首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analyzing the stability of a multimeric protein is challenging because of the intrinsic difficulty in handling the mathematical model for the folded multimer-unfolded monomer equilibrium. To circumvent this problem, we introduce the concept of effective stability, DeltaGeff (= -RTlnKeff), where Keff is the equilibrium constant expressed in monomer units. Analysis of the denaturant effect on DeltaGeff gives new insight into the stability of multimeric proteins. When a multimeric protein is mostly folded, the dependence of effective stability on denaturant concentration (effective m-value) is simply the m-value of its monomeric unit. However, when the protein is mostly unfolded, its stability depends on denaturant concentration with the m-value of its multimeric form. We also find that the effective m-value at the Cm is a good approximation of the apparent m-value determined by fitting the equilibrium unfolding data from multimeric proteins with a two-state monomer model. Moreover, when the m-value of a monomeric unit is estimated from its size, the effective stability of a multimeric protein can be determined simply from Cm and this estimated m-value. These simple and intuitive approaches will allow a facile analysis of the stability of multimeric proteins. These analyses are also applicable for high-throughput analysis of protein stability on a proteomic scale.  相似文献   

2.
Fluorescence resonance energy transfer (FRET) was used to establish a novel in vivo screening system that allows rapid detection of protein folding and protein variants with increased thermodynamic stability in the cytoplasm of Escherichia coli. The system is based on the simultaneous fusion of the green fluorescent protein (GFP) to the C terminus of a protein X of interest, and of blue-fluorescent protein (BFP) to the N terminus of protein X. Efficient FRET from BFP to GFP in the ternary fusion protein is observed in vivo only when protein X is folded and brings BFP and GFP into close proximity, while FRET is lost when BFP and GFP are far apart due to unfolding or intracellular degradation of protein X. The screening system was validated by identification of antibody V(L) intradomains with increased thermodynamic stabilities from expression libraries after random mutagenesis, bacterial cell sorting, and colony screening.  相似文献   

3.
Repeat proteins have a modular organization and a regular architecture that make them attractive models for design and directed evolution experiments. HEAT repeat proteins, although very common, have not been used as a scaffold for artificial proteins, probably because they are made of long and irregular repeats. Here, we present and validate a consensus sequence for artificial HEAT repeat proteins. The sequence was defined from the structure-based sequence analysis of a thermostable HEAT-like repeat protein. Appropriate sequences were identified for the N- and C-caps. A library of genes coding for artificial proteins based on this sequence design, named αRep, was assembled using new and versatile methodology based on circular amplification. Proteins picked randomly from this library are expressed as soluble proteins. The biophysical properties of proteins with different numbers of repeats and different combinations of side chains in hypervariable positions were characterized. Circular dichroism and differential scanning calorimetry experiments showed that all these proteins are folded cooperatively and are very stable (Tm > 70 °C). Stability of these proteins increases with the number of repeats. Detailed gel filtration and small-angle X-ray scattering studies showed that the purified proteins form either monomers or dimers. The X-ray structure of a stable dimeric variant structure was solved. The protein is folded with a highly regular topology and the repeat structure is organized, as expected, as pairs of alpha helices. In this protein variant, the dimerization interface results directly from the variable surface enriched in aromatic residues located in the randomized positions of the repeats. The dimer was crystallized both in an apo and in a PEG-bound form, revealing a very well defined binding crevice and some structure flexibility at the interface. This fortuitous binding site could later prove to be a useful binding site for other low molecular mass partners.  相似文献   

4.
This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor.  相似文献   

5.
We have recently identified in Drosophila melanogaster a new gene encoding a nuclear protein, DIP1. Here we report the developmental expression and the finding that DIP1 subcellular localization is in the nucleus and at the nuclear periphery during interphase in embryos. Interestingly, in humans, DIP1 antibody identified signals in nuclei from cultured cells and reacted with a rough 30kDa protein in Western blotting experiments, demonstrating evolutionary conservation.  相似文献   

6.
The paper proposes a hybrid system based approach for modelling of intracellular networks and introduces a restricted subclass of hybrid systems – HSM – with an objective of still being able to provide sufficient power for the modelling of biological systems, while imposing some restrictions that facilitate analysis of systems described by such models.  相似文献   

7.
The histone-like nucleoid structuring (H-NS) protein is a global modulator of gene expression in Gram-negative bacteria. VicH, the H-NS protein of Vibrio cholerae, regulates the expression of certain major virulence determinants implicated in the pathogenesis of cholera. We present here the 2.5A crystal structure of the N-terminal oligomerisation domain of VicH (VicH_Nt). VicH_Nt adopts the same fold and dimeric assembly as the NMR structure of Escherichia coli H-NS_Nt, thus validating this fold against conflicting data. The structural similarity of V.cholerae VicH_Nt and E.coli H-NS_Nt, despite differences in origin, system of expression, experimental conditions and techniques used, indicates that the fold determined in our studies is robust to experimental conditions. Structural analysis and homology modelling were carried out to further elucidate the molecular basis of the functional polyvalence of the N-terminal domain. Our analysis of members of the H-NS superfamily supports the suggestion that the oligomerisation function of H-NS_Nt is conserved even in more distantly related proteins.  相似文献   

