首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lactobacillus reuteri is both a gut symbiont and a stable member of sourdough microbiota. This study employed multilocus sequence analysis and an analysis of host-specific physiological and genetic traits to assign five sourdough isolates to rodent- or human-specific lineages. Comparative genome hybridization revealed that the model sourdough isolate LTH2584 had a genome content very similar to that of the model rodent isolate 100-23. These results demonstrate that sourdough isolates of L. reuteri are of intestinal origin.  相似文献   

3.
4.
5.
EPS formed by lactobacilli in situ during sourdough fermentation may replace hydrocolloids currently used as texturizing, antistaling, or prebiotic additives in bread production. In this study, a screening of >100 strains of cereal-associated and intestinal lactic acid bacteria was performed for the production of exopolysaccharides (EPS) from sucrose. Fifteen strains produced fructan, and four strains produced glucan. It was remarkable that formation of glucan and fructan was most frequently found in intestinal isolates and strains of the species Lactobacillus reuteri, Lactobacillus pontis, and Lactobacillus frumenti from type II sourdoughs. By the use of PCR primers derived from conserved amino acid sequences of bacterial levansucrase genes, it was shown that 6 of the 15 fructan-producing lactobacilli and none of 20 glucan producers or EPS-negative strains carried a levansucrase gene. In sourdough fermentations, it was determined whether those strains producing EPS in MRS medium modified as described by Stolz et al. (37) and containing 100 g of sucrose liter(-1) as the sole source of carbon also produce the same EPS from sucrose during sourdough fermentation in the presence of 12% sucrose. For all six EPS-producing strains evaluated in sourdough fermentations, in situ production of EPS at levels ranging from 0.5 to 2 g/kg of flour was demonstrated. Production of EPS from sucrose is a metabolic activity that is widespread among sourdough lactic acid bacteria. Thus, the use of these organisms in bread production may allow the replacement of additives.  相似文献   

6.
Lactobacillus reuteri CRL1098 produces cobalamin   总被引:1,自引:0,他引:1       下载免费PDF全文
We found that Lactobacillus reuteri CRL1098, a lactic acid bacterium isolated from sourdough, is able to produce cobalamin. The sugar-glycerol cofermentation in vitamin B(12)-free medium showed that this strain was able to reduce glycerol through a well-known cobalamin-dependent reaction with the formation of 1,3-propanediol as a final product. The cell extract of L. reuteri corrected the coenzyme B12 requirement of Lactobacillus delbrueckii subsp. lactis ATCC 7830 and allowed the growth of Salmonella enterica serovar Typhimurium (metE cbiB) and Escherichia coli (metE) in minimal medium. Preliminary genetic studies of cobalamin biosynthesis genes from L. reuteri allowed the identification of cob genes which encode the CobA, CbiJ, and CbiK enzymes involved in the cobalamin pathway. The cobamide produced by L. reuteri, isolated in its cyanide form by using reverse-phase high-pressure liquid chromatography, showed a UV-visible spectrum identical to that of standard cyanocobalamin (vitamin B12).  相似文献   

7.
A Lactobacillus reuteri strain isolated from sourdough is known to produce the vitamin cobalamin. The organism requires this for glycerol cofermentation by a cobalamin-dependent enzyme, usually termed glycerol dehydratase, in the synthesis of the antimicrobial substance reuterin. We show that the cobalamin-synthesizing capacity of another L. reuteri strain (20016, the type strain, isolated from the human gut and recently sequenced as F275) is genetically and phenotypically linked, as in the Enterobacteriaceae, to the production of a cobalamin-dependent enzyme which is associated with a bacterial microcompartment (metabolosome) and known as diol dehydratase. We show that this enzyme allows L. reuteri to carry out a disproportionation reaction converting 1,2-propanediol to propionate and propanol. The wide distribution of this operon suggests that it is adapted to horizontal transmission between bacteria. However, there are significant genetic and phenotypic differences between the Lactobacillus background and the Enterobacteriaceae. Electron microscopy reveals that the bacterial microcompartment in L. reuteri occupies a smaller percentage of the cytoplasm than in gram-negative bacteria. DNA sequence data show evidence of a regulatory control mechanism different from that in gram-negative bacteria, with the presence of a catabolite-responsive element (CRE) sequence immediately upstream of the pdu operon encoding diol dehydratase and metabolosome structural genes in L. reuteri. The metabolosome-associated diol dehydratase we describe is the only candidate glycerol dehydratase present on inspection of the L. reuteri F275 genome sequence.  相似文献   

8.
A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation.  相似文献   

9.
10.
The effect of the glutathione reductase (GshR) activity of Lactobacillus sanfranciscensis DSM20451(T) on the thiol levels in fermented sourdoughs was determined, and the oxygen tolerance of the strain was also determined. The gshR gene coding for a putative GshR was sequenced and inactivated by single-crossover integration to yield strain L. sanfranciscensis DSM20451(T)DeltagshR. The gene disruption was verified by sequencing the truncated gshR and surrounding regions on the chromosome. The gshR activity of L. sanfranciscensis DSM20451(T)DeltagshR was strongly reduced compared to that of the wild-type strain, demonstrating that gshR indeed encodes an active GshR enzyme. The thiol levels in wheat doughs fermented with L. sanfranciscensis DSM20451 increased from 9 microM to 10.5 microM sulfhydryl/g of dough during a 24-h sourdough fermentation, but in sourdoughs fermented with L. sanfranciscensis DSM20451(T)DeltagshR and in chemically acidified doughs, the thiol levels decreased to 6.5 to 6.8 microM sulfhydryl/g of dough. Remarkably, the GshR-negative strains Lactobacillus pontis LTH2587 and Lactobacillus reuteri BR11 exerted effects on thiol levels in dough comparable to those of L. sanfranciscensis. In addition to the effect on thiol levels in sourdough, the loss of GshR activity in L. sanfranciscensis DSM20451(T)DeltagshR resulted in a loss of oxygen tolerance. The gshR mutant strain exhibited a strongly decreased aerobic growth rate on modified MRS medium compared to either the growth rate under anaerobic conditions or that of the wild-type strain, and aerobic growth was restored by the addition of cysteine. Moreover, the gshR mutant strain was more sensitive to the superoxide-generating agent paraquat.  相似文献   

11.
Sourdough is a very competitive and challenging environment for microorganisms. Usually, a stable microbiota composed of lactic acid bacteria (LAB) and yeasts dominates this ecosystem. Although sourdough is rich in carbohydrates, thus providing an ideal environment for microorganisms to grow, its low pH presents a particular challenge. The nature of the adaptation to this low pH was investigated for Lactobacillus plantarum IMDO 130201, an isolate from a laboratory wheat sourdough fermentation. Batch fermentations were carried out in wheat sourdough simulation medium, and total RNA was isolated from mid-exponential-growth-phase cultures, followed by differential gene expression analysis using a LAB functional gene microarray. At low pH values, an increased expression of genes involved in peptide and amino acid metabolism was found as well as that of genes involved in plantaricin production and lipoteichoic acid biosynthesis. The results highlight cellular mechanisms that allow L. plantarum to function at a low environmental pH.  相似文献   

12.
Members of the genus Lactobacillus are common inhabitants of the gut, yet little is known about the traits that contribute to their ecological performance in gastrointestinal ecosystems. Lactobacillus reuteri 100-23 persists in the gut of the reconstituted Lactobacillus-free mouse after a single oral inoculation. Recently, three genes of this strain that were specifically induced (in vivo induced) in the murine gut were identified (38). We report here the detection of a gene of L. reuteri 100-23 that encodes a high-molecular-mass surface protein (Lsp) that shows homology to proteins involved in the adherence of other bacteria to epithelial cells and in biofilm formation. The three in vivo-induced genes and lsp of L. reuteri 100-23 were inactivated by insertional mutagenesis in order to study their biological importance in the murine gastrointestinal tract. Competition experiments showed that mutation of lsp and a gene encoding methionine sulfoxide reductase (MsrB) reduced ecological performance. Mutation of lsp impaired the adherence of the bacteria to the epithelium of the mouse forestomach and altered colonization dynamics. Homologues of lsp and msrB are present in the genomes of several strains of Lactobacillus and may play an important role in the maintenance of these bacteria in gut ecosystems.  相似文献   

13.
14.
Bacteriocin production in Lactobacillus sake LTH673 involves at least four operons: a regulatory operon (sppIPKR); two operons encoding bacteriocins and their immunity proteins (sppAiA and orfX); and an operon needed for secretion (sppTE). We show here that the response regulator encoded by sppR in L. sake LTH673, as well as the homologous response regulators encoded by plnC and plnD in Lactobacillus plantarum C11, bind to characteristic repeats found in the -80 to -40 regions of spp operons. The promoters controlling bacteriocin operons are strictly regulated, and their activity is increased more than 1000-fold upon activation. Constitutive expression for the regulatory and transport operons is driven, at least in part, by promoters upstream of the -80 to -40 regions. Peak promoter activity of the regulatory and transporter operons precedes that of the two bacteriocin operons. The results reveal how promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus differ in strength, leakiness and timing of their activity.  相似文献   

15.
The aim of this study was to evaluate the use of mono and mixed lactic acid bacteria (LAB) cultures to determine suitable LAB combinations for a type II sourdough system. In this context, previously isolated sourdough LAB strains with antimicrobial activity, which included Lactobacillus plantarum PFC22, Lactobacillus brevis PFC31, Pediococcus acidilactici PFC38, and Lactobacillus sanfranciscensis PFC80, were used as mono or mixed culture combinations in a fermentation system to produce type II sourdough, and subsequently in bread dough production. Compared to the monoculture fermentation of dough, the use of mixed cultures shortened the adaptation period by half. In addition, the use of mixed cultures ensured higher microbial viability, and enhanced the fruity flavor during bread dough production. It was determined that the combination of L. plantarum PFC22 + P. acidilactici PFC38 + L. sanfranciscensis PFC80 is a promising culture mixture that can be used in the production of type II sourdough systems, and that may also contribute to an increase in metabolic activity during bread production process.  相似文献   

16.
The microbiota of two industrially processed rice sourdoughs was characterised by bacteriological culture in combination with PCR-denaturing gradient gel electrophoresis (DGGE) and 16S/28S rDNA sequence analysis. Rice sourdough I was continuously propagated for several years by back-slopping every week, whereas sourdough II was processed by using a commercial starter culture and back-slopping daily for three days. In rice sourdough II Candida krusei and Saccharomyces cerevisiae as well as Lactobacillus fermentum, Lactobacillus gallinarum, Lactobacillus kimchii, Lactobacillus plantarum, and Lactobacillus pontis dominated at the first day of fermentation. RAPD analysis of lactobacilli revealed identical profiles for each of the species except for L. fermentum and L. pontis indicating the presence of different strains. Fluctuations within the LAB community during fermentation were monitored by PCR-DGGE. L. pontis decreased in numbers over time and L. curvatus became dominant after 3 days of fermentation. Rice sourdough I contained S. cerevisiae, Lactobacillus paracasei (present with three different RAPD types), Lactobacillus paralimentarius, and a Lactobacillus strain which could not be allotted to any valid species. Phylogenetic analysis based on 16S rDNA sequences revealed Lactobacillus brevis as the closest relative (97.3% sequence similarity). Differences in some phenotypic characteristics and DNA-DNA relatedness indicated that the strain represents a new Lactobacillus species, for which the name Lactobacillus spicheri is proposed.  相似文献   

17.
Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation.  相似文献   

18.
19.
Four sourdoughs (A to D) were produced under practical conditions by using a starter mixture of three commercially available sourdough starters and a baker's yeast constitutively containing various species of lactic acid bacteria (LAB). The sourdoughs were continuously propagated until the composition of the LAB flora remained stable. Two LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) systems were established and used to monitor the development of the microflora. Depending on the prevailing ecological conditions in the different sourdough fermentations, only a few Lactobacillus species were found to be competitive and became dominant. In sourdough A (traditional process with rye flour), Lactobacillus sanfranciscensis and a new species, L. mindensis, were detected. In rye flour sourdoughs B and C, which differed in the process temperature, exclusively L. crispatus and L. pontis became the predominant species in sourdough B and L. crispatus, L. panis, and L. frumenti became the predominant species in sourdough C. On the other hand, in sourdough D (corresponding to sourdough C but produced with rye bran), L. johnsonii and L. reuteri were found. The results of PCR-DGGE were consistent with those obtained by culturing, except for sourdough B, in which L. fermentum was also detected. Isolates of the species L. sanfranciscensis and L. fermentum were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively.  相似文献   

20.
Aims: The present work tests the feasibility of the isothermal microcalorimetry method to study the performance of individual lactic acid bacteria during solid‐state fermentation in rye sourdough. Another aim was to elucidate the key factors leading to the formation of different microbial consortia in laboratory and industrial sourdough during continuous backslopping propagation. Methods and Results: Strains of the individual LAB isolated from industrial and laboratory sourdough cycle were grown in 10 kGy irradiated rye dough in vials of an isothermal calorimeter and the power–time curves were obtained. Sugars, organic acids and free amino acids in the sourdough were measured. The OD–time curves of the LAB strains during growth in flour extract or MRS (De Man, Rogosa and Sharpe) broth were also determined. The maximum specific growth rates of Lactobacillus sakei, Lactobacillus brevis, Lactobacillus curvatus and Leuconostoc citreum strains that dominated in backslopped laboratory sourdough were higher than those of Lactobacillus helveticus, Lactobacillus panis, Lactobacillus vaginalis, Lactobacillus casei and Lactobacillus pontis strains originating from industrial sourdough. Industrial strains had higher specific growth rates below pH 4·8. It was supposed that during long‐run industrial backslopping processes, the oxygen sensitive species start to dominate because of the O2 protective effect of rye sourdough. Conclusions: Measurements of the power–time curves revealed that the LAB strains dominating in the industrial sourdough cycle had better acid tolerance but lower maximum growth rate and oxygen tolerance than species isolated from a laboratory sourdough cycle. Significance and Impact of the Study: Isothermal microcalorimetry combined with chemical analysis is a powerful method for characterization of sourdough fermentation process and determination of growth characteristics of individual bacteria in sourdough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号