首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-amyloid peptide 1–42 (Aβ1–42) and hyperphosphorylated tau are associated with neurodegeneration in Alzheimer's disease. Emerging evidence indicates that Aβ1–42 can potentiate hyperphosphorylation of tau in cell lines and in transgenic mice, but the underlying mechanism(s) remains unclear. In this study, Aβ1–42-induced tau phosphorylation was investigated in differentiated PC12 cells. Treatment of cells with Aβ1–42 increased phosphorylation of tau at serine-202 as detected by AT8 antibody. This Aβ1–42-induced tau phosphorylation paralleled phosphorylation of glycogen synthase kinase-3β (GSK-3β) at tyrosine-216 (GSK-3β-pY216), which was partially inhibited by the GSK-3β inhibitor, CHIR98023. Aβ1–42-induced tau phosphorylation and increase in GSK-3β-pY216 phosphorylation were also partially attenuated by α7 nicotinic acetylcholine receptor (α7 nAChR) selective ligands including agonist A-582941 and antagonists methyllycaconitine and α-bungarotoxin. The α7 nAChR agonist and the GSK-3β inhibitor had no additive effect. These observations suggest that α7 nAChR modulation can influence Aβ1–42-induced tau phosphorylation, possibly involving GSK-3β. This study provides evidence of nAChR mechanisms underlying Aβ1–42 toxicity and tau phosphorylation, which, if translated in vivo , could provide additional basis for the utility of α7 nAChR ligands in the treatment of Alzheimer's disease.  相似文献   

2.
Erythropoietin (EPO) prevents neuronal cell death through the activation of cell survival signals and the inhibition of apoptotic signals in models of neurodegenerative diseases. Here we investigated the neuroprotective effect of EPO in ketamine-induced neurotoxicity in primary cortical neurons. EPO in combination with ketamine greatly increased the cell viability and reduced the number of TUNEL-positive cells. To elucidate a possible mechanism by which EPO exerts its neuroprotective effect, we investigated the phosphoinositide3-kinase pathway using LY294002. The neuroprotection of EPO was prevented by LY294002. Immunoblotting revealed that EPO induced the phosphorylation/activation of Akt and phosphorylation/inactivation of glycogen synthase kinase-3beta (GSK-3β). Moreover, the caspase-3-like activity was increased by addition of ketamine, and decreased by administration of ketamine with EPO. Decreased caspase-3-like activity by administration of ketamine with EPO was restored by LY294002. Our results suggest that PI3K/Akt and GSK-3β pathway are involved in the neuroprotective effect of EPO. You Shