首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histrionicotoxin, a toxin isolated from skin secretions of a Colombian arrow poison frog, Dendrobates histrionicus, decreased the amplitude and time-course of the endplate current, and altered the voltage dependence of the half-decay time. In addition, the toxin produced a characteristic nonlinearity in the current-voltage relationship of the endplate current when 3-s voltage conditioning steps were used. Reduction in time of the conditioning steps to 10 ms made the current-voltage relationship linear. The decrease in peak amplitude of the endplate current (epc) produced by histrionicotoxin measured during long hyperpolarizing conditioning steps was fitted by a single exponential function. The calculated rate constants ranged from 0.03 to 0.14 s-1 and varied with membrane potential at hyperpolarizing levels. The voltage- and time-dependent action of histrionicotoxin does not require an initial activation of receptors by acetylcholine (ACh). The characteristic of the current-voltage relationship can be accounted for by the observed voltage and time dependency of the attenuation of the endplate current amplitude in the presence of histrionicotoxin during long conditioning steps. These effects of histrionicotoxin on the peak amplitude, and on the voltage and time dependence of the epc were concentration-dependent and slowly reversible upon washing out the toxin. Thus, the voltage- and time-dependent action of histrionicotoxin at the endplate is related to an increase in the affinity between the toxin and the ACh receptor-ionic channel complex. This increase in affinity is postulated to be due to a conformational change of the macromolecule in the presence of histrionicotoxin which is demonstrated to be relatively slow, i.e., on the order of tens of seconds.  相似文献   

2.
Conformational kinetics of triligated hemoglobin.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have used the method of modulated excitation (Ferrone, F.A., and J.J. Hopfield, 1976, Proc. Natl. Acad. Sci. USA. 73:4497-4501), with an improved apparatus and a revised analytical procedure, to measure the rate of conformational change between the oxy (R) and deoxy (T) conformations of triligated carboxy-hemoglobin A at pH 6.5 and 7.0. We have found the rates to be kRT = 1.2 X 10(3) s-1 and kTR = 3.5 X 10(3) s-1 for pH 6.5, while for pH 7.0, kRT = 1.0 X 10(3) s-1, and kTR = 3.0 X 10(3) s-1. The value for L3, the equilibrium constant between conformations, was virtually unchanged between pH 6.5 and 7.0. While the rates measured here differ from those obtained in the original use of this method, these new rates are fully consistent with the original data when analyzed by the revised procedures presented here. When taken with other kinetic and equilibrium data, our measurements suggest that the transition state between structures is dominated by the behavior of the T quaternary structure. Finally, a spectral feature near the HbCO Soret peak has been observed that we ascribe to an allosteric perturbation of the spectra of the liganded hemes.  相似文献   

3.
The kinetics of the Ca2+-dependent conformational change of the tryptic fragments F12 (residues 1-75) and F34 (residues 78-148) of calmodulin were studied by 1H-NMR. Resonances of two phenylalanines, 16 (or 19) and 65 (or 68), N epsilon, N epsilon, N epsilon-trimethyllysine-115 and tyrosine-138 were examined by the saturation-transfer technique or computer-aided line-shape simulation to obtain the rate of the conformational exchange between the Ca2+-free form and the Ca2+-bound form. The rates for F12 and F34 in the presence of 0.2 M KCl at 22 degrees C were 300-500 s-1 and 3-10 s-1, respectively. Activation parameters are as follows: Delta H not equal to = 11(+/- 2) kcal X M-1 and delta S not equal to = -9(+/- 5) cal X K-1 X M-1 for F12, and delta H not equal to = 16(+/- 2) kcal X M-1 and delta S not equal to = -2(+/- 5) cal X K-1 X M-1 for F34. These kinetic data for the conformational exchange are in agreement with those of Ca2+ dissociation from the binding sites obtained by 43Ca-NMR and stopped-flow fluorescence studies.  相似文献   

