酶基因片段在酵母中高效表达。  相似文献   

9.
不同因子对荞麦中草酸含量的影响   总被引:3,自引:0,他引:3  
用不同化合物从根部喂养麦幼苗,测定其根叶中草酸含量的变化。结果表明:异柠檬酸、抗坏血酸及其前体物均可不同程度地降低荞麦根叶中草酸含量;而乙醇酸与乙醛酸则显著提高其草酸含量,表明荞麦叶片草酸合成主要来自乙醇酸途径,而非来自抗坏血酸等途径。水培条件下,以铵态氮或尿素等作唯一氮源时,荞麦中草酸含量远低于以硝态氮培养的;将谷氨酸或丝氨酸加到含硝态氮培养液中也能显著降低其草酸含量,不同氮素影响荞麦草酸含量可能与乙醇酸途径有关。  相似文献   

10.
芸苔叶圆片在乙醇酸氧化酶受抑对照光,其乙醇酸的积累受而酮酸促进,而被柠檬酸、琥珀酸及苹果酸抑制、离体条件下.添加苹果酸、柠檬酸和琥珀酸时,乙醇酸氧化酶活性增高:添加丙酮酸、柠檬酸、苹果酸和琥珀酸时.甘氨酸氧化酶活性也增大。  相似文献   

11.
Ludt C  Kindl H 《Plant physiology》1990,94(3):1193-1198
mRNA obtained from green leaves of lentil (Lens culinaris) was used to construct a cDNA library in phage λgt11. The cDNA library was screened with antibodies raised against lentil glycolate oxidase and catalase. Clone CL 1 containing the full-length sequence complementary to glycolate oxidase mRNA was characterized and sequenced. In addition, a 800-base pair catalase cDNA clone was sequenced. To prove the correlation of cDNA insert in CL 1 with glycolate oxidase, the cDNA was transcribed in vitro. The mRNA was translated in vitro yielding a 43 kilodalton protein immunoprecipitable with anti-glycolate oxidase serum. Nucleotide sequences of lentil cDNA and spinach cDNA were 86% identical. Lentil glycolate oxidase was characterized by a C-terminal sequence -P-R-A-L-P-R-L. The expression of glycolate oxidase mRNA in cotyledons, leaves and roots was compared with that of catalase. In leaves, the relative amount of glycolate oxidase mRNA increased during the first 2 days of greening, but decreased later, and was hardly detectable during senescence. In cotyledons of germinating seeds, the level of glycolate oxidase mRNA was markedly lower than the catalase mRNA.  相似文献   

12.
C Pace  M Stankovich 《Biochemistry》1986,25(9):2516-2522
This is the first report of the redox potentials of glycolate oxidase. The pH dependence of the redox behavior as well as the effects of activators and inhibitors was studied. At pH 7.1 in 10 mM imidazole-chloride, Eo1' (EF1ox/EF1-.) is -0.033 +/- 0.010 V and Eo2' (EF1-./EF1redH-) is -0.017 +/- 0.017 V vs. the standard hydrogen electrode at 10 degrees C. A maximum of 29% flavin mononucleotide (FMN) anion radical is stabilized at half-reduction at pH 7.1 and 10 degrees C. Both redox couples of glycolate oxidase are pH-dependent from pH 7 to pH 9, and the FMN anion radical is stabilized in this range. The redox potentials of glycolate oxidase are shifted markedly positive of those of unbound FMN, consistent with the enzyme's function. The midpoint potential of glycolate oxidase is more positive than that of the glyoxalate/glycolate couple, and two-electron reduction of glycolate oxidase is thermodynamically favorable. The redox behavior of glycolate oxidase markedly contrasts that of other flavoprotein oxidases. For most flavoprotein oxidases, Eo1' is independent of pH from pH 7 to pH 9 and is much more positive than Eo2', which is pH-dependent. We present a mechanism that suggests a structural basis for the positive shifts and pH dependence of both Eo1' and Eo2' of glycolate oxidase.  相似文献   

13.
从菠菜中提纯了乙醇酸氧化酶并制备其抗体,经免疫双扩散、Westernblot和Northernblot证实水稻和豌豆黄化苗中不存在乙醇酸氧化酶。在黑暗中,底物可促进该酶基因的表达,而在黄化苗光照初期,推测光可能是不经过底物促进该酶基因的表达。  相似文献   

