首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on liver tumors among 416 Swedish patients who were exposed to Thorotrast between 1930 and 1950 were analyzed with the biologically based two-step clonal expansion (TSCE) model. For background data, the Swedish Cancer Register for the follow-up period 1958 to 1997 was used. Effects of radiation on the initiating mutation and on the clonal expansion rate explained the observed patterns well. The TSCE model permits the deduction of several kinetic parameters of the postulated tumorigenesis process. Dose rates of 5 mGy/year double the spontaneous initiation rate. The clonal expansion rate is doubled by 80 mGy/year, and for females it reaches a plateau at dose rates beyond 240 mGy/year. For males the plateau is not significant. The magnitude of the estimated promoting effect of radiation can be explained with a moderate increase in the cell replacement probability for the intermediate cells in the liver, which is strikingly similar to the situation in lung tumorigenesis.  相似文献   

2.
Lung cancer incidence among the atomic bomb survivors from Hiroshima and Nagasaki was analysed with the two-step clonal expansion (TSCE) model of carcinogenesis. For the baseline incidence, a new set of model parameters is introduced, which can be determined with a higher precision than the parameter sets previously used. The effect of temporal changes in the smoking behaviour on the lung cancer incidence is modelled by allowing initiation, inactivation and division rates of intermediate cells to depend on the year of birth. The TSCE model is further developed by implementing low-dose hypersensitivity in the survival of lung epithelial cells. According to the model fit to the data, the acute gamma exposure of the atomic bomb survivors does not only result in the conventional initiating effect, but also in a promoting effect for lung cancer. Compared to the model in which radiation acts merely on initiation, the new model is in better agreement with the age-at-exposure dependence in the data, and it does not predict an unexpected increase of the excess relative risk (ERR) at 40 years after exposure. According to the new model, the ERR at low doses increases non-linearly with dose, especially during the first 10 years after exposure to older persons.  相似文献   

3.
Lung cancer mortality among 5058 male workers of the Mayak Production Association has been analyzed with emphasis on the interaction of smoking and radiation exposure by using the two-step clonal expansion (TSCE) model of carcinogenesis. The cohort consists of all Mayak workers with known smoking status, who were employed in the period 1948–1972, and who either had the plutonium concentration in urine measured or who worked in the reactors, where plutonium exposure was negligible. Those who died during the first two years after the first urine sampling were excluded. The follow-up extended until the end of 1998. During this time, 2176 workers died, including 244 lung cancer cases. Mayak workers were exposed to external (gamma and neutron) radiation, and in the radiochemical and plutonium plants to plutonium. In the preferred TSCE model, internal radiation and smoking act on the clonal expansion of pre-carcinogenic clones. Assuming a plutonium radiation weighting factor of 20, the excess relative risk per lung dose was estimated to be 0.11 (95% CI: 0.08; 0.17) Sv−1. Most of the lung cancer deaths are found to be due to smoking. The second main factor is the interaction of smoking and internal radiation. The model is sub-multiplicative in relative risks due to smoking and radiation. In a multiplicative version of the TSCE model, internal radiation acts on initiation and transformation rates. This model version agrees with conventional epidemiological risk models, because it also suggests a higher risk estimate than the preferred TSCE model. However, it fits the data less well than the preferred model. An erratum to this article can be found at  相似文献   

4.
Data from Argonne National Laboratory on lung cancer in 15,975 mice with acute and fractionated exposures to gamma rays and neutrons are analyzed with a biologically motivated model with two rate-limiting steps and clonal expansion. Fractionation effects and effects of radiation quality can be explained well by the estimated kinetic parameters. Both an initiating and a promoting action of neutrons and gamma rays are suggested. While for gamma rays the initiating event is described well with a linear dose-rate dependence, for neutrons a nonlinear term is needed, with less effectiveness at higher dose rates. For the initiating event, the neutron RBE compared to gamma rays is about 10 when the dose rate during each fraction is low. For higher dose rates this RBE decreases strongly. The estimated lifetime relative risk for radiation-induced lung cancers from 1 Gy of acute gamma-ray exposure at an age of 110 days is 1.27 for male mice and 1.53 for female mice. For doses less than 1 Gy, the effectiveness of fractionated exposure to gamma rays compared to acute exposure is between 0.4 and 0.7 in both sexes. For lifetime relative risk, the RBE from acute neutrons at low doses is estimated at about 10 relative to acute gamma-ray exposure. It decreases strongly with dose. For fractionated neutrons, it is lower, down to about 4 for male mice.  相似文献   