4.
Acetylcholine receptor from Narke japonica electroplax exhibits a fluorescence change upon binding of snake neurotoxins. This fluorescence change primarily arises from the conformational change of the acetylcholine receptor and reflects the binding process of the toxin with the receptor. The time dependence of the fluorescence change has been monitored for 28 short neurotoxins and 8 long neurotoxins by using a stopped-flow technique. The steady-state fluorescence change is of the same order of magnitude for the short neurotoxins but varies among the long neurotoxins. Nha 10, a short neurotoxin with weak neurotoxicity, causes no fluorescence change in the receptor but can still bind to the receptor with sufficiently high affinity. The substitution of the conserved residue Asp-31 to Gly-31 in Nha is probably responsible for the reduced neurotoxicity. The rate constants for the binding of the neurotoxins to the receptor have been obtained by analyzing the transient fluorescence change. The rate constants show surprisingly a wide range of distribution: (1.0-20.5) X 10(6) M-1 s-1 for short neurotoxins and (0.26-1.9) X 10(6) M-1 s-1 for long neurotoxins. Examination of the relationship between the rate constants of fluorescence change of the short neurotoxins and their amino acid sequences, thermal stability, hydrogen-deuterium exchange behavior, overall net charge, etc. reveals the following. Positive charges on the side chains of residues 27 and 30 and overall net charge of the neurotoxin govern the magnitude of the binding rate of the neurotoxin with the receptor.  相似文献   

5.
Camphor binding to a possible receptor of rat olfactory epithelium has been studied within the ligand concentration range 10(-11)-10(-6) M. At these concentrations camphor is bound by a set of receptors. They are distinguished by both the affinity to the ligand (K1 = 5 X 10(-10) M, K2 = 3.5 X 10(-8) M, K3 approximately equal to 10(-6) M) and their amount in the epithelium. The differences in the affinities are due to different values of the association rate constant of camphor (k1), which varies from 10(6) M-1 X s-1 for the receptors with high affinity up to 2 X 10(2) M-1 X s-1 for those with low affinity. These data are discussed in terms of equilibrium and kinetic models of the receptor-stimulus interaction.  相似文献   

6.
The effects of local anesthetics on the rate of the agonist-induced increase in ligand affinity of membrane-bound acetylcholine receptor from Torpedo californica were examined. The rate of the transition in receptor affinity was determined by following the time-dependent increase in inhibition of iodinated alpha-bungarotoxin binding caused by 1 microM carbamylcholine. At concentrations below those that directly inhibited the binding of iodinated alpha-bungarotoxin, dibucaine increased the rate of the transition to a high-affinity state and tetracaine decreased this rate. The measured rate constants were 0.026 +/- 0.008 s-1 in the presence and 0.010 +/- 0.002 s-1 in the absence of dibucaine while tetracaine decreased the rate to 0.006 +/- 0.002 s-1 as compared to a control value of 0.012 +/- 0.003 s-1. A parallel was observed between the effectiveness of a compound in increasing or decreasing the rate of the agonist-induced transition in affinity and the change in its apparent inhibition constant in the presence of carbamylcholine (increase or decrease) measured by the displacement of tritiated perhydrohistrionicotoxin. This parallel could be explained by assuming (a) that local anesthetics bound directly to the specific histrionicotoxin binding site or (b) that they bound to a different site and the observed effects were caused by conformational changes.  相似文献   