14.
15.
Homogenates of various lower land plants, aquatic angiosperms, and green algae were assayed for glycolate oxidase, a peroxisomal enzyme present in green leaves of higher plants, and for glycolate dehydrogenase, a functionally analogous enzyme characteristic of certain green algae. Green tissues of all lower land plants examined (including mosses, liverworts, ferns, and fern allies), as well as three freshwater aquatic angiosperms, contained an enzyme resembling glycolate oxidase, in that it oxidized l- but not d-lactate in addition to glycolate, and was insensitive to 2 mm cyanide. Many of the green algae (including Chlorella vulgaris, previously claimed to have glycolate oxidase) contained an enzyme resembling glycolate dehydrogenase, in that it oxidized d- but not l-lactate, and was inhibited by 2 mm cyanide. Other green algae had activity characteristic of glycolate oxidase and, accordingly, showed a substantial glycolate-dependent O2 uptake. It is pointed out that this distribution pattern of glycolate oxidase and glycolate dehydrogenase among the green plants may have phylogenetic significance.  相似文献   

16.
Glycolate oxidase that was partially purified from pea leaves was inactivated in vitro by blue light in the presence of FMN. Inactivation was greatly retarded in the absence of O2. Under aerobic conditions H2O2 was formed. The presence of catalase, GSH or dithiothreitol protected glycolate oxidase against photoinactivation. Less efficient protection was provided by ascorbate, histidine, tryptophan or EDTA. The presence of superoxide dismutase or of hydroxyl radical scavengers had no, or only minor, effects. Glutathione suppressed H2O2 accumulation and was oxidized in the presence of glycolate oxidase in blue light. Glycolate oxidase was also inactivated in the presence of a superoxide-generating system or by H2O2 in darkness. In intact leaves photoinactivation of glycolate oxidase was not observed. However, when catalase was inactivated by the application of 3-amino-1,2,4-triazole or depleted by prolonged exposure to cycloheximide a strong photoinactivation of glycolate oxidase was also seen in leaves. In vivo blue and red light were similarly effective. Furthermore, glycolate oxidase was photoinactivated in leaves when the endogenous GSH was depleted by the application of buthionine sulfoximine. Both catalase and antioxidants, in particular GSH, appear to be essential for the protection of glycolate oxidase in the peroxisomes in vivo.  相似文献   

17.
An antiserum to tobacco glycolate oxidase has been prepared by injection of the purified enzyme into rabbits. Double gel diffusion tests between the antiserum and purified antigen and also with a crude tobacco preparation gave a single immunoprecipitation band. Crude extracts of Euglena gracilis Z Klebs, containing glycolate dehydrogenase, and of Chlorella vulgaris 211-11h/20, containing glycolate oxidase, also formed single bands with the tobacco antiserum. The algal bands were identical and showed partial identity with the tobacco band. The antiserum inhibited the glycolate oxidase activities of the tobacco and Chlorella extracts but did not affect Euglena glycolate dehydrogenase activity.  相似文献   

18.
Twenty-seven species of coccoid, zoospore-producing green algae representing 16 genera in the Chlorococcales and Chlorosarcinales were assayed for glycolate oxidase or glycolate dehydrogenase. Only Planophila terrestris Groover & Bold and Fasciculochloris boldii Trainor, contained glycolate oxidase whereas the others contained glycolate dehydrogenase. Representative algae were grown under varying conditions and assayed to determine any effects on these glycolate enzymes. Although specific rates of enzyme activity often varied widely, the form of glycolate enzyme present was not affected.  相似文献   

19.
Glycolate oxidase was purified and crystallized from cotyledons of germinating pumpkin seedlings. The molecular weight of the enzyme was determined to be 280,000-320,000, consisting of 8 identical subunits with molecular weight of 38,000. There are two absorption peaks at 340 and 450 nm, indicating the glycolate oxidase is a flavin protein. Several kinetic parameters were determined, Km (glycolate) 0.33 mM and Km (O2) 76.2 microM at pH 8.0. Oxalate and oxalacetate were found to be potent competitive inhibitors against glycolate; the Ki values for oxalate and oxalacetate were 4.5 and 7.8 mM, respectively. Fatty acids such as linoleic acid inhibited the enzyme noncompetitively; the Km for linoleic acid was 0.63 mM. The regulation of glycolate oxidase in the glycolate pathway occurring in leaf peroxisomes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号