首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atsK gene of Pseudomonas putida S-313 was required for growth with alkyl sulfate esters as sulfur source. The AtsK protein was overexpressed in Escherichia coli and purified to homogeneity. Sequence analysis revealed that AtsK was closely related to E. coli taurine dioxygenase (38% amino acid identity). The AtsK protein catalyzed the alpha-ketoglutarate-dependent cleavage of a range of alkyl sulfate esters, with chain lengths ranging from C(4) to C(12), required oxygen and Fe(2+) for activity and released succinate, sulfate, and the corresponding aldehyde as products. Enzyme activity was optimal at pH 7 and was strongly stimulated by ascorbate. Unlike most other characterized alpha-ketoglutarate-dependent dioxygenases, AtsK accepted a range of alpha-keto acids as co-substrates, including alpha-ketoglutarate (K(m) 140 microm), alpha-ketoadipate, alpha-ketovalerate, and alpha-ketooctanoate. The measured K(m) values for hexyl sulfate and SDS were 40 and 34 microm, respectively. The apparent M(r) of the purified enzyme of 121,000 was consistent with a homotetrameric structure, which is unusual for this enzyme superfamily, members of which are usually monomeric or dimeric. The properties and amino acid sequence of the AtsK enzyme thus define it as an unusual oxygenolytic alkylsulfatase and a novel member of the alpha-ketoglutarate-dependent dioxygenase family.  相似文献   

2.
The alkylsulfatase AtsK from Pseudomonas putida S-313 belongs to the widespread and versatile non-heme iron(II) alpha-ketoglutarate-dependent dioxygenase superfamily and catalyzes the oxygenolytic cleavage of a variety of different alkyl sulfate esters to the corresponding aldehyde and sulfate. The enzyme is only expressed under sulfur starvation conditions, providing a selective advantage for bacterial growth in soils and rhizosphere. Here we describe the crystal structure of AtsK in the apo form and in three complexes: with the cosubstrate alpha-ketoglutarate, with alpha-ketoglutarate and iron, and finally with alpha-ketoglutarate, iron, and an alkyl sulfate ester used as substrate in catalytic studies. The overall fold of the enzyme is closely related to that of the taurine/alpha-ketoglutarate dioxygenase TauD and is similar to the fold observed for other members of the enzyme superfamily. From comparison of these structures with the crystal structure of AtsK and its complexes, we propose a general mechanism for the catalytic cycle of the alpha-ketoglutarate-dependent dioxygenase superfamily.  相似文献   

3.
Taurine/alpha-ketoglutarate dioxygenase (TauD), a non-heme Fe(II) oxygenase, catalyses the conversion of taurine (2-aminoethanesulfonate) to sulfite and aminoacetaldehyde concurrent with the conversion of alpha-ketoglutarate (alphaKG) to succinate and CO(2). The enzyme allows Escherichia coli to use taurine, widely available in the environment, as an alternative sulfur source. Here we describe the X-ray crystal structure of TauD complexed to Fe(II) and both substrates, alphaKG and taurine. The tertiary structure and fold of TauD are similar to those observed in other enzymes from the broad family of Fe(II)/alphaKG-dependent oxygenases, with closest structural similarity to clavaminate synthase. Using the TauD coordinates, a model was determined for the closely related enzyme 2,4-dichlorophenoxyacetate/alphaKG dioxygenase (TfdA), supporting predictions derived from site-directed mutagenesis and other studies of that biodegradative protein. The TauD structure and TfdA model define the metal ligands and the positions of nearby aromatic residues that undergo post-translational modifications involving self-hydroxylation reactions. The substrate binding residues of TauD were identified and those of TfdA predicted. These results, along with sequence alignment information, reveal how TauD selects a tetrahedral substrate anion in preference to the planar carboxylate selected by TfdA, providing insight into the mechanism of enzyme catalysis.  相似文献   