7.
N D Boyd  J B Cohen 《Biochemistry》1984,23(18):4023-4033
Measurements of the kinetics of binding of [3H]acetylcholine ([3H]AcCh) to membrane-bound nicotinic AcCh receptors from Torpedo electric tissue have been used to characterize the effects of a series of amine and alcohol noncompetitive antagonists on receptor conformational equilibria. The receptor exists in multiple, interconvertible conformations distinguished by agonist binding affinity. In the absence of cholinergic ligands, certain aromatic amines including proadifen, dimethisoquin, and lidocaine, as well as propanol and butanol, produce a dose-dependent increase in the fraction of receptors (f) in a high-affinity conformation from a value of fmax approximately 0.17 in the absence of drug to fmax approximately 0.9. Not all noncompetitive antagonists produce that same value of fmax. For histrionicotoxin (HTX), fmax approximately 0.3, and the aromatic amine adiphenine did not alter f while tetracaine actually decreased f to 0.1. The high-affinity receptor conformation stabilized by noncompetitive antagonists was characterized by (1) the rate constant (krec) for receptor reisomerization upon removal of stabilizing ligand and (2) the rate constant (kdis) for dissociation of [3H]AcCh-receptor complexes. On the basis of these criteria, the high-affinity receptor conformation stabilized by amine and alcohol noncompetitive blockers is the same as that stabilized by agonist. At 4 degrees C, krec = (2.2 +/- 0.2) X 10(-3) s-1 and kdis = 4 X 10(-2) s-1. Since HTX and adiphenine produced only a small conformational perturbation, their effects on the actions of proadifen and 2-propanol were examined. HTX and adiphenine antagonized the conformational perturbation caused by proadifen, while mixtures of HTX and 2-propanol produced additive effects. Effects of noncompetitive blockers were also assayed in terms of the inhibition of agonist-induced efflux of 22Na+ from Torpedo vesicles. Exposure to proadifen in the absence of agonist produced a reversible inhibition (desensitization) of the flux response, and recovery from desensitization occurred at the same rate as the reisomerization from the high-affinity receptor state.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
R Koren  G G Hammes 《Biochemistry》1976,15(5):1165-1171
Kinetic studies have been carried out of the monomer-dimer interaction of insulin, beta-lactoglobulin, and alpha-chymotrypsin using stopped-flow and temperature-jump techniques. The pH indicators bromothymol blue, bromophenol blue, and phenol red were used to monitor pH changes associated with the monomer-dimer interaction. In all three cases a kinetic process was observed which could be attributed to a simple monomer-dimer equilibrium, and association (k1) and dissociation (k-1) rate constants were determined. The results obtained are as follows: for insulin at 23 degrees C, pH 6.8, 0.125 M KNO3, k1 = 1.14 X 10(8) M-1 s-1, k-1 - 1.48 X 10(4)s(-1); for beta-lactoglobulin AB at 35 degrees C, pH 3.7, 0.025 M KNO3, d1 = 4.7 X 10(4) M-1 s-1, k-1 = 2.1 s-1; for alpha-chymotrypsin at 25 degreesC, pH 4.3, 0.05 M KNO3 k1 - 3.7 X 10(3) M-1 s-1, k-1 - 0.68 s-1. The kinetic behavior of the separated beta-lactoglobulin A and B was similar to that of the mixture. In the case of chymotrypsin, bromophenol blue was found to activate the enzyme catalyzed hydrolysis of p-nitrophenyl acetate, and a rate process was observed with the temperature jump which could be attributed to a conformational change of the indicator-protein complex. The association rate constant for dimer formation of insulin approaches the value expected for a diffusion-controlled process, while the values obtained for the other two proteins are below those expected for a diffusion-controlled reaction unless unusally large steric and electrostatic effects are present.  相似文献   

9.
P Rosen  I Pecht 《Biochemistry》1976,15(4):775-786
The redox reaction between cytochrome c (Cyt c) (P-551) and the blue copper protein azurin, both from Pseudomonas aeruginosa, was studied using the temperature-jump technique. Two relaxation times were observed in a mechanism assumed to involve three equilibria. The fast relaxation time (0.4 less than tau less than 8 ms) was ascribed to the electron exchange step. The slow relaxation time (tau congruent to 37 ms) was assigned to a conformational equilibrium of the reduced azurin that was coupled through the electron exchange step to a faster conformational equilibrium of the oxidized Cyt c (P551). But because the Cyt c (P551) isomerization, being very rapid, was uncoupled from the two slower equilibria, and was assumed to involve no spectral change, the amplitude of its relaxation time (tau congruent to 0.1 ms) would be zero. At 25 degrees C and pH 7.0 the rate constants for the oxidation and reduction of Cyt c (P551) by azurin were 6.1 X 10(6) and 7.8 X 10(6) M-1 s-1, respectively; for the formation and disappearance of the reactive conformational isomer of azurin they were 12 and 17 s-1, respectively. The rates for the Cyt c (P551) isomerization could only be estimated at approximately 10(4) s-1. The thermodynamic parameters of each reaction step were evaluated from the amplitudes of the relaxations and from Eyring plots of the rate constants. Measurements of the overall equilibrium constant showed it to be temperature independent (5-35 degrees C), i.e. deltaHtot = 0. This zero enthalpy change was found to be compatible with the enthalpies calculated for the individual steps. In the electron exchange equilibrium, the values of the activation enthalpies were two to three times higher than the values published for various low molecular weight reagents in their electron exchange with copper proteins, yet the rate of exchange between Cyt c (P551) and azurin was some hundreds of times faster. This was explained in terms of the measured positive or zero entropies of activation that could result from a high level of specificity between the proteins particularly in areas of complementary charges. The mechanism of electron transfer was considered as essentially an outer sphere reaction, of which the rate could be approximated by the Marcus theory.  相似文献   

10.
The reactions of hemerythrin from Phascolopsis gouldii with the specific sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoate), 2,2'-dithiodipyridine, and 4,4'-dithiodipyridine were studied at 25 degrees C. Spectrophotometric measurements showed that 1 mol of disulfide reacted per protein subunit consistent with a single cysteine at residue 50. Reaction leads to dissociation of the octameric structure of the native protein to monomers. The first-order rate constants at 25 degrees C and pH 9.0 for reactions of methemerythrin [(1.5 +/- 0.3) X 10(-3) s-1] and metazidohemerythrin [(4.0 +/- 0.3) X 10(-3) s-1] are independent of both the concentration and the nature of the disulfide. The reactions of methemerythrin are strongly inhibited by ClO4-ion, which however has no effect on the rates of those of metazidohemerythrin. The first-order kinetic behavior is ascribed to a conformational change involving the protein controlling the reaction, and this slow change appears to dominate a number of the reactions of hemerythrin.  相似文献   

11.
Kinetic parameters of the interaction of the toxic lectins abrin and ricin with human erythrocytes and HeLa cells have been measured. The binding of 125I-labeled abrin and ricin to human erythrocytes and to HeLa cells at 37 degrees was maximal around pH 7, whereas at 0 degrees the binding was similar over a broad pH range. The binding occurred at similar rates at 0 degrees and 37 degrees with rate constants in the range 0.9 to 3.0 X 10(5) M-1 s-1. The dissociation was strongly temperature-dependent with rate constants in the range 3.4 to 45 X 10(-4) s-1 at 0 degrees and 3.9 to 18 X 10(-3) s-1 at 37 degrees. The presence of unlabeled lectins as well as lactose increased the rate of dissociation. The association constants measured at equilibrium or calculated from the rate constants were between 0.64 X 10(8) M-1 and 8.2 X 10(8) M-1 for abrus lectins, and between 8.0 X 10(6) M-1 and 4.2 X 10(8) M-1 for ricinus lectins. The association constants for the toxins were lower at 37 degrees than at 0 degrees. Isolated ricin B chain appeared to bind with similar affinity as intact ricin. The number of binding sites was estimated to be 2 to 3 X 10(6) per erythrocyte and 1 to 3 X 10(7) per HeLa cell. The binding sites of HeLa cells all displayed a uniform affinity towards abrin and ricin, both at 0 degrees and at 37 degrees. The same was the case with the binding sites of erythrocytes at 0 degrees. However, the data indicated that at 20 degrees erythrocytes possessed binding sites with two different affinities. Only a fraction of the cell-bound toxin appeared to be irreversibly bound and could not be removed by washing with 0.1 M lactose. The fraction of the total amount of bound toxin which became irreversibly bound to HeLa cells was for both toxins about 2 X 10(-3)/min at 37 degrees, whereas no toxin was irreversibly bound at 0 degrees. In the case of erythrocytes no toxin became irreversibly bound, either at 0 degrees or 37 degrees, indicating that the toxins are unable to penetrate into these cells.  相似文献   

12.
Conformational alterations occurring in bovine alpha 2-macroglobulin (alpha 2M) resulting from proteolysis and nucleophilic modification have been monitored by UV difference spectra, circular dichroism, and changes in the fluorescence of 6-(p-toluidino)-2-naphthalenesulfonate (TNS) and bis(8-anilino-1-naphthalenesulfonate) (Bis-ANS). The results of this study indicate that these two dyes appear capable of differentiating between conformational changes induced by proteolysis and those induced by methylamine treatment. It appears that TNS is a sensitive probe for monitoring protease-induced but not methylamine-induced conformational changes in bovine alpha 2M. Bis-ANS, on the other hand, appears suitable for monitoring conformational changes induced by methylamine treatment or proteolysis of the molecule and was used as a probe to monitor the kinetics of the conformational change induced by methylamine treatment. It was found that the conformational change did not occur simultaneously with cleavage of the thiol ester bonds by the nucleophile, measured by titration of free sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoate). The data are consistent with a model in which initial nucleophilic attack results in exposure of sulfhydryl groups, resulting in a conformational change measured by an increase in fluorescence. This event is followed by a unimolecular step representing a conformational change in the protein that results in a further increase in the fluorescence signal. The second-order rate constant for hydrolysis of the thiol ester bonds was determined to be 3.4 +/- 1.0 M-1 s-1, while the rate constant for the conformational change was (4.4 +/- 0.8) X 10(-4) s-1.  相似文献   

13.
A kinetic and thermodynamic study has been carried out to characterize quantitatively the conformational equilibrium of gramicidin A (GA) in tetrahydrofuran at different peptide concentrations in the absence and presence of egg yolk phosphatidylcholine by using size-exclusion high-performance liquid chromatographic analysis. In the absence of lipid, the experimental data fit a simple dimer-monomer equilibrium, the rate and equilibrium constants for the dissociation process being (1.6 +/- 0.7) X 10(-7) s-1 and (8.5 +/- 0.3) X 10(-6) M, respectively. A higher extent of monomerization and a decrease in the time required for reaching equilibrium are detected in the presence of phospholipid, the kinetic and thermodynamic effects depending on both lipid and GA concentrations. In order to account for these observations a cyclic equilibrium mechanism is proposed which is analysed in terms of four conformational species, namely, free monomer, free dimer, lipid-bound monomer and lipid-bound dimer. The results obtained are discussed in relation to recent literature data on lipid-protein interactions.  相似文献   

14.
A J Dowding  Z W Hall 《Biochemistry》1987,26(20):6372-6381
We have isolated and characterized 12 monoclonal antibodies (mAbs) that block the binding of alpha-bungarotoxin (alpha-BuTx) to the acetylcholine receptor (AChR) of Torpedo californica. Two of the mAbs block alpha-BuTx binding completely; the other 10 inhibit only about 50% of the binding. The mAbs that partially inhibit alpha-BuTx binding can be divided into two groups by examination of the additive effect of pairs of mAbs on toxin binding, and by analysis of competition between mAbs for binding to the AChR. These two groups of mAbs, which we have termed A and B, appear to recognize different toxin-binding sites on the same receptor. A and B mAbs were used to determine the kinetic and pharmacological properties of the two sites. The site recognized by A mAbs binds alpha-BuTx with a forward rate constant of 0.98 X 10(5) M-1 s-1, d-tubocurarine (dTC) with a KD of (6.8 +/- 0.3) X 10(-8) M, and pancuronium with a KD of (1.9 +/- 1.0) X 10(-9) M. The site recognized by B mAbs binds alpha-BuTx with a forward rate constant of 9.3 X 10(5) M-1 s-1, dTC with a KD of (4.6 +/- 0.3) X 10(-6) M, and pancuronium with a KD of (9.3 +/- 0.8) X 10(-6) M. Binding of A and B mAbs to the AChR was variably inhibited by nicotinic cholinergic agonists and antagonists, and by alpha-conotoxin. The observed pattern of inhibition is consistent with the relative affinity of the two sites for antagonists as given above but also indicates that the mAbs recognize a diversity of epitopes within each site.  相似文献   

15.
In addition to steady-state properties of calcium binding to parvalbumins, kinetic studies are required for adequate evaluation of the physiological roles of parvalbumins. By using a dual-wavelength spectrophotometer equipped with a stopped-flow accessory, the transient kinetics of calcium binding to parvalbumins (PA-1 and 2) from bullfrog skeletal muscle was examined at 20 degrees C in medium containing 20 mM MOPS-KOH, pH 6.80, 0.13 mM tetramethylmurexide, 25 microM CaCl2, metal-deprived PA-1 or PA-2, various concentrations of Mg2+, and KCl to adjust the ionic strength of the medium to 0.106. The results can be explained in terms of the following rate constants under the conditions mentioned above when a second-order kinetic scheme is assumed. For PA-1, the association and apparent dissociation rate constants for Ca2+ are 1.5 X 10(7) M-1 X s-1 and 1.5 s-1, respectively, or more. The rate constants for Mg2+ are 7,500 M-1 X s-1 and 5-6 s-1, respectively. For PA-2, the rate constants for Ca2+ are 7 X 10(6) M-1 X s-1 and 1.16 s-1, respectively, and those for Mg2+ are 3,500 M-1 X s-1 and 3.5-4 s-1, respectively. Increased affinities for Ca2+ and Mg2+ at 10 degrees C are largely due to decreased apparent dissociation rate constants for these divalent cations, because no significant change in the association rate constants was found.  相似文献   

16.
Stopped-flow kinetics were made of the reaction between ascorbate-reduced Pseudomonas cytochrome oxidase and potassium ferricyanide under both N2 and CO atmospheres. Under N2 three kinetic processes were observed, two being dependent on ferricyanide concentration, with second-order rate constants of 9.6 X 10(4)M-1.s-1 and 1.5 X 10(4)M-1.s-1, whereas the other was concentration-independent, with a first-order rate constant of 0.17 +/- 0.03s-1. Measurements of their kinetic difference spectra have allowed the fastest and second-fastest phases of the reaction to be assigned to direct bimolecular reactions of ferricyanide with the haem c and haem d, moieties of the enzyme respectively. Under CO, the second-order rate constant for the reaction of the haem c was, at 1.3 X 10(5)M-1.s-1, slightly enhanced over the rate in a N2 atmosphere, but the reaction velocity of the haem d1 component was greatly decreased, being apparently limited to that of the rates of CO dissociation from the molecule (0.15s-1 and 0.03s-1). The results are compared with those obtained during a previous study of the reaction of reduced Pseudomonas cytochrome oxidase with oxidized azurin.  相似文献   

17.
The binding of [125I] alpha-latrotoxin to synaptosomes from the rat brain is studied. It is shown that the constant rate of toxin association with the synaptosome receptor at 37 degrees C is equal to 8.2 +/- 1.3 x 10(7) M-1.s-1, while that of synaptosomal membrane -7.6 +/- 2.7 x 10(6) M-1 s-1. Depolarization of the synaptosome membrane induced by 55 mM KCl decreases the binding rate of toxin to the receptor, the rate constant being equal to 3.9 +/- 1.5 x 10(7) m-1 s-1. The pattern of the dissociation process of the toxin-receptor complex of synaptosomes and of synaptosomal membrane is different. In the first case dissociation follows two stages with the rate constants 3.6 x 10(-3) s-1 and 1.2/10(-4) s-1, in the second case it follows one stage with the constant equalled 2.0 x 10(-5) s-1. The quantity of the toxin binding sites on synaptosomes may vary under the action of agents modifying the activity of calcium fluxes which are induced by alpha-latrotoxin. It is supposed that a decrease in the ATP level in synaptosomes as well as deenergy of the surface membrane leads to a change in the state of the alpha-latrotoxin receptor.  相似文献   

18.
The displacement of NADH from cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by using NAD+, 1,10-phenanthroline, ADP-ribose, deamino-NAD+ and pyridine-3-aldehyde-adenine dinucleotide as displacing agents, by following the decrease in fluorescence as a function of time. The data obtained could be fitted by assuming two first-order processes were occurring, a faster process with an apparent rate constant of 0.85 +/- 0.20 s-1 and a relative amplitude of 60 +/- 10% and a slower process with an apparent rate constant of 0.20 +/- 0.05 s-1 and a relative amplitude of 40 +/- 10% (except for pyridine-3-aldehyde-adenine dinucleotide, where the apparent rate constant for the slow process was 0.05 s-1). The displacement rates did not change significantly when the pH was varied from 6.0 to 9.0. Kinetic data are also reported for the dependence of the rate of binding of NADH to the enzyme on the total concentration of NADH. Detailed arguments are presented based on the isolation and purification procedures, the equilibrium coenzyme-binding studies and the kinetic data, which lead to the following model for the release of NADH from the enzyme: (formula: see article). The parameters that best fit the data are: k + 1 = 0.2 s-1; k - 1 = 0.05 s-1; k + 2 = 0.8 s-1 and k - 2 = 5 X 10(5)litre-mol-1-s-1. The slow phase of the NADH release is similar to the steady-state turnover number for substrates such as acetaldehyde and propionaldehyde and appears to contribute significantly to the limitation of the steady-state rate.  相似文献   

19.
We have investigated the vitellogenin (VTG) receptor system in Xenopus oocytes since these cells are specialized for endocytosis. Oocytes have between 0.2 and 3 X 10(11) receptors per 1-mm cell. There is only a single class of receptors of low affinity (1.3 X 10(-6) M at 22 degrees C and 2-4 X 10(-6) M at 0 degree C), but high specificity (less than 5% nonspecific binding at 2 X 10(-6) M). The specific internalization rate of the VTG receptor (around 2 X 10(-3) s-1) is first order, highly variable, and at the upper end of the range of values reported for mammalian cells. The receptor association rate constant (9.6 X 10(2) M-1 s-1) is extremely low although the dissociation rate constant was immeasurable. Calcium is required for VTG binding, and low pH does not dissociate the VTG-receptor complex. Monensin treatment at 100 microM caused the loss of surface receptors with a t1/2 of 3 h and the accumulation of internalized ligand in a "pre-lysosomal" endocytic compartment. Conversely, the recovery of surface VTG receptors that were removed with trypsin occurred with a t1/2 of about 2 h. These observations indicate that oocytes have very large intracellular pools of receptors and that although surface receptors are internalized on the time scale of minutes, the intracellular pool is recycled on the time scale of hours.  相似文献   

20.
Steady state and kinetic studies on the binding of 125I-beta nerve growth factor (NGF) to single cells from sensory ganglia of 8-day-old chick embryos show two distinct, saturable binding sites with dissociation constants of Kd(I) = 2.3 X 10(-11) M and Kd(II) = 1.7 X 10(-9) M. The difference in the affinities is due to different rate constants of dissociation (k-1(I) = 10(-3) s-1, k-1(II) = 2 X 10(-1 s-1). The association to both sites is apparently diffusion controlled (k+1(I) = 4.8 X 10(7) M-1s-1, k+2(II) = 10(7) to 10(8) M-1s-1). The binding of betaNGF to both sites is specific, since none of a number of hormones or proteins tested compete for the binding of 125I-betaNGF to either of those two sites. The heterogeneity of the binding of 125I-betaNGF is not due to heterogeneity of the 125I-betaNGF preparation nor to a negatively cooperative binding. In experiments where the dissociation of 125I-betaNGF is induced by the addition of saturating amounts of unlabeled betaNGF, the ratio of the 125I-betaNGF released with either of the two dissociation rate constants is solely dependent on the occupancy of the two sites before dissociation is started and is independent of the total occupancy of the sites during dissociation. The rate of dissociation of 125I-betaNGF from the higher affinity binding site I is accelerated by unlabeled betaNGF under conditions where the occupancy is both increased and decreased. Although the dissociation characteristics of 125I-beta NGF change with increasing times of exposure of the cells to the ligand, and 125I-beta NGF is degraded after it binds to the cells, these secondary processes do not interfere with the analysis of the binding data. At the lowest concentration of 125I-beta NGF used for the analysis less than 10% of the 125I-beta NGF is degraded. Both kinetic and steady state binding data reveal the two NGF binding sites at 2 degrees C as well as at 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号