首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The establishment of cell polarity involves positive-feedback mechanisms that concentrate polarity regulators, including the conserved GTPase Cdc42p, at the "front" of the polarized cell. Previous studies in yeast suggested the presence of two parallel positive-feedback loops, one operating as a diffusion-based system, and the other involving actin-directed trafficking of Cdc42p on vesicles. F-actin (and hence directed vesicle traffic) speeds fluorescence recovery of Cdc42p after photobleaching, suggesting that vesicle traffic of Cdc42p contributes to polarization. We present a mathematical modeling framework that combines previously developed mechanistic reaction-diffusion and vesicle-trafficking models. Surprisingly, the combined model recapitulated the observed effect of vesicle traffic on Cdc42p dynamics even when the vesicles did not carry significant amounts of Cdc42p. Vesicle traffic reduced the concentration of Cdc42p at the front, so that fluorescence recovery mediated by Cdc42p flux from the cytoplasm took less time to replenish the bleached pool. Simulations in which Cdc42p was concentrated into vesicles or depleted from vesicles yielded almost identical predictions, because Cdc42p flux from the cytoplasm was dominant. These findings indicate that vesicle-mediated delivery of Cdc42p is not required to explain the observed Cdc42p dynamics, and raise the question of whether such Cdc42p traffic actually contributes to polarity establishment.  相似文献   

2.
Cdc42p plays a central role in asymmetric cell growth in yeast by controlling actin organization and vesicular trafficking. However, how Cdc42p is maintained specifically at the daughter cell plasma membrane during asymmetric cell growth is unclear. We have analyzed Cdc42p localization in yeast mutants defective in various stages of membrane trafficking by fluorescence microscopy and biochemical fractionation. We found that two separate exocytic pathways mediate Cdc42p delivery to the daughter cell. Defects in one of these pathways result in Cdc42p being rerouted through the other. In particular, the pathway involving trafficking through endosomes may couple Cdc42p endocytosis from, and subsequent redelivery to, the plasma membrane to maintain Cdc42p polarization at the daughter cell. Although the endo-exocytotic coupling is necessary for Cdc42p polarization, it is not sufficient to prevent the lateral diffusion of Cdc42p along the cell cortex. A barrier function conferred by septins is required to counteract the dispersal of Cdc42p and maintain its localization in the daughter cell but has no effect on the initial polarization of Cdc42p at the presumptive budding site before symmetry breaking. Collectively, membrane trafficking and septins function synergistically to maintain the dynamic polarization of Cdc42p during asymmetric growth in yeast.  相似文献   

3.
Cdc42p is a Rho GTPase that initiates signaling cascades at spatially defined intracellular sites for many cellular functions. We have previously shown that Cdc42p is localized to the yeast vacuole where it initiates actin polymerization during membrane fusion. Here we examine the activation cycle of Cdc42p during vacuole membrane fusion. Expression of either GTP- or GDP-locked Cdc42p mutants caused several morphological defects including enlarged cells and fragmented vacuoles. Stimulation of multiple rounds of fusion enhanced vacuole fragmentation, suggesting that cycles of Cdc42p activation, involving rounds of GTP binding and hydrolysis, are required to propagate Cdc42p signaling. We developed an assay to directly examine Cdc42p activation based on affinity to a probe derived from the p21-activated kinase effector, Ste20p. Cdc42p was rapidly activated during vacuole membrane fusion, which kinetically coincided with priming subreaction. During priming, Sec18p ATPase activity dissociates SNARE complexes and releases Sec17p, however, priming inhibitors such as Sec17p and Sec18p ligands did not block Cdc42p activation. Therefore, Cdc42p activation seems to be a parallel subreaction of priming, distinct from Sec18p activity. Specific mutants in the ergosterol synthesis pathway block both Sec17p release and Cdc42p activation. Taken together, our results define a novel sterol-dependent subreaction of vacuole priming that activates cycles of Cdc42p activity to facilitate membrane fusion.  相似文献   