5.
Lung cancer mortality after exposure to radon decay products (RDP) among 16,236 male Eldorado uranium workers was analyzed. Male workers from the Beaverlodge and Port Radium uranium mines and the Port Hope radium and uranium refinery and processing facility who were first employed between 1932 and 1980 were followed up from 1950 to 1999. A total of 618 lung cancer deaths were observed. The analysis compared the results of the biologically-based two-stage clonal expansion (TSCE) model to the empirical excess risk model. The spontaneous clonal expansion rate of pre-malignant cells was reduced at older ages under the assumptions of the TSCE model. Exposure to RDP was associated with increase in the clonal expansion rate during exposure but not afterwards. The increase was stronger for lower exposure rates. A radiation-induced bystander effect could be a possible explanation for such an exposure response. Results on excess risks were compared to a linear dose-response parametric excess risk model with attained age, time since exposure and dose rate as effect modifiers. In all models the excess relative risk decreased with increasing attained age, increasing time since exposure and increasing exposure rate. Large model uncertainties were found in particular for small exposure rates.  相似文献   

6.
The dependence of the incidence of radiation-induced cancer on the dose rate of the radiation exposure is a question of considerable importance to the estimation of risk of cancer induction by low-dose-rate radiation. Currently a dose and dose-rate effectiveness factor (DDREF) is used to convert high-dose-rate risk estimates to low dose rates. In this study, the end point of neoplastic transformation in vitro has been used to explore this question. It has been shown previously that for low doses of low-LET radiation delivered at high dose rates, there is a suppression of neoplastic transformation frequency at doses less than around 100 mGy. In the present study, dose-response curves up to a total dose of 1000 mGy have been generated for photons from (125)I decay (approximately 30 keV) delivered at doses rates of 0.19, 0.47, 0.91 and 1.9 mGy/min. The results indicate that at dose rates of 1.9 and 0.91 mGy/min the slope of the induction curve is about 1.5 times less than that measured at high dose rate in previous studies with a similar quality of radiation (28 kVp mammographic energy X rays). In the dose region of 0 to 100 mGy, the data were equally well fitted by a threshold or linear no-threshold model. At dose rates of 0.19 and 0.47 mGy/min there was no induction of transformation even at doses up to 1000 mGy, and there was evidence for a possible suppressive effect. These results show that for this in vitro end point the DDREF is very dependent on dose rate and at very low doses and dose rates approaches infinity. The relative risks for the in vitro data compare well with those from epidemiological studies of breast cancer induction by low- and high-dose-rate radiation.  相似文献   

7.
Breast cancer risk from radiation exposure has been analyzed in the cohort of Japanese a-bomb survivors using empirical models and mechanistic two-step clonal expansion (TSCE) models with incidence data from 1958 to 1998. TSCE models rely on a phenomenological representation of cell transition processes on the path to cancer. They describe the data as good as empirical models and this fact has been exploited for risk assessment. Adequate models of both types have been selected with a statistical protocol based on parsimonious parameter deployment and their risk estimates have been combined using multi-model inference techniques. TSCE models relate the radiation risk to cell processes which are controlled by age-increasing rates of initiating mutations and by changes in hormone levels due to menopause. For exposure at young age, they predict an enhanced excess relative risk (ERR) whereas the preferred empirical model shows no dependence on age at exposure. At attained age 70, the multi-model median of the ERR at 1 Gy decreases moderately from 1.2 Gy−1 (90% CI 0.72; 2.1) for exposure at age 25 to a 30% lower value for exposure at age 55. For cohort strata with few cases, where model predictions diverge, uncertainty intervals from multi-model inference are enhanced by up to a factor of 1.6 compared to the preferred empirical model. Multi-model inference provides a joint risk estimate from several plausible models rather than relying on a single model of choice. It produces more reliable point estimates and improves the characterization of uncertainties. The method is recommended for risk assessment in practical radiation protection.  相似文献   

8.