4.
Taurine/alpha-ketoglutarate dioxygenase (TauD), a non-heme mononuclear Fe(II) oxygenase, liberates sulfite from taurine in a reaction that requires the oxidative decarboxylation of alpha-ketoglutarate (alphaKG). The lilac-colored alphaKG-Fe(II)TauD complex (lambda(max) = 530 nm; epsilon(530) = 140 M(-)(1) x cm(-)(1)) reacts with O(2) in the absence of added taurine to generate a transient yellow species (lambda(max) = 408 nm, minimum of 1,600 M(-)(1) x cm(-)(1)), with apparent first-order rate constants for formation and decay of approximately 0.25 s(-)(1) and approximately 0.5 min(-)(1), that transforms to yield a greenish brown chromophore (lambda(max) = 550 nm, 700 M(-)(1) x cm(-)(1)). The latter feature exhibits resonance Raman vibrations consistent with an Fe(III) catecholate species presumed to arise from enzymatic self-hydroxylation of a tyrosine residue. Significantly, (18)O labeling studies reveal that the added oxygen atom derives from solvent rather than from O(2). The transient yellow species, identified as a tyrosyl radical on the basis of EPR studies, is formed after alphaKG decomposition. Substitution of two active site tyrosine residues (Tyr73 and Tyr256) by site-directed mutagenesis identified Tyr73 as the likely site of formation of both the tyrosyl radical and the catechol-associated chromophore. The involvement of the tyrosyl radical in catalysis is excluded on the basis of the observed activity of the enzyme variants. We suggest that the Fe(IV) oxo species generally proposed (but not yet observed) as an intermediate for this family of enzymes reacts with Tyr73 when substrate is absent to generate Fe(III) hydroxide (capable of exchanging with solvent) and the tyrosyl radical, with the latter species participating in a multistep TauD self-hydroxylation reaction.  相似文献   

5.
The genome of Mycobacterium tuberculosis (Mtb) encodes nine putative sulfatases, none of which have a known function or substrate. Here, we characterize Mtb’s single putative type II sulfatase, Rv3406, as a non-heme iron (II) and α-ketoglutarate-dependent dioxygenase that catalyzes the oxidation and subsequent cleavage of alkyl sulfate esters. Rv3406 was identified based on its homology to the alkyl sulfatase AtsK from Pseudomonas putida. Using an in vitro biochemical assay, we confirmed that Rv3406 is a sulfatase with a preference for alkyl sulfate substrates similar to those processed by AtsK. We determined the crystal structure of the apo Rv3406 sulfatase at 2.5 Å. The active site residues of Rv3406 and AtsK are essentially superimposable, suggesting that the two sulfatases share the same catalytic mechanism. Finally, we generated an Rv3406 mutant (Δrv3406) in Mtb to study the sulfatase’s role in sulfate scavenging. The Δrv3406 strain did not replicate in minimal media with 2-ethyl hexyl sulfate as the sole sulfur source, in contrast to wild type Mtb or the complemented strain. We conclude that Rv3406 is an iron and α-ketoglutarate-dependent sulfate ester dioxygenase that has unique substrate specificity that is likely distinct from other Mtb sulfatases.  相似文献   

6.
2-Aminoethanesulfonic acid (taurine)/α-ketoglutarate (αKG) dioxygenase (TauD) is a mononuclear non-heme iron enzyme that catalyzes the hydroxylation of taurine to generate sulfite and aminoacetaldehyde in the presence of O2, αKG, and Fe(II). Fe(II)TauD complexed with αKG or succinate, the decarboxylated product of αKG, reacts with O2 in the absence of prime substrate to generate 550- and 720-nm chromophores, respectively, that are interconvertible by the addition or removal of bound bicarbonate and have resonance Raman features characteristic of an Fe(III)–catecholate complex. Mutagenesis studies suggest that both reactions result in the self-hydroxylation of the active-site residue Tyr73, and liquid chromatography nano-spray mass spectrometry/mass spectrometry evidence corroborates this result for the succinate reaction. Furthermore, isotope-labeling resonance Raman studies demonstrate that the oxygen atom incorporated into the tyrosyl residue derives from H2 18O and 18O2 for the αKG and succinate reactions, respectively, suggesting distinct mechanistic pathways. Whereas the αKG-dependent hydroxylation likely proceeds via an Fe(IV)=O intermediate that is known to be generated during substrate hydroxylation, we propose Fe(III)–OOH (or Fe(V)=O) as the oxygenating species in the succinate-dependent reaction. These results demonstrate the two oxygenating mechanisms available to enzymes with a 2-His-1-carboxylate triad, depending on whether the electron source donates one or two electrons.  相似文献   