4.
Pheromone signalling in Saccharomyces cerevisiae is mediated by the STE4-STE18 G-protein beta gamma subunits. A possible target for the subunits is Ste20p, whose structural homolog, the serine/threonine kinase PAK, is activated by GTP-binding p21s Cdc42 and Rac1. The putative Cdc42p-binding domain of Ste20p, expressed as a fusion protein, binds human and yeast GTP-binding Cdc42p. Cdc42p is required for alpha-factor-induced activation of FUS1.cdc24ts strains defective for Cdc42p GDP/GTP exchange show no pheromone induction at restrictive temperatures but are partially rescued by overexpression of Cdc42p, which is potentiated by Cdc42p12V mutants. Epistatic analysis indicates that CDC24 and CDC42 lie between STE4 and STE20 in the pathway. The two-hybrid system revealed that Ste4p interacts with Cdc24p. We propose that Cdc42p plays a pivotal role both in polarization of the cytoskeleton and in pheromone signalling.  相似文献   

5.
In budding yeast, the Rho-type GTPase Cdc42p is essential for cell division and regulates pseudohyphal development and invasive growth. Here, we isolated novel Cdc42p mutant proteins with single-amino-acid substitutions that are sufficient to uncouple functions of Cdc42p essential for cell division from regulatory functions required for pseudohyphal development and invasive growth. In haploid cells, Cdc42p is able to regulate invasive growth dependent on and independent of FLO11 gene expression. In diploid cells, Cdc42p regulates pseudohyphal development by controlling pseudohyphal cell (PH cell) morphogenesis and invasive growth. Several of the Cdc42p mutants isolated here block PH cell morphogenesis in response to nitrogen starvation without affecting morphology or polarity of yeast form cells in nutrient-rich conditions, indicating that these proteins are impaired for certain signaling functions. Interaction studies between development-specific Cdc42p mutants and known effector proteins indicate that in addition to the p21-activated (PAK)-like protein kinase Ste20p, the Cdc42p/Rac-interactive-binding domain containing Gic1p and Gic2p proteins and the PAK-like protein kinase Skm1p might be further effectors of Cdc42p that regulate pseudohyphal and invasive growth.  相似文献   

6.
We previously showed that activation of the small GTPase Cdc42 promotes breast cell migration on a collagen matrix. Here we further define the signaling pathways that drive this response and show that Cdc42-mediated migration relies on the adaptor molecule p130(Cas). Activated Cdc42 enhanced p130(Cas) phosphorylation and its binding to Crk. Cdc42-driven migration and p130(Cas) phosphorylation were dependent on the Cdc42 effector Ack1 (activated Cdc42-associated kinase). Ack1 formed a signaling complex that also included Cdc42, p130(Cas), and Crk, formation of which was regulated by collagen stimulation. The interaction between Ack1 and p130(Cas) occurred through their respective SH3 domains, while the substrate domain of p130(Cas) was the major site of Ack1-dependent phosphorylation. Signaling through this complex is functionally relevant, because treatment with either p130(Cas) or Ack1 siRNA blocked Cdc42-induced migration. These results suggest that Cdc42 exerts its effects on cell migration in part through its effector Ack1, which regulates p130(Cas) signaling.  相似文献   

7.
In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p becomes phosphorylated in a cell cycle-dependent manner, triggered by Cdc28p. However, the role of Cdc28p is indirect, and the phosphorylation appears to be catalyzed by the p21-activated kinase family member Cla4p and also depends on Cdc42p and the scaffold protein Bem1p. Expression of GTP-Cdc42p, the product of Cdc24p-mediated GDP/GTP exchange, stimulated Cdc24p phosphorylation independent of cell cycle cues, raising the possibility that the phosphorylation is part of a feedback regulatory pathway. Bem1p binds directly to Cdc24p, to Cla4p, and to GTP-bound Cdc42p and can mediate complex formation between these proteins in vitro. We suggest that Bem1p acts to concentrate polarity establishment proteins at a discrete site, facilitating polarization and promoting Cdc24p phosphorylation at specific times during the cell cycle.  相似文献   