The probability that an observed cancer was caused by radiation exposure is usually estimated using cancer rates and risk models from radioepidemiological cohorts and is called assigned share (AS). This definition implicitly assumes that an ongoing carcinogenic process is unaffected by the studied radiation exposure. However, there is strong evidence that radiation can also accelerate an existing clonal development towards cancer. In this work, we define different association measures that an observed cancer was newly induced, accelerated, or retarded. The measures were quantified exemplarily by Monte Carlo simulations that track the development of individual cells. Three biologically based two-stage clonal expansion (TSCE) models were applied. In the first model, radiation initiates cancer development, while in the other two, radiation has a promoting effect, i.e. radiation accelerates the clonal expansion of pre-cancerous cells. The parameters of the TSCE models were derived from breast cancer data from the atomic bomb survivors of Hiroshima and Nagasaki. For exposure at age 30, all three models resulted in similar estimates of AS at age 60. For the initiation model, estimates of association were nearly identical to AS. However, for the promotion models, the cancerous clonal development was frequently accelerated towards younger ages, resulting in associations substantially higher than AS. This work shows that the association between a given cancer and exposure in an affected person depends on the underlying biological mechanism and can be substantially larger than the AS derived from classic radioepidemiology.

  相似文献   

9.
Late effects of continuous exposure to ionizing radiation are potential hazards to workers in radiation facilities as well as to the general public. Recently, low-dose-rate and low-dose effects have become a serious concern. Using a total of 4000 mice, we studied the late biological effects of chronic exposure to low-dose-rate radiation as assayed by life span. Two thousand male and 2000 female 8-week-old specific-pathogen-free (SPF) B6C3F1 mice were randomly divided into four groups (one nonirradiated control and three irradiated). Irradiation was carried out for approximately 400 days using (137)Cs gamma rays at dose rates of 21 mGy day(-1), 1.1 mGy day(-1) and 0.05 mGy day(-1) with total doses equivalent to 8000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept under SPF conditions until they died spontaneously. Statistical analyses showed that the life spans of mice of both sexes irradiated with 21 mGy day(-1) (P < 0.0001) and of females irradiated with 1.1 mGy day(-1) (P < 0.05) were significantly shorter than those of the control group. Our results show no evidence of lengthened life span in mice continuously exposed to very low dose rates of gamma rays.  相似文献   

10.
11.
Chronological changes of chromosome aberration rates related to accumulated doses in chronically exposed humans and animals at a low-dose-rate have not been well studied. C3H female specific pathogen-free mice (8 weeks of age) were chronically irradiated. Chromosome aberration rate in mouse splenocytes after long-term exposure to low-dose-rate (LDR) gamma-rays was serially determined by conventional Giemsa method. Incidence of dicentrics and centric rings increased almost linearly up to 8000 mGy following irradiation for about 400 days at a LDR of 20 mGy/day. Clear dose-rate effects were observed in the chromosome aberration frequencies between dose rates of 20 mGy/day and 200 Gy/day. Furthermore, the frequencies of complex aberrations increased as accumulated doses increased in LDR irradiation. This trend was also observed for the incidences of micronuclei and trisomies of chromosomes 5, 13 and 18 in splenocytes, detected by micronucleus assay and metaphase fluorescence in situ hybridization (FISH) method, respectively. Incidences of 2-4 micronuclei and trisomy increased in mouse splenocytes after irradiation of 8000 mGy at a LDR of 20 mGy/day. These complex chromosome aberrations and numerical chromosome aberrations seem to be induced indirectly after radiation exposure and thus the results indicate that continuous gamma-ray irradiation for 400 days at LDR of 20 mGy/day induced chromosomal instability in mice. These results are important to evaluate the biological effects of long-term exposure to LDR radiation in humans.  相似文献   