7.
8.
The three metal-binding ligands of the archetype Fe(II)/alpha-ketoglutarate (alphaKG)-dependent hydroxylase, taurine/alphaKG dioxygenase (TauD), were systematically mutated to examine the effects of various ligand substitutions on enzyme activity and metallocenter properties. His99, coplanar with alphaKG and Fe(II), is unalterable in terms of maintaining an active enzyme. Asp101 can be substituted only by a longer carboxylate, with the D101E variant exhibiting 22% the k(cat) and threefold the K(m) of wild-type enzyme. His255, located opposite the O(2)-binding site, is less critical for activity and can be substituted by Gln or even the negatively charged Glu (81% and 33% active, respectively). Transient kinetic studies of the three highly active mutant proteins reveal putative Fe(IV)-oxo intermediates as reported in wild-type enzyme, but with distinct kinetics. Supplementation of the buffer with formate enhances activity of the D101A variant, consistent with partial chemical rescue of the missing metal ligand. Upon binding Fe(II), anaerobic samples of wild-type TauD and the three highly active variants generate a weak green chromophore resembling a catecholate-Fe(III) species. Evidence is presented that the quinone oxidation state of dihydroxyphenylalanine, formed by aberrant self-hydroxylation of a protein side chain of TauD during aerobic bacterial growth, reacts with Fe(II) to form this species. The spectra associated with Fe(II)-TauD and Co(II)-TauD in the presence of alphaKG and taurine were examined for all variants to gain additional insights into perturbations affecting the metallocenter. These studies present the first systematic mutational analysis of metallocenter ligands in an Fe(II)/alphaKG-dependent hydroxylase.  相似文献   

9.
Methylating agents are ubiquitous in the environment, and central in cancer therapy. The 1-methyladenine and 3-methylcytosine lesions in DNA/RNA contribute to the cytotoxicity of such agents. These lesions are directly reversed by ABH3 (hABH3) in humans and AlkB in Escherichia coli. Here, we report the structure of the hABH3 catalytic core in complex with iron and 2-oxoglutarate (2OG) at 1.5 A resolution and analyse key site-directed mutants. The hABH3 structure reveals the beta-strand jelly-roll fold that coordinates a catalytically active iron centre by a conserved His1-X-Asp/Glu-X(n)-His2 motif. This experimentally establishes hABH3 as a structural member of the Fe(II)/2OG-dependent dioxygenase superfamily, which couples substrate oxidation to conversion of 2OG into succinate and CO2. A positively charged DNA/RNA binding groove indicates a distinct nucleic acid binding conformation different from that predicted in the AlkB structure with three nucleotides. These results uncover previously unassigned key catalytic residues, identify a flexible hairpin involved in nucleotide flipping and ss/ds-DNA discrimination, and reveal self-hydroxylation of an active site leucine that may protect against uncoupled generation of dangerous oxygen radicals.  相似文献   

10.
11.
Rieske dioxygenases catalyze the reductive activation of O2 for the formation of cis-dihydrodiols from unactivated aromatic compounds. It is known that O2 is activated at a mononuclear non-heme iron site utilizing electrons supplied by a nearby Rieske iron sulfur cluster. However, it is controversial whether the reactive species is an Fe(III)-(hydro)peroxo or an Fe(II)-(hydro)peroxo (or electronically equivalent species formed by breaking the O-O bond). Here it is shown that benzoate 1,2 dioxygenase oxygenase component (BZDO) prepared in a form with the Rieske cluster oxidized and the mononuclear iron in the Fe(III) state can utilize H2O2 as a source of reduced oxygen to form the correct cis-dihydrodiol product from benzoate. The reaction approaches stoichiometric yield relative to the mononuclear Fe(III) concentration, being limited to a single turnover by inefficient product release from the Fe(III)-product complex. EPR and M?ssbauer studies show that the iron remains ferric throughout this single turnover "peroxide shunt" reaction. These results strongly support Fe(III)-(hydro)peroxo (or Fe(V)-oxo-hydroxo) as the reactive species because there is no source of additional reducing equivalents to form the Fe(II)-(hydro)peroxo state. This conclusion could be further tested in the case of BZDO because the peroxide shunt occurs very slowly compared with normal turnover, allowing the reactive intermediate to be trapped for spectroscopic analysis. We attribute the slow reaction rate to a forced change in the normally strict order of the substrate binding and enzyme reduction steps that regulate the catalytic cycle. The reactive intermediate is a high-spin ferric species exhibiting an unusual negative zero field splitting and other EPR and M?ssbauer spectroscopic properties reminiscent of previously characterized side-on-bound peroxide adducts of Fe(III) model complexes. If the species in BZDO is a similar adduct, its isomer shift is most consistent with an Fe(III)-hydroperoxo reactive state.  相似文献   

12.
Borowski T  Bassan A  Siegbahn PE 《Biochemistry》2004,43(38):12331-12342
Density functional calculations using the B3LYP functional has been used to study the reaction mechanism of 4-hydroxyphenylpyruvate dioxygenase. The first part of the catalytic reaction, dioxygen activation, is found to have the same mechanism as in alpha-ketoglutarate-dependent enzymes; the ternary enzyme-substrate-dioxygen complex is first decarboxylated to the iron(II)-peracid intermediate, followed by heterolytic cleavage of the O-O bond yielding an iron(IV)-oxo species. This highly reactive intermediate attacks the aromatic ring at the C1 position and forms a radical sigma complex, which can either form an arene oxide or undergo a C1-C2 side-chain migration. The arene oxide is found to have no catalytic relevance. The side-chain migration is a two-step process; the carbon-carbon bond cleavage first affords a biradical intermediate, followed by a decay of this species forming the new C-C bond. The ketone intermediate formed by a 1,2 shift of an acetic acid group rearomatizes either at the active site of the enzyme or in solution. The hypothetical oxidation of the aromatic ring at the C2 position was also studied to shed light on the 4-HPPD product specificity. In addition, the benzylic hydroxylation reaction, catalyzed by 4-hydroxymandelate synthase, was also studied. The results are in good agreement with the experimental findings.  相似文献   

13.
In humans, heme iron is the most abundant iron source, and bacterial pathogens such as Staphylococcus aureus acquire it for growth. IsdB of S. aureus acquires Fe(III)-protoporphyrin IX (heme) from hemoglobin for transfer to IsdC via IsdA. These three cell-wall-anchored Isd (iron-regulated surface determinant) proteins contain conserved NEAT (near iron transport) domains. The purpose of this work was to delineate the mechanism of heme binding and transfer between the NEAT domains of IsdA, IsdB, and IsdC using a combination of structural and spectroscopic studies. X-ray crystal structures of IsdA NEAT domain (IsdA-N1) variants reveal that removing the native heme-iron ligand Tyr166 is compensated for by iron coordination by His83 on the distal side and that no single mutation of distal loop residues is sufficient to perturb the IsdA-heme complex. Also, alternate heme-iron coordination was observed in structures of IsdA-N1 bound to reduced Fe(II)-protoporphyrin IX and Co(III)-protoporphyrin IX. The IsdA-N1 structural data were correlated with heme transfer kinetics from the NEAT domains of IsdB and IsdC. We demonstrated that the NEAT domains transfer heme at rates comparable to full-length proteins. The second-order rate constant for heme transfer from IsdA-N1 was modestly affected (< 2-fold) by the IsdA variants, excluding those at Tyr166. Substituting Tyr166 with Ala or Phe changed the reaction mechanism to one with two observable steps and decreased observed rates > 15-fold (to 100-fold excess IsdC). We propose a heme transfer model wherein NEAT domain complexes pass heme iron directly from an iron-coordinating Tyr of the donor protein to the homologous Tyr residues of the acceptor protein.  相似文献   

14.
Homogentisate dioxygenase (HGO) cleaves the aromatic ring during the metabolic degradation of Phe and Tyr. HGO deficiency causes alkaptonuria (AKU), the first human disease shown to be inherited as a recessive Mendelian trait. Crystal structures of apo-HGO and HGO containing an iron ion have been determined at 1.9 and 2.3 A resolution, respectively. The HGO protomer, which contains a 280-residue N-terminal domain and a 140-residue C-terminal domain, associates as a hexamer arranged as a dimer of trimers. The active site iron ion is coordinated near the interface between subunits in the HGO trimer by a Glu and two His side chains. HGO represents a new structural class of dioxygenases. The largest group of AKU associated missense mutations affect residues located in regions of contact between subunits.  相似文献   

15.
The homoprotocatechuate 2,3-dioxygenase from Arthrobacter globiformis (MndD) catalyzes the oxidative ring cleavage reaction of its catechol substrate in an extradiol fashion. Although this reactivity is more typically associated with non-heme iron enzymes, MndD exhibits an unusual specificity for manganese(II). MndD is structurally very similar to the iron(II)-dependent homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum (HPCD), and we have previously shown that both MndD and HPCD are equally active towards substrate turnover with either iron(II) or manganese(II) (Emerson et al. in Proc. Natl. Acad. Sci. USA 105:7347–7352, 2008). However, expression of MndD in Escherichia coli under aerobic conditions in the presence of excess iron results in the isolation of inactive blue-green iron-substituted MndD. Spectroscopic studies indicate that this form of iron-substituted MndD contains an iron(III) center with a bound catecholate, which is presumably generated by in vivo self-hydroxylation of a second-sphere tyrosine residue, as found for other self-hydroxylated non-heme iron oxygenases. The absence of this modification in either the native manganese-containing MndD or iron-containing HPCD suggests that the metal center of iron-substituted MndD is able to bind and activate O2 in the absence of its substrate, employing a high-valence oxoiron oxidant to carry out the observed self-hydroxylation chemistry. These results demonstrate that the active site metal in MndD can support two dramatically different O2 activation pathways, further highlighting the catalytic flexibility of enzymes containing a 2-His-1-carboxylate facial triad metal binding motif.  相似文献   

16.
Coetsee M  Millar RP  Flanagan CA  Lu ZL 《Biochemistry》2008,47(39):10305-10313
Molecular modeling showed interactions of Tyr (290(6.58)) in transmembrane domain 6 of the GnRH receptor with Tyr (5) of GnRH I, and His (5) of GnRH II. The wild-type receptor exhibited high affinity for [Phe (5)]GnRH I and [Tyr (5)]GnRH II, but 127- and 177-fold decreased affinity for [Ala (5)]GnRH I and [Ala (5)]GnRH II, indicating that the aromatic ring in position 5 is crucial for receptor binding. The receptor mutation Y290F decreased affinity for GnRH I, [Phe (5)]GnRH I, GnRH II and [Tyr (5)]GnRH II, while Y290A and Y290L caused larger decreases, suggesting that both the para-OH and aromatic ring of Tyr (290(6.58)) are important for binding of ligands with aromatic residues in position 5. Mutating Tyr (290(6.58)) to Gln increased affinity for Tyr (5)-containing GnRH analogues 3-12-fold compared with the Y290A and Y290L mutants, suggesting a hydrogen-bond between Gln of the Y290Q mutant and Tyr (5) of GnRH analogues. All mutations had small effects on affinity of GnRH analogues that lack an aromatic residue in position 5. These results support direct interactions of the Tyr (290(6.58)) side chain with Tyr (5) of GnRH I and His (5) of GnRH II. Tyr (290(6.58)) mutations, except for Y290F, caused larger decreases in GnRH potency than affinity, indicating that an aromatic ring is important for the agonist-induced receptor conformational switch.  相似文献   