8.
Trichomoniasis is a sexually transmitted disease due to infection with Trichomonas vaginalis, and it can cause serious consequences for women's health. To study the virulence factors of this pathogen, T. vaginalis surface proteins were investigated using polyclonal antibodies specific to the membrane fractions of T. vaginalis. The T. vaginalis expression library was constructed by cloning the cDNA derived from mRNA of T. vaginalis into a phage λ Uni-ZAP XR vector, and then used for immunoscreening with the anti-membrane proteins of T. vaginalis antibodies. The immunoreactive proteins identified included adhesion protein AP65-1, α-actinin, kinesin-associated protein, teneurin, and 2 independent hypothetical proteins. Immunofluorescence assays showed that AP65-1, one of the identified immunogenic clones, is prevalent in the whole body of T. vaginalis. This study led us to identify T. vaginalis proteins which may stimulate immune responses by human cells.  相似文献   

9.
Two distinct oxysterol binding protein (OSBP)-related proteins (ORPs) have been identified from the parasitic protist Cryptosporidium parvum (CpORP1 and CpORP2). The short-type CpOPR1 contains only a ligand binding (LB) domain, while the long-type CpORP2 contains Pleckstrin homology (PH) and LB domains. Lipid-protein overlay assays using recombinant proteins revealed that CpORP1 and CpORP2 could specifically bind to phosphatidic acid (PA), various phosphatidylinositol phosphates (PIPs), and sulfatide, but not to other types of lipids with simple heads. Cholesterol was not a ligand for these two proteins. CpOPR1 was found mainly on the parasitophorous vacuole membrane (PVM), suggesting that CpORP1 is probably involved in the lipid transport across this unique membrane barrier between parasites and host intestinal lumen. Although Cryptosporidium has two ORPs, other apicomplexans including Plasmodium, Toxoplasma, and Eimeria possess only a single long-type ORP, suggesting that this family of proteins may play different roles among apicomplexans.  相似文献   

10.
Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (> 326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.  相似文献   

11.
Improving coiled-coil stability by optimizing ionic interactions   总被引:5,自引:0,他引:5  
Alpha-helical coiled coils are a common protein oligomerization motif stabilized mainly by hydrophobic interactions occurring along the coiled-coil interface. We have recently designed and solved the structure of a two-heptad repeat coiled-coil peptide that is stabilized further by a complex network of inter- and intrahelical salt-bridges in addition to the hydrophobic interactions. Here, we extend and improve the de novo design of this two heptad-repeat peptide by four newly designed peptides characterized by different types of ionic interactions. The contribution of these different types of ionic interactions to coiled-coil stability are analyzed by CD spectroscopy and analytical ultracentrifugation. We show that all peptides are highly alpha-helical and two of them are 100% dimeric under physiological conditions. Furthermore, we have solved the X-ray structure of the most stable of these peptides and the rational design principles are verified by comparing this structure to the structure of the parent peptide. We show that by combining the most favorable inter- and intrahelical salt-bridge arrangements it is possible to design coiled-coil oligomerization domains with improved stability properties.  相似文献   

12.
We describe a generic, GFP-based pipeline for membrane protein overexpression and purification in Escherichia coli. We exemplify the use of the pipeline by the identification and characterization of E. coli YedZ, a new, membrane-integral flavocytochrome. The approach is scalable and suitable for high-throughput applications. The GFP-based pipeline will facilitate the characterization of the E. coli membrane proteome and serves as an important reference for the characterization of other membrane proteomes.  相似文献   

13.
The key protein in the initiation of Helicobacter pylori chromosome replication, DnaA, has been characterized. The amount of the DnaA protein was estimated to be approximately 3000 molecules per single cell; a large part of the protein was found in the inner membrane. The H.pylori DnaA protein has been analysed using in vitro (gel retardation assay and surface plasmon resonance (SPR)) as well as in silico (comparative computer modeling) studies. DnaA binds a single DnaA box as a monomer, while binding to the fragment containing several DnaA box motifs, the oriC region, leads to the formation of high molecular mass nucleoprotein complexes. In comparison with the Escherichia coli DnaA, the H.pylori DnaA protein exhibits lower DNA-binding specificity; however, it prefers oriC over non-box DNA fragments. As determined by gel retardation techniques, the H.pylori DnaA binds with a moderate level of affinity to its origin of replication (4nM). Comparative computer modelling showed that there are nine residues within the binding domain which are possible determinants of the reduced H.pylori DnaA specificity. Of these, the most interesting is probably the triad PTL; all three residues show significant divergence from the consensus, and Thr398 is the most divergent residue of all.  相似文献   

14.
The gene-3-protein (G3P) of filamentous phage is essential for their propagation. It consists of three domains. The CT domain anchors G3P in the phage coat, the N2 domain binds to the F pilus of Escherichia coli and thus initiates infection, and the N1 domain continues by interacting with the TolA receptor. Phage are thus only infective when the three domains of G3P are tightly linked, and this requirement is exploited by Proside, an in vitro selection method for proteins with increased stability. In Proside, a repertoire of variants of the protein to be stabilized is inserted between the N2 and the CT domains of G3P. Stabilized variants can be selected because they resist cleavage by a protease and thus maintain the essential linkage between the domains. The method is limited by the proteolytic stability of G3P itself. We improved the stability of G3P by subjecting the phage without a guest protein to rounds of random in vivo mutagenesis and proteolytic Proside selections. Variants of G3P with one to four mutations were selected, and the temperature at which the corresponding phage became accessible for a protease increased in a stepwise manner from 40 degrees C to almost 60 degrees C. The N1-N2 fragments of wild-type gene-3-protein and of the four selected variants were purified and their stabilities towards thermal and denaturant-induced unfolding were determined. In the biphasic transitions of these proteins domain dissociation and unfolding of N2 occur in a concerted reaction in the first step, followed by the independent unfolding of domain N1 in the second step. N2 is thus less stable than N1, and it unfolds when the interactions with N1 are broken. The strongest stabilizations were caused by mutations in domain N2, in particular in its hinge subdomain, which provides many stabilizing interactions between the N1 and N2 domains. These results reveal how the individual domains and their assembly contribute to the overall stability of two-domain proteins and how mutations are optimally placed to improve the stability of such proteins.  相似文献   

15.
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.  相似文献   

16.
17.
18.
We generated a recombinant 96-residue polypeptide corresponding to a sequence Tyr176-Gly273 of ice nucleation protein from Pseudomonas syringae (denoted INP96). INP96 exhibited an ability to shape an ice crystal, whose morphology is highly similar to the hexagonal-bipyramid generally identified for antifreeze protein. INP96 also showed a non-linear, concentration-dependent retardation of ice growth. Additionally, circular dichroism and NMR measurements suggested a local structural construction in INP96, which undergoes irreversible thermal denaturation. These data imply that a part of INP constructs a unique structure so as to interact with the ice crystal surfaces.  相似文献   

19.
The proteins of the mitochondrial intermembrane space (IMS) are encoded by nuclear genes and synthesized on cytosolic ribosomes. While some IMS proteins are imported by the classical presequence pathway that involves the membrane potential deltapsi across the inner mitochondrial membrane and proteolytic processing to release the mature protein to the IMS, the import of numerous small IMS proteins is independent of a deltapsi and does not include proteolytic processing. The biogenesis of small IMS proteins requires an essential mitochondrial IMS import and assembly protein, termed Mia40. Here, we show that Erv1, a further essential IMS protein that has been reported to function as a sulfhydryl oxidase and participate in biogenesis of Fe/S proteins, is also required for the biogenesis of small IMS proteins. We generated a temperature-sensitive yeast mutant of Erv1 and observed a strong reduction of the levels of small IMS proteins upon shift of the cells to non-permissive temperature. Isolated erv1-2 mitochondria were selectively impaired in import of small IMS proteins while protein import pathways to other mitochondrial subcompartments were not affected. Small IMS precursor proteins remained associated with Mia40 in erv1-2 mitochondria and were not assembled into mature oligomeric complexes. Moreover, Erv1 associated with Mia40 in a reductant-sensitive manner. We conclude that two essential proteins, Mia40 and Erv1, cooperate in the assembly pathway of small proteins of the mitochondrial IMS.  相似文献   

20.
The family of calcineurin B-like (CBL) proteins is a unique group of Ca2+ sensors in plants. CBLs relay the calcium signal by interacting with and regulating the family of CBL-interacting protein kinases (CIPKs). Extensive studies have demonstrated that the CBL-CIPK complexes mediate plant responses to a variety of external stresses. However, there are few reports on the CBL-CIPK involved in cold stress responses. In this study, we analyzed expression of CIPK7 and CBL1 in Arabidopsis during cold treatments. Expression of CIPK7 was induced by cold, and CIPK7 interacted with CBL1 in vitro. Moreover, affinity chromatography purification of CIPK7 from Arabidopsis plants using CBL1 suggested that CIPK7 may associate with CBL1 in vivo. Expression of CBL1 was cold inducible, and CBL1 had a role in regulating cold response. By comparing expression patterns of CIPK7 between wild-type and cbl1 mutant plants, we found the induction of CIPK7 by cold stress was influenced by CBL1. This is the first report to demonstrate that CIPK7 may play a role in cold response via its interaction with CBL1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号