12.
The purpose of this study was to determine whether adaptation against neoplastic transformation could be induced by exposure to very low-dose-rate low-LET radiation. HeLa x skin fibroblast human hybrid cells were irradiated with approximately 30 kVp photons from an array of (125)I seeds. The initial dose rate was 4 mGy/day. Cell samples were taken at four intervals at various times over a period of 88 days and assayed for neoplastic transformation and the presence of reactive oxygen species (ROS). The dose rate at the end of this treatment period was 1.4 mGy/day. Transformation frequencies and ROS levels were compared to those of parallel unirradiated controls. At the end of 3 months and an accumulated dose of 216 mGy, cells treated with very low-dose-rate radiation were exposed to a high-dose-rate 3-Gy challenge dose of (137)Cs gamma rays, and the effects compared with the effect of 3 Gy on a parallel culture of previously unirradiated cells. Cells exposed to very low-dose-rate radiation exhibited a trend toward a reduction in neoplastic transformation frequency compared to the unirradiated controls. This reduction seemed to diminish with time, indicating that the dose rate, rather than accumulated dose, may be the more important factor in eliciting an adaptive response. This pattern was in general paralleled by a reduction of ROS present in the irradiated cultures compared to controls. The very low-dose-rate-treated cells were less sensitive to the high challenge dose than unirradiated controls, suggesting the induction of an adaptive response. Since there was a suggestion of a dose-rate threshold for induction suppression, a second experiment was run with a fresh batch of cells at an initial dose rate of 1 mGy/day. These cells were allowed to accumulate 40 mGy over 46 days (average dose rate=0.87 mGy/day), and there was no evidence for suppression of transformation frequency compared to parallel unirradiated controls. It is concluded that doses of less than 100 mGy delivered at very low dose rates in the range 1 to 4 mGy/day can induce an adaptive response against neoplastic transformation in vitro. When the dose rate drops below approximately 1 mGy/day, this suppression is apparently lost, suggesting a possible dose-rate-dependent threshold for this process.  相似文献   

13.
Lung cancer mortality in the period of 1948-2002 has been analysed for 6,293 male workers of the Mayak Production Association, for whose information on smoking, annual external doses and annual lung doses due to plutonium exposures was available. Individual likelihoods were maximized for the two-stage clonal expansion (TSCE) model of carcinogenesis and for an empirical risk model. Possible detrimental and protective bystander effects on mutation and malignant transformation rates were taken into account in the TSCE model. Criteria for non-nested models were used to evaluate the quality of fit. Data were found to be incompatible with the model including a detrimental bystander effect. The model with a protective bystander effect did not improve the quality of fit over models without a bystander effect. The preferred TSCE model was sub-multiplicative in the risks due to smoking and internal radiation, and more than additive. Smoking contributed 57% to the lung cancer deaths, the interaction of smoking and radiation 27%, radiation 10%, and others cause 6%. An assessment of the relative biological effectiveness of plutonium was consistent with the ICRP recommended value of 20. At age 60 years, the excess relative risk (ERR) per lung dose was 0.20 (95% CI: 0.13; 0.40) Sv(-1), while the excess absolute risk (EAR) per lung dose was 3.2 (2.0; 6.2) per 10(4) PY Sv. With increasing age attained the ERR decreased and the EAR increased. In contrast to the atomic bomb survivors, a significant elevated lung cancer risk was also found for age attained younger than 55 years. For cumulative lung doses below 5 Sv, the excess risk depended linearly on dose. The excess relative risk was significantly lower in the TSCE model for ages attained younger than 55 than that in the empirical model. This reflects a model uncertainty in the results, which is not expressed by the standard statistical uncertainty bands.  相似文献   

14.
The biologically based two-stage clonal expansion (TSCE) model is used to analyze lung cancer mortality of European miners from the Czech Republic, France, and Germany. All three cohorts indicate a highly significant action of exposure to radon and its progeny on promotion. The action on initiation is not significant in the French cohort. An action on transformation was tested but not found significant. In a pooled analysis, the results based on the French and German datasets do not differ significantly in any of the used parameters. For the Czech dataset, only lag time and two parameters that determine the clonal expansion without exposure and with low exposure rates (promotion) are consistent with the other studies. For low exposure rates, the resulting relative risks are quite similar. Exposure estimates for each calendar year are used. A model for random errors in each of these yearly exposures is presented. Depending on the used technique of exposure estimate, Berkson and classical errors are used. The consequences for the model parameters are calculated and found to be mostly of minor importance, except that the large difference in the exposure-induced initiation between the studies is decreased substantially.  相似文献   

15.
The yield of chromosome aberrations induced by gamma-radiation of 60Co in human blood lymphocytes in vitro at low doses (30 divided by 600 mGy) and low dose rates (0.70, 5.05, 59.2 mGy/min) was investigated. It was found that the observed level of chromosomal aberrations induced by gamma-irradiation was unaffected by the value of the dose rate when using constant dose rate and obtaining different doses by altering the exposure time. However, a relatively enhanced level of chromatid aberrations was found at 5.05 and 59.2 mGy/min dose rates in the dose range less than 250 mGy. We have found that the observed level of the sum of chromosomal aberrations induced by gamma-irradiation at doses less than 250 mGy and a dose rate of 59.2 mGy/min was essentially larger compared with the level extrapolated from high doses (above 300 mGy) using a linear-quadratic dose curve. This complied with our previous finding in 1976, 1977 when the enhanced level of dicentrics was only found at a high dose rate approximately 500 mGy/min. Such a non-linear cytogenetic effect does not manifest itself statistically significantly at dose rates of 0.70 and 5.05 mGy/min for the sum of chromosomal aberrations and does not manifest itself at all for dicentrics at all the examined dose rates.  相似文献   

16.
Mice heterozygous for Trp53 are radiation-sensitive and cancer-prone, spontaneously developing a variety of cancer types. Osteosarcomas in the spine lead to paralysis, while lymphomas lead rapidly to death, distinct events that provide objective measures of latency. The effects of a single low-dose (10 or 100 mGy), low-dose-rate (0.5 mGy/min) (60)Co gamma irradiation on lymphoma or spinal osteosarcoma frequency and latency, defined as time of death or of onset of paralysis, respectively, were examined. Compared to spontaneous lymphomas or to spinal osteosarcomas leading to paralysis in unexposed mice, an exposure of 7-8-week-old Trp53(+/-) mice to 10 or 100 mGy had no significant effect on tumor frequency, indicating no effect on tumor initiation. All tumors are therefore assumed to be of spontaneous origin. However, a 10-mGy exposure reduced the risk of both lymphomas and spinal osteosarcomas by significantly increasing tumor latency, indicating that the main in vivo effect of a low-dose exposure is a reduction in the rate at which spontaneously initiated cells progress to malignancy. The effect of this adaptive response persisted for the entire life span of all the animals that developed these tumors. Exposure to 100 mGy delayed lymphoma latency longer than the 10-mGy exposure. However, the 100-mGy dose increased spinal osteosarcoma risk by decreasing overall latency compared to unexposed control mice. That result suggested that this higher dose was in a transition zone between reduced and increased risk, but that the dose at which the transition occurs varies with the tumor type.  相似文献   

17.
Changes in gene expression profiles in mouse liver induced by long-term low-dose-rate γ irradiation were examined by microarray analysis. Three groups of male C57BL/6J mice were exposed to whole-body radiation at dose rates of 17-20 mGy/day, 0.86-1.0 mGy/day or 0.042-0.050 mGy/day for 401-485 days with cumulative doses of approximately 8 Gy, 0.4 Gy or 0.02 Gy, respectively. The gene expression levels in the livers of six animals from each exposure group were compared individually with that of pooled sham-irradiated animals. Some genes revealed a large variation in expression levels among individuals within each group, and the number of genes showing common changes in individuals from each group was limited: 20 and 11 genes showed more than 1.5-fold modulation with 17-20 mGy/day and 0.86-1.0 mGy/day, respectively. Three genes showed more than 1.5-fold modulation even at the lowest dose-rate of 0.04-0.05 mGy/day. Most of these genes were down-regulated. RT-PCR analysis confirmed the expression profiles of the majority of these genes. The results indicate that a few genes are modulated in response to very low-dose-rate irradiation. The functional analysis suggests that these genes may influence many processes, including obesity and tumorigenesis.  相似文献   

18.
The simulations in this paper show that exposure measurement error affects the parameter estimates of the biologically motivated two-stage clonal expansion (TSCE) model. For both Berkson and classical error models, we show that likelihood-based techniques of correction work reliably. For classical errors, the distribution of true exposures needs to be known or estimated in addition to the distribution of recorded exposures conditional on true exposures. Usually the exposure uncertainty biases the model parameters toward the null and underestimates the precision. But when several parameters are allowed to be dependent on exposure, e.g. initiation and promotion, then their relative importance is also influenced, and more complicated effects of exposure uncertainty can occur. The application part of this paper shows for two different types of Berkson errors that a recent analysis of the data for the Colorado plateau miners with the TSCE model is not changed substantially when correcting for such errors. Specifically, the conjectured promoting action of radon remains as the dominant radiation effect for explaining these data. The estimated promoting action of radon increases by a factor of up to 1.2 for the largest assumed exposure uncertainties.  相似文献   

19.
Somatic intrachromosomal recombination can result in inversions and deletions in DNA, which are important mutations in cancer. The pKZ1 chromosomal inversion assay is a sensitive assay for studying the effects of DNA damaging agents using chromosomal inversion as a mutation end-point. We have previously demonstrated that the chromosomal inversion response in pKZ1 spleen after single low doses of X-radiation exposure does not follow the linear no-threshold dose–response model. Here, we optimised a chromosomal inversion screening method to study the effect of low dose X-radiation exposure in pKZ1 prostatic tissue. In the present study, a significant induction in inversions was observed after ultra-low doses of 0.005–0.01 mGy or after a high dose of 1000 mGy, whereas a reduction in inversions to below the sham-treated frequency was observed between 1 and 10 mGy exposure. This is the first report of a reduction to below endogenous frequency for any mutation end-point in prostate. In addition, the doses of radiation studied were at least three orders of magnitude lower than have been reported in other mutation assays in prostate in vivo or in vitro. In sham-treated pKZ1 controls and in pKZ1 mice treated with low doses of 1–10 mGy the number of inversions/gland cross-section rarely exceeded three. Up to 4 and 7 inversions were observed in individual prostatic gland cross-sections after doses ≤0.02 mGy and after 1000 mGy, respectively. The number of inversions identified in individual cross-sections of prostatic glands of untreated mice and all treated mice other than the 1000 mGy treatment group followed a Poisson distribution. The dose–response curves and fold changes observed after all radiation doses studied were similar in spleen and prostate. These results suggest that the pKZ1 assay is measuring a fundamental response to DNA damage after low dose X-radiation exposure which is independent of tissue type.  相似文献   

20.
The hypothesis that single low-dose exposures (0.025-0.5 Gy) to low-LET radiation given at either high (about 150 mGy/min) or low (1 mGy/min) dose rate would promote aortic atherosclerosis was tested in female C57BL/6J mice genetically predisposed to this disease (ApoE?/?). Mice were exposed either at an early stage of disease (2 months of age) and examined 3 or 6 months later or at a late stage of disease (8 months of age) and examined 2 or 4 months later. Changes in aortic lesion frequency, size and severity as well as total serum cholesterol levels and the uptake of lesion lipids by lesion-associated macrophages were assessed. Statistically significant changes in each of these measures were observed, depending on dose, dose rate and disease stage. In all cases, the results were distinctly non-linear with dose, with maximum effects tending to occur at 25 or 50 mGy. In general, low doses given at low dose rate during either early- or late-stage disease were protective, slowing the progression of the disease by one or more of these measures. Most effects appeared and persisted for months after the single exposures, but some were ultimately transitory. In contrast to exposure at low dose rate, high-dose-rate exposure during early-stage disease produced both protective and detrimental effects, suggesting that low doses may influence this disease by more than one mechanism and that dose rate is an important parameter. These results contrast with the known, generally detrimental effects of high doses on the progression of this disease in the same mice and in humans, suggesting that a linear extrapolation of the known increased risk from high doses to low doses is not appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号