17.
Homoprotocatechuate 2,3-dioxygenase isolated from Brevibacterium fuscum utilizes an active site Fe(II) and O(2) to catalyze proximal extradiol cleavage of the substrate aromatic ring. In contrast to other members of the ring cleaving dioxygenase family, the transient kinetics of the extradiol dioxygenase catalytic cycle have been difficult to study because the iron is nearly colorless and EPR silent. Here, it is shown that the reaction cycle kinetics can be monitored by utilizing the alternative substrate 4-nitrocatechol (4NC), which is also cleaved in the proximal extradiol position. Changes in the optical spectrum of 4NC occurring as a result of ionization, environmental changes, and ring cleavage allow both the substrate binding and product formation phases of the reaction to be studied. It is shown that substrate binding occurs in a four-step process probably involving binding to two ionization states of the enzyme at different rates. Following an initial rapid binding of the monoanionic 4NC in the active site, slower binding to the Fe(II) and conversion to the dianionic form occur. The bound dianionic 4NC reacts rapidly with O(2) in four additional steps, apparently occurring in sequence. On the basis of the optical properties of the intermediates, these steps are hypothesized to be O(2) binding to the iron, isomerization of the resulting complex, ring opening, and product release. The natural substrate appears to form the same intermediates but with much larger rate constants. These are the first transient intermediates to be reported for an extradiol dioxygenase reaction.  相似文献   

18.
Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteine sulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5-A resolution, and these results confirm the canonical cupin beta-sandwich fold and the rare cysteinyltyrosine intramolecular cross-link (between Cys(93) and Tyr(157)) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His(86), His(88), and His(140)) and a water molecule. Attempts to acquire a structure with bound ligand using either cocrystallization or soaking crystals with cysteine revealed the formation of a mixed disulfide involving Cys(164) near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploration of the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.  相似文献   

19.
The Fe(II)- and alpha-ketoglutarate(alphaKG)-dependent dioxygenases have roles in synthesis of collagen and sensing of oxygen in mammals, in acquisition of nutrients and synthesis of antibiotics in microbes, and in repair of alkylated DNA in both. A consensus mechanism for these enzymes, involving (i) addition of O(2) to a five-coordinate, (His)(2)(Asp)-facially coordinated Fe(II) center to which alphaKG is also bound via its C-1 carboxylate and ketone oxygen; (ii) attack of the uncoordinated oxygen of the bound O(2) on the ketone carbonyl of alphaKG to form a bicyclic Fe(IV)-peroxyhemiketal complex; (iii) decarboxylation of this complex concomitantly with formation of an oxo-ferryl (Fe(IV)=O(2)(-)) intermediate; and (iv) hydroxylation of the substrate by the Fe(IV)=O(2)(-) complex via a substrate radical intermediate, has repeatedly been proposed, but none of the postulated intermediates occurring after addition of O(2) has ever been detected. In this work, an oxidized Fe intermediate in the reaction of one of these enzymes, taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli, has been directly demonstrated by rapid kinetic and spectroscopic methods. Characterization of the intermediate and its one-electron-reduced form (obtained by low-temperature gamma-radiolysis of the trapped intermediate) by M?ssbauer and electron paramagnetic resonance spectroscopies establishes that it is a high-spin, formally Fe(IV) complex. Its M?ssbauer isomer shift is, however, significantly greater than those of other known Fe(IV) complexes, suggesting that the iron ligands in the TauD intermediate confer significant Fe(III) character to the high-valent site by strong electron donation. The properties of the complex and previous results on related alphaKG-dependent dioxygenases and other non-heme-Fe(II)-dependent, O(2)-activating enzymes suggest that the TauD intermediate is most probably either the Fe(IV)-peroxyhemiketal complex or the taurine-hydroxylating Fe(IV)=O(2)(-) species. The detection of this intermediate sets the stage for a more detailed dissection of the TauD reaction mechanism than has previously been reported for any other member of this important enzyme family.  相似文献   

20.
Li N  Ma DL  Liu X  Wu L  Chu X  Wong KY  Li D 《The protein journal》2007,26(8):569-576
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Urogen III synthase catalyzes a key step in the formation of urogen III, a common intermediate for tetrapyrrolic natural products. In the present study, we cloned, purified, and characterized His-tagged rat urogen III synthase. The mechanism of enzymatic reaction was studied through site-directed mutagenesis of eight highly conserved residues with functional side chains around the active site followed with activity tests. Lys10, Asp17, Glu68, Tyr97, Asn121, Lys147, and His173 have not been studied previously, which were found to be unessential for enzymatic reaction. Tyr168 was identified as an important residue for enzymatic reaction catalyzed by rat urogen III synthase. Molecular modeling suggests the hydroxyl group of Tyr168 side chain is 3.5 A away from the D ring, and is within hydrogen bond distance (1.9 A) with acetate side chain of the D ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号