8.
Cdc42p is a highly conserved low-molecular-weight GTPase that is involved in controlling cellular morphogenesis. We have isolated the Cdc42p homolog from the fission yeast Schizosaccharomyces pombe by its ability to complement the Saccharomyces cerevisiae cdc42-1ts mutation. S. pombe Cdc42p is 85% identical in predicted amino acid sequence to S. cerevisiae Cdc42p and 83% identical to the human Cdc42p homolog. The Cdc42p protein fractionates to both soluble and particulate fractions, suggesting that it exists in two cellular pools. We have disrupted the cdc42+ gene and shown that it is essential for growth. The cdc42 null phenotype is an arrest as small, round, dense cells. In addition, we have generated three site-specific mutations, G12V, Q61L, and D118A, in the Cdc42p GTP-binding domains that correspond to dominant-lethal mutations in S. cerevisiae CDC42. In contrast to the S. cerevisiae cdc42 mutations, the S. pombe cdc42 mutant alleles were not lethal when overexpressed. However, the cdc42 mutants did exhibit an abnormal morphological phenotype of large, misshapen cells, suggesting that S. pombe Cdc42p is involved in controlling polarized cell growth.  相似文献   

9.
Site-specific activation of the Rho-type GTPase Cdc42p is critical for the establishment of cell polarity. Here we investigated the role and regulation of the GTPase-activating enzymes (GAPs) Bem2p and Bem3p for Cdc42p activation and actin polarization at bud emergence in Saccharomyces cerevisiae. Bem2p and Bem3p are localized throughout the cytoplasm and the cell cortex in unbudded G1 cells, but accumulate at sites of polarization after bud emergence. Inactivation of Bem2p results in hyperactivation of Cdc42p and polarization toward multiple sites. Bem2p and Bem3p are hyperphosphorylated at bud emergence most likely by the Cdc28p-Cln2p kinase. This phosphorylation appears to inhibit their GAP activity in vivo, as non-phosphorylatable Bem3p mutants are hyperactive and interfere with Cdc42p activation. Taken together, our results indicate that Bem2p and Bem3p may function as global inhibitors of Cdc42p activation during G1, and their inactivation by the Cdc28p/Cln kinase contributes to site-specific activation of Cdc42p at bud emergence.  相似文献   

10.
The highly conserved small Rho G-protein, Cdc42p plays a critical role in cell polarity and cytoskeleton organization in all eukaryotes. In the yeast Saccharomyces cerevisiae, Cdc42p is important for cell polarity establishment, septin ring assembly, and pheromone-dependent MAP-kinase signaling during the yeast mating process. In this study, we further investigated the role of Cdc42p in the mating process by screening for specific mating defective cdc42 alleles. We have identified and characterized novel mating defective cdc42 alleles that are unaffected in vegetative cell polarity. Replacement of the Cdc42p Val36 residue with Met resulted in a specific cell fusion defect. This cdc42[V36M] mutant responded to mating pheromone but was defective in cell fusion and in localization of the cell fusion protein Fus1p, similar to a previously isolated cdc24 (cdc24-m6) mutant. Overexpression of a fast cycling Cdc42p mutant suppressed the cdc24-m6 fusion defect and conversely, overexpression of Cdc24p suppressed the cdc42[V36M] fusion defect. Taken together, our results indicate that Cdc42p GDP-GTP cycling is critical for efficient cell fusion.  相似文献   

11.
Polarized cell growth requires the coupling of a defined spatial site on the cell cortex to the apparatus that directs the establishment of cell polarity. In the budding yeast Saccharomyces cerevisiae, the Ras-family GTPase Rsr1p/Bud1p and its regulators select the proper site for bud emergence on the cell cortex. The Rho-family GTPase Cdc42p and its associated proteins then establish an axis of polarized growth by triggering an asymmetric organization of the actin cytoskeleton and secretory apparatus at the selected bud site. We explored whether a direct linkage exists between the Rsr1p/Bud1p and Cdc42p GTPases. Here we show specific genetic interactions between RSR1/BUD1 and particular cdc42 mutants defective in polarity establishment. We also show that Cdc42p coimmunoprecipitated with Rsr1p/Bud1p from yeast extracts. In vitro studies indicated a direct interaction between Rsr1p/Bud1p and Cdc42p, which was enhanced by Cdc24p, a guanine nucleotide exchange factor for Cdc42p. Our findings suggest that Cdc42p interacts directly with Rsr1p/Bud1p in vivo, providing a novel mechanism by which direct contact between a Ras-family GTPase and a Rho-family GTPase links the selection of a growth site to polarity establishment.  相似文献   

12.
Cdc42 GTPase is required for polarization in eukaryotic cells, but its spatial regulation is poorly understood. In Schizosaccharomyces pombe, Cdc42p is activated by Scd1p and Gef1p, two guanine-nucleotide exchange factors. Two-hybrid screening identified Hob3p as a Gef1p binding partner. Hob3p is a BAR domain-containing protein ortholog of human Bin3. Hob3p also interacts directly with Cdc42p independently of Gef1p. Hob3p, Cdc42p and Gef1p form a complex, and Hob3p facilitates Gef1p-Cdc42p interaction and activation. Hob3p forms a ring in the division area, similar to that of Gef1p. This localization requires actin polymerization and Cdc15p but is independent of the septation initiation network. Hob3p is required for the concentration of Cdc42p to the division area. The actomyosin ring contraction is slower in hob3Delta than in wild-type cells, and this contributes to its cytokinesis defect. Moreover, this report extends previous evidence that human Bin3 suppresses the cytokinesis phenotype of hob3Delta cells, showing that Bin3 can partially recover the GTP-Cdc42p level and its localization. These results suggest that Hob3p is required to recruit and activate Cdc42p at the cell division site and that this function might be conserved in other eukaryotes.  相似文献   

13.
In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399-416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization site in unbudded cells. We provide evidence that dispersal is due to endocytosis associated with cortical actin patches and that actin cables are required to counteract the dispersal and maintain Cdc42p polarity. Thus, although Cdc42p is initially polarized in an actin-independent manner, maintaining that polarity may involve a reinforcing feedback between Cdc42p and polarized actin cables to counteract the dispersing effects of actin-dependent endocytosis. In addition, we report that once a bud has formed, polarized Cdc42p becomes more resistant to dispersal, revealing an unexpected difference between unbudded and budded cells in the organization of the polarization site.  相似文献   

14.
15.
Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P2 specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.  相似文献   

16.
Actin filaments are dynamically reorganized to accommodate ever-changing cellular needs for intracellular transport, morphogenesis, and migration. Formins, a major family of actin nucleators, are believed to function as direct effectors of Rho GTPases, such as the polarity regulator Cdc42p. However, the presence of extensive redundancy has made it difficult to assess the in vivo significance of the low-affinity Rho GTPase–formin interaction and specifically whether Cdc42p polarizes the actin cytoskeleton via direct formin binding. Here we exploit a synthetically rewired budding yeast strain to eliminate the redundancy, making regulation of the formin Bni1p by Cdc42p essential for viability. Surprisingly, we find that direct Cdc42p–Bni1p interaction is dispensable for Bni1p regulation. Alternative paths linking Cdc42p and Bni1p via “polarisome” components Spa2p and Bud6p are also collectively dispensable. We identify a novel regulatory input to Bni1p acting through the Cdc42p effector, Gic2p. This pathway is sufficient to localize Bni1p to the sites of Cdc42p action and promotes a polarized actin organization in both rewired and wild-type contexts. We suggest that an indirect mechanism linking Rho GTPases and formins via Rho effectors may provide finer spatiotemporal control for the formin-nucleated actin cytoskeleton.  相似文献   

17.
Saccharomyces cerevisiae Cdc42p functions as a GTPase molecular switch, activating multiple signaling pathways required to regulate cell cycle progression and the actin cytoskeleton. Regulatory proteins control its GTP binding and hydrolysis and its subcellular localization, ensuring that Cdc42p is appropriately activated and localized at sites of polarized growth during the cell cycle. One of these, the Rdi1p guanine nucleotide dissociation inhibitor, negatively regulates Cdc42p by extracting it from cellular membranes. In this study, the technique of bimolecular fluorescence complementation (BiFC) was used to study the dynamic in vivo interactions between Cdc42p and Rdi1p. The BiFC data indicated that Cdc42p and Rdi1p interacted in the cytoplasm and around the periphery of the cell at the plasma membrane and that this interaction was enhanced at sites of polarized cell growth during the cell cycle, i.e., incipient bud sites, tips and sides of small- and medium-sized buds, and the mother-bud neck region. In addition, a ring-like structure containing the Cdc42p-Rdi1p complex transiently appeared following release from G1-phase cell cycle arrest. A homology model of the Cdc42p-Rdi1p complex was used to introduce mutations that were predicted to affect complex formation. These mutations resulted in altered BiFC interactions, restricting the complex exclusively to either the plasma membrane or the cytoplasm. Data from these studies have facilitated the temporal and spatial modeling of Rdi1p-dependent extraction of Cdc42p from the plasma membrane during the cell cycle.  相似文献   

18.
Endochondral ossification consists of successive steps of chondrocyte differentiation, including mesenchymal condensation, differentiation of chondrocytes, and hypertrophy followed by mineralization and ossification. Loss-of-function studies have revealed that abnormal growth plate cartilage of the Cdc42 mutant contributes to the defects in endochondral bone formation. Here, we have investigated the roles of Cdc42 in osteogenesis and signaling cascades governing Cdc42-mediated chondrogenic differentiation. Though deletion of Cdc42 in limb mesenchymal progenitors led to severe defects in endochondral ossification, either ablation of Cdc42 in limb preosteoblasts or knockdown of Cdc42 in vitro had no obvious effects on bone formation and osteoblast differentiation. However, in Cdc42 mutant limb buds, loss of Cdc42 in mesenchymal progenitors led to marked inactivation of p38 and Smad1/5, and in micromass cultures, Cdc42 lay on the upstream of p38 to activate Smad1/5 in bone morphogenetic protein-2-induced mesenchymal condensation. Finally, Cdc42 also lay on the upstream of protein kinase B to transactivate Sox9 and subsequently induced the expression of chondrocyte differential marker in transforming growth factor-β1-induced chondrogenesis. Taken together, by using biochemical and genetic approaches, we have demonstrated that Cdc42 is involved not in osteogenesis but in chondrogenesis in which the BMP2/Cdc42/Pak/p38/Smad signaling module promotes mesenchymal condensation and the TGF-β/Cdc42/Pak/Akt/Sox9 signaling module facilitates chondrogenic differentiation.  相似文献   

19.
The Cdc42p GTPase is involved in the signal transduction cascades controlling bud emergence and polarized cell growth in S. cerevisiae. Cells expressing the cdc42(V44A) effector domain mutant allele displayed morphological defects of highly elongated and multielongated budded cells indicative of a defect in the apical-isotropic switch in bud growth. In addition, these cells contained one, two, or multiple nuclei indicative of a G2/M delay in nuclear division and also a defect in cytokinesis and/or cell separation. Actin and chitin were delocalized, and septin ring structure was aberrant and partially delocalized to the tips of elongated cdc42(V44A) cells; however, Cdc42(V44A)p localization was normal. Two-hybrid protein analyses showed that the V44A mutation interfered with Cdc42p's interactions with Cla4p, a p21(Cdc42/Rac)-activated kinase (PAK)-like kinase, and the novel effectors Gic1p and Gic2p, but not with the Ste20p or Skm1p PAK-like kinases, the Bni1p formin, or the Iqg1p IQGAP homolog. Furthermore, the cdc42(V44A) morphological defects were suppressed by deletion of the Swe1p cyclin-dependent kinase inhibitory kinase and by overexpression of Cla4p, Ste20p, the Cdc12 septin protein, or the guanine nucleotide exchange factor Cdc24p. In sum, these results suggest that proper Cdc42p function is essential for timely progression through the apical-isotropic switch and G2/M transition and that Cdc42(V44A)p differentially interacts with a number of effectors and regulators.  相似文献   

20.
The GTPase Cdc42p is essential for polarity establishment in animals and fungi.1 Human Cdc42p can functionally replace yeast Cdc42p,2 indicating a high degree of evolutionary conservation. Current models of Cdc42p action generally follow the signaling paradigm established for Ras, in which receptors responding to an initiating stimulus cause guanine nucleotide exchange factors (GEFs) to trigger GTP-loading of Ras, leading to engagement of downstream effectors and ensuing cell proliferation. Key support for the Ras paradigm came from the finding that oncogenic forms of Ras, unable to hydrolyze GTP and therefore constitutively GTP-bound, mimicked the effect of constitutive signaling by the upstream receptors even in the absence of stimuli. Attempts to assess whether or not this paradigm is valid for Cdc42p-induced polarization of yeast cells have yielded conflicting results.3-6 Here, we discuss the available information on this issue and conclude that unlike Ras signaling, Cdc42p directed polarity establishment additionally requires cycling between GTP- and GDP-bound forms. We suggest that such cycling is critical for a little-studied “function” of Cdc42p: its ability to designate a unique portion of the cell cortex to become the polarization site, and to become concentrated at that site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号