首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this contribution the isolation and some of the structural and kinetic properties of the pyruvate dehydrogenase complex (PDC) of anaerobically grown Enterococcus faecalis are described. The complex closely resembles the PDC of other Gram-positive bacteria and eukaryotes. It consists of four polypeptide chains with apparent molecular masses on SDS/PAGE of 97, 55, 42 and 36 kDa, and these polypeptides could be assigned to dihydrolipoyl transacetylase (E2), lipoamide dehydrogenase (E3) and the two subunits of pyruvate dehydrogenase (E1 alpha and E1 beta), respectively. The E2 core has an icosahedral symmetry. The apparent molecular mass on SDS/PAGE of 97 kDa of the E2 chain is extremely high in comparison with other Gram-positive organisms (and eukaryotes) and probably due to several lipoyl domains associated with the E2 chain. NADH inhibition is mediated via E3. The mechanism of inhibition is discussed in view of the high PDC activities in vivo that are found in E. faecalis, grown under anaerobic conditions.  相似文献   

2.
J E Rice  B Dunbar    J G Lindsay 《The EMBO journal》1992,11(9):3229-3235
Sequences located in the N-terminal region of the high M(r) 2-oxoglutarate dehydrogenase (E1) enzyme of the mammalian 2-oxoglutarate dehydrogenase multienzyme complex (OGDC) exhibit significant similarity with corresponding sequences from the lipoyl domains of the dihydrolipoamide acetyltransferase (E2) and protein X components of eukaryotic pyruvate dehydrogenase complexes (PDCs). Two additional features of this region of E1 resemble lipoyl domains: (i) it is readily released by trypsin, generating a small N-terminal peptide with an apparent M(r) value of 10,000 and a large stable 100,000 M(r) fragment (E1') and (ii) it is highly immunogenic, inducing the bulk of the antibody response to intact E1. This 'lipoyl-like' domain lacks a functional lipoamide group. Selective but extensive degradation of E1 with proteinase Arg C or specific conversion of E1 to E1' with trypsin both cause loss of overall OGDC function although the E1' fragment retains full catalytic activity. Removal of this small N-terminal peptide promotes the dissociation of dihydrolipoamide dehydrogenase (E3) from the E2 core assembly and also affects the stability of E1 interaction. Thus, structural roles which are mediated by a specific gene product, protein X in PDC and possibly also the E2 subunit, are performed by similar structural elements located on the E1 enzyme of the OGDC.  相似文献   

3.
The dihydrolipoamide S-acetyltransferase (E2) subunit of the maize mitochondrial pyruvate dehydrogenase complex (PDC) was postulated to contain a single lipoyl domain based upon molecular mass and N-terminal protein sequence (Thelen, J. J., Miernyk, J. A., and Randall, D. D. (1998) Plant Physiol. 116, 1443-1450). This sequence was used to identify a cDNA from a maize expressed sequence tag data base. The deduced amino acid sequence of the full-length cDNA was greater than 30% identical to other E2s and contained a single lipoyl domain. Mature maize E2 was expressed in Escherichia coli and purified to a specific activity of 191 units mg(-1). The purified recombinant protein had a native mass of approximately 2.7 MDa and assembled into a 29-nm pentagonal dodecahedron as visualized by electron microscopy. Immunoanalysis of mitochondrial proteins from various plants, using a monoclonal antibody against the maize E2, revealed 50-54-kDa cross-reacting polypeptides in all samples. A larger protein (76 kDa) was also recognized in an enriched pea mitochondrial PDC preparation, indicating two distinct E2s. The presence of a single lipoyl-domain E2 in Arabidopsis thaliana was confirmed by identifying a gene encoding a hypothetical protein with 62% amino acid identity to the maize homologue. These data suggest that all plant mitochondrial PDCs contain an E2 with a single lipoyl domain. Additionally, A. thaliana and other dicots possess a second E2, which contains two lipoyl domains and is only 33% identical at the amino acid level to the smaller isoform. The reason two distinct E2s exist in dicotyledon plants is uncertain, although the variability between these isoforms, particularly within the subunit-binding domain, suggests different roles in assembly and/or function of the plant mitochondrial PDC.  相似文献   

4.
The dihydrolipoyl transacetylase (E2p) component of the pyruvate dehydrogenase complex (PDC) of Escherichia coli is a multidomain polypeptide comprising a catalytic domain, a domain that binds dihydrolipoyl dehydrogenase (E3-binding domain), and three domains containing lipoic acid (lipoyl domains). In PDC 24 subunits of E2p associate by means of interactions involving the catalytic domains to form the structural core of PDC. From cryoelectron microscopy and computer image analysis of frozen-hydrated isolated E2p cores it appears that the lipoyl domains are located peripherally about the core complex and do not assume fixed positions. To further test this interpretation the visibility of the lipoyl domains in electron micrographs was enhanced by specifically biotinylating the lipoic acids and labeling them with streptavidin. In agreement with the studies of native, unlabeled E2p cores, cryoelectron microscopy of the streptavidin-labeled E2p cores showed that the lipoic acid moieties are capable of extending approximately 13 nm from the surface of the core. Localization of the E3-binding domains was accomplished by cryoelectron microscopy of E2p-E3 subcomplexes prepared by reconstitution in vitro. Frequently an apparent gap of several nanometers separated the bound E3 from the surface of the core. The third component of PDC, pyruvate dehydrogenase (E1p), appeared to bind to the E2p core in a manner similar to that observed for E3. These results support a structural model of the E2p core in which the catalytic, E3-binding, and three lipoyl domains are interconnected by linker sequences that assume extended and flexible conformations.  相似文献   

5.
The dependence of pyruvate dehydrogenase complex (PDC) activity on [Ca2+] was determined in Ehrlich ascites carcinoma cells at different pyruvate concentrations. The resulting family of curves had the following characteristics: a) bell-shaped appearance of all curves with maximum activity at 600 nM Ca2+; b) unchanged position of maxima with changes in pyruvate concentration; c) nonmonotonous changes in PDC activity with increasing pyruvate concentration at fixed [Ca2+]. Feasible mechanisms involving Ca2+-dependent phosphatase and kinase which are consistent with the experimental findings are discussed. To determine the steps in the chain of PDC reactions which determine the observed phenomena, a mathematical model is suggested which is based on the known data on the structural--functional relationships between the complex components--pyruvate dehydrogenase (E1), dihydrolipoyl acetyl transferase (E2), dihydrolipoyl dehydrogenase (E3), protein X, kinase, and phosphatase. To adequately describe the non-trivial dependence of PDC activity on [Ca2+] at different pyruvate concentrations, it was also necessary to consider the interdependence of some steps in the general chain of PDC reactions. Phenomenon (a) is shown to be due only to the involvement of protein X in the PDC reactions, phenomenon (b) to be due to changes in the activity of kinase, and phenomenon (c) to be due to dependence of acetylation and transacetylation rates on pyruvate concentration.  相似文献   

6.
Studies were conducted on four pyruvate dehydrogenase kinase-containing fractions: purified pyruvate dehydrogenase complex, the dihydrolipoyl transacetylase-protein X-kinase subcomplex (E2.X.K), a kinase fraction (K fraction) prepared from the E2.X.K subcomplex, and a kinase fraction generated by limited trypsin-digestion of E2.X.K. We characterized the gel electrophoresis properties of dissociated subunits (one-dimensional and two-dimensional), the catalytic and ATP binding properties of kinase-containing fractions, and the subunit requirements for kinase binding to and being activated by the transacetylase-protein X subcomplex (E2.X). A significant portion of protein X was retained with the transacetylase core following release of virtually all the kinase. The K fraction had four major bands separated by sodium dodecyl sulfate-slab gel electrophoresis which corresponded to the dihydrolipoyl dehydrogenase, protein X, the trypsin-resistant catalytic subunit of the kinase and a chymotrypsin-resistant subunit which had a high pI and comigrated in one-dimensional systems with the chymotrypsin-sensitive alpha-subunit of the pyruvate dehydrogenase component. While purified kidney complex contained only about three molecules of kinase (determined by [14C]ATP binding), one molecule of E2.X subcomplex activated a large number (greater than 15) molecules of kinase associated with the protein X-containing K fraction. Sephadex G-200 chromatography of the K fraction in the presence of dithiothreitol led to coelution of protein X and kinase subunits. Limited trypsin digestion converted the transacetylase into subdomains and cleaved protein X and the high pI subunit of the kinase. Under those conditions, the intact catalytic subunit of the kinase did not bind to the large inner domain of the transacetylase but could be activated by untreated E2.X subcomplex. Thus, binding of the catalytic subunit of the kinase and its activation by E2.X required either protein X or the lipoyl-bearing outer domain of the transacetylase. In combination, our results suggest that protein X serves to anchor the kinase to the core of the complex.  相似文献   

7.
Cryoelectron microscopy has been performed on frozen-hydrated pyruvate dehydrogenase complexes from bovine heart and kidney and on various subcomplexes consisting of the dihydrolipoyl transacetylase-based (E2) core and substoichiometric levels of the other two major components, pyruvate dehydrogenase (E1) and dihydrolipoyl dehydrogenase (E3). The diameter of frozen-hydrated pyruvate dehydrogenase complex (PDC) is 50 nm, which is significantly larger than previously reported values. On the basis of micrographs of the subcomplexes, it is concluded that the E1 and E3 are attached to the E2-core complex by extended (4-6 nm maximally) flexible tethers. PDC constructed in this manner would probably collapse and appear smaller than its native size when dehydrated, as was the case in previous electron microscopy studies. The tether linking E1 to the core involves the hinge sequence located between the E1-binding and catalytic domains in the primary sequence of E2, whereas the tether linking E3 is probably derived from a similar hinge-type sequence in component X. Tilting of the E2-based cores and comparison with model structures confirmed that their overall shape is that of a pentagonal dodecahedron. The approximately 6 copies of protein X present in PDC do not appear to be clustered in one or two regions of the complex and are not likely to be symmetrically distributed.  相似文献   

8.
After limited proteolysis of the dihydrolipoyl transacetylase component (E2) of Azotobacter vinelandii pyruvate dehydrogenase complex (PDC), a C-terminal domain was obtained which retained the transacetylase active site and the quaternary structure of E2 but had lost the lipoyl-containing N-terminal part of the chain and the binding sites for the peripheral components, pyruvate dehydrogenase and lipoamide dehydrogenase. The C-terminus of this domain was determined by treatment with carboxypeptidase Y and shown to be identical with the C-terminus of E2. Together with the previously determined N-terminus and the known amino acid sequence of E2, a molecular mass of 27.5 kDa was calculated. From the molecular mass of the native catalytic domain, 530 kDa, and the symmetry of the cubic structures observed on electron micrographs, a 24-meric structure is concluded instead of the 32-meric structure proposed previously. From the effect of guanidine hydrochloride on the light-scattering of intact E2 it was concluded that dissociation occurs in a two-step reaction resulting in particles with an average mass 1/6 that of the original mass before the N----D transition takes place. Cross-linking experiments with the catalytic domain indicated that the multimeric E2 is built from tetramers and that the tetramers are arranged as a dimer of dimers. A model for the quaternary structure of E2 is given, in which it is assumed that the tetrameric E2 core of PDC is formed from each of the six morphological subunits located at the lateral face of the cube. Binding of peripheral components to a site that interferes with the cubic assembly causes dissociation, resulting in the unique small PDC of A. vinelandii.  相似文献   

9.
The pyruvate dehydrogenase kinase consists of a catalytic subunit (Kc) and a basic subunit (Kb) which appear to be anchored to the dihydrolipoyl transacetylase core component (E2) by another subunit, referred to as protein X (Rahmatullah, M., Jilka, J. M., Radke, G. A., and Roche, T. E. (1986) J. Biol. Chem. 261, 6515-6523). We determined the catalytic requirements for reduction and acetylation of the lipoyl moiety in protein X and linked those changes in protein X to regulatory effects on kinase activity. Using fractions prepared by resolution and proteolytic treatments, we evaluated which subunits are required for regulatory effects on kinase activity. With X-KcKb fraction (treated to remove the mercurial agent used in its preparation), we found that the resolved pyruvate dehydrogenase component, the isolated inner domain of E2 (lacking the lipoyl-bearing region of E2), and the dihydrolipoyl dehydrogenase component directly utilize protein X as a substrate. The resulting reduction and acetylation of protein X occurs in association with enhancement of kinase activity. Following tryptic cleavage of E2 and protein X into subdomains, full acetylation of the lipoyl-bearing subdomains of these proteins is retained along with the capacity of acetylating substrates to stimulate kinase activity. All kinase-containing fractions, including those in which the Kb subunit was digested, were inhibited by pyruvate or ADP, alone, and synergistically by the combination suggesting that pyruvate and ADP bind to Kc. Our results suggest that the Kb subunit of the kinase does not contribute to the observed regulatory effects. A dynamic role of protein X in attenuating kinase activity based on changes in the mitochondrial redox and acetylating potentials is considered.  相似文献   

10.
The lipoate acetyltransferase (E2, Mr 70,000) and protein X (Mr 51,000) subunits of the bovine pyruvate dehydrogenase multienzyme complex (PDC) core assembly are antigenically distinct polypeptides. However comparison of the N-terminal amino acid sequence of the E2 and X polypeptides reveals significant homology between the two components. Selective tryptic release of the 14C-labelled acetylated lipoyl domains of E2 and protein X from native PDC generates stable, radiolabelled 34 and 15 kDa fragments, respectively. Thus, in contrast to E2 which contains two tandemly-arranged lipoyl domains, protein X appears to contain only a single lipoyl domain located at its N-terminus.  相似文献   

11.
The pyruvate dehydrogenase (E1) component of the pyruvate dehydrogenase complex (PDC) catalyzes a two-step reaction. Recombinant production of substrate amounts of the lipoyl domains of the dihydrolipoyl transacetylase (E2) component of the mammalian PDC allowed kinetic characterization of the rapid physiological reaction catalyzed by E1. Using either the N-terminal (L1) or the internal (L2) lipoyl domain of E2 as a substrate, analyses of steady state kinetic data support a ping pong mechanism. Using standard E1 preparations, Michaelis constants (Km) were 52 +/- 14 microM for L1 and 24.8 +/- 3.8 microM for pyruvate and k(cat) was 26.3 s(-1). With less common, higher activity preparations of E1, the Km values were > or =160 microM for L1 and > or =35 microM for pyruvate and k(cat) was > or =70 s(-1). Similar results were found with the L2 domain. The best synthetic lipoylated-peptide (L2 residues 163-177) was a much poorer substrate (Km > or =15 mM, k(cat) approximately equals 5 s(-1); k(cat)/Km decreased >1,500-fold) than L1 or L2, but a far better substrate in the E1 reaction than free lipoamide (k(cat)/Km increased >500-fold). Each lipoate source was an effective substrate in the dihydrolipoyl dehydrogenase (E3) reaction, but E3 had a lower Km for the L2 domain than for lipoamide or the lipoylated peptides. In contrast to measurements with slow E1 model reactions that use artificial acceptors, we confirmed that the natural E1 reaction, using lipoyl domain acceptors, was completely inhibited (>99%) by phosphorylation of E1 and the phosphorylation strongly inhibited the reverse of the second step catalyzed by E1. The mechanisms by which phosphorylation interferes with E1 activity is interpreted based on accrued results and the location of phosphorylation sites mapped onto the 3-D structure of related alpha-keto acid dehydrogenases.  相似文献   

12.
L C Packman  R N Perham 《FEBS letters》1986,206(2):193-198
The state of assembly of the pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes was examined after the dihydrolipoyl acyltransferase (E2) component of each enzyme system had been subjected to varying degrees of limited proteolysis. Dissociation of the dihydrolipoyl dehydrogenase (E3) component accompanied specifically the excision of a homologous segment of each E2 chain that connects the N-terminal lipoyl domain(s) with a C-terminal catalytic domain. The latter remains aggregated as a 24-mer and retains its capacity to bind the 2-oxo-acid decarboxylase (E1) component. The relevant segment of the E2o chain from the 2-oxoglutarate dehydrogenase complex was isolated and shown to be a folded protein which still binds to E3.  相似文献   

13.
The mammalian pyruvate dehydrogenase complex (PDC) is a mitochondrial multienzyme complex that connects glycolysis to the tricarboxylic acid cycle by catalyzing pyruvate oxidation to produce acetyl-CoA, NADH, and CO2. This reaction is required to aerobically utilize glucose, a preferred metabolic fuel, and is composed of three core enzymes: pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). The pyruvate-dehydrogenase-specific kinase (PDK) and pyruvate-dehydrogenase-specific phosphatase (PDP) are considered the main control mechanism of mammalian PDC activity. However, PDK and PDP activity are allosterically regulated by several effectors fully overlapping PDC substrates and products. This collection of positive and negative feedback mechanisms confounds simple predictions of relative PDC flux, especially when all effectors are dynamically modulated during metabolic states that exist in physiologically realistic conditions, such as exercise. Here, we provide, to our knowledge, the first globally fitted, pH-dependent kinetic model of the PDC accounting for the PDC core reaction because it is regulated by PDK, PDP, metal binding equilibria, and numerous allosteric effectors. The model was used to compute PDH regulatory complex flux as a function of previously determined metabolic conditions used to simulate exercise and demonstrates increased flux with exercise. Our model reveals that PDC flux in physiological conditions is primarily inhibited by product inhibition (~60%), mostly NADH inhibition (~30–50%), rather than phosphorylation cycle inhibition (~40%), but the degree to which depends on the metabolic state and PDC tissue source.  相似文献   

14.
In human (h) pyruvate dehydrogenase complex (PDC) the pyruvate dehydrogenase (E1) is bound to the E1-binding domain of dihydrolipoamide acetyltransferase (E2). The C-terminal surface of the E1beta subunit was scanned for the negatively charged residues involved in binding with E2. betaD289 of hE1 interacts with K276 of hE2 in a manner similar to the corresponding interaction in Bacillus stearothermophilus PDC. In contrast to bacterial E1beta, the C-terminal residue of the hE1beta does not participate in the binding with positively charged residues of hE2. This latter finding shows species specificity in the interaction between hE1beta and hE2 in PDC.  相似文献   

15.
The pyruvate dehydrogenase (PDH) multienzyme complex is central to oxidative metabolism. We present the first crystal structure of a complex between pyruvate decarboxylase (E1) and the peripheral subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2). The interface is dominated by a "charge zipper" of networked salt bridges. Remarkably, the PSBD uses essentially the same zipper to alternately recognize the dihydrolipoyl dehydrogenase (E3) component of the PDH assembly. The PSBD achieves this dual recognition largely through the addition of a network of interfacial water molecules unique to the E1-PSBD complex. These structural comparisons illuminate our observations that the formation of this water-rich E1-E2 interface is largely enthalpy driven, whereas that of the E3-PSBD complex (from which water is excluded) is entropy driven. Interfacial water molecules thus diversify surface complementarity and contribute to avidity, enthalpically. Additionally, the E1-PSBD structure provides insight into the organization and active site coupling within the approximately 9 MDa PDH complex.  相似文献   

16.
Pyruvate dehydrogenase phosphatase 1 (PDP1) catalyzes dephosphorylation of pyruvate dehydrogenase (E1) in the mammalian pyruvate dehydrogenase complex (PDC), whose activity is regulated by the phosphorylation-dephosphorylation cycle by the corresponding protein kinases (PDHKs) and phosphatases. The activity of PDP1 is greatly enhanced through Ca2+ -dependent binding of the catalytic subunit (PDP1c) to the L2 (inner lipoyl) domain of dihydrolipoyl acetyltransferase (E2), which is also integrated in PDC. Here, we report the crystal structure of the rat PDP1c at 1.8 A resolution. The structure reveals that PDP1 belongs to the PPM family of protein serine/threonine phosphatases, which, in spite of a low level of sequence identity, share the structural core consisting of the central beta-sandwich flanked on both sides by loops and alpha-helices. Consistent with the previous studies, two well-fixed magnesium ions are coordinated by five active site residues and five water molecules in the PDP1c catalytic center. Structural analysis indicates that, while the central portion of the PDP1c molecule is highly conserved among the members of the PPM protein family, a number of structural insertions and deletions located at the periphery of PDP1c likely define its functional specificity towards the PDC. One notable feature of PDP1c is a long insertion (residues 98-151) forming a unique hydrophobic pocket on the surface that likely accommodates the lipoyl moiety of the E2 domain in a fashion similar to that of PDHKs. The cavity, however, appears more open than in PDHK, suggesting that its closure may be required to achieve tight, specific binding of the lipoic acid. We propose a mechanism in which the closure of the lipoic acid binding site is triggered by the formation of the intermolecular (PDP1c/L2) Ca2+ binding site in a manner reminiscent of the Ca2+ -induced closure of the regulatory domain of troponin C.  相似文献   

17.
Mammalian pyruvate dehydrogenase multienzyme complex (PDC) is a key metabolic assembly comprising a 60-meric pentagonal dodecahedral E2 (dihydrolipoamide acetyltransferase) core attached to which are 30 pyruvate decarboxylase E1 heterotetramers and 6 dihydrolipoamide dehydrogenase E3 homodimers at maximal occupancy. Stable E3 integration is mediated by an accessory E3-binding protein (E3BP) located on each of the 12 E2 icosahedral faces. Here, we present evidence for a novel subunit organization in which E3 and E3BP form subcomplexes with a 1:2 stoichiometry implying the existence of a network of E3 "cross-bridges" linking pairs of E3BPs across the surface of the E2 core assembly. We have also determined a low resolution structure for a truncated E3BP/E3 subcomplex using small angle x-ray scattering showing one of the E3BP lipoyl domains docked into the E3 active site. This new level of architectural complexity in mammalian PDC contrasts with the recently published crystal structure of human E3 complexed with its cognate subunit binding domain and provides important new insights into subunit organization, its catalytic mechanism and regulation by the intrinsic PDC kinase.  相似文献   

18.
The pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus was reconstituted in vitro from recombinant proteins derived from genes over-expressed in Escherichia coli. Titrations of the icosahedral (60-mer) dihydrolipoyl acetyltransferase (E2) core component with the pyruvate decarboxylase (E1, alpha2beta2) and dihydrolipoyl dehydrogenase (E3, alpha2) peripheral components indicated a variable composition defined predominantly by tight and mutually exclusive binding of E1 and E3 with the peripheral subunit-binding domain of each E2 chain. However, both analysis of the polypeptide chain ratios in complexes generated from various mixtures of E1 and E3, and displacement of E1 or E3 from E1-E2 or E3-E2 subcomplexes by E3 or E1, respectively, showed that the multienzyme complex does not behave as a simple competitive binding system. This implies the existence of secondary interactions between the E1 and E3 subunits and E2 that only become apparent on assembly. Exact geometrical distribution of E1 and E3 is unlikely and the results are best explained by preferential arrangements of E1 and E3 on the surface of the E2 core, superimposed on their mutually exclusive binding to the peripheral subunit-binding domain of the E2 chain. Correlation of the subunit composition with the overall catalytic activity of the enzyme complex confirmed the lack of any requirement for precise stoichiometry or strict geometric arrangement of the three catalytic sites and emphasized the crucial importance of the flexibility associated with the lipoyl domains and intramolecular acetyl group transfer in the mechanism of active-site coupling.  相似文献   

19.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

20.
The dihydrolipoyl transacetylase (E2)-protein X-kinase subcomplex was resolved to produce an oligomeric transacetylase that was free of protein X and kinase subunits. We investigated the properties of this transacetylase E2 oligomer and of a form of the subcomplex from which only the lipoyl-bearing domain of protein X (XL) was removed. While retaining other catalytic and binding properties of the native subcomplex, the oligomeric transacetylase and the subcomplex lacking the XL domain had greatly reduced capacities both to support the overall reaction of the complex (upon reconstitution with other components) and to bind the dihydrolipoyl dehydrogenase component. Our results indicate that protein X, in part through its XL domain, contributes to the binding of the dihydrolipoyl dehydrogenase component and to the overall reaction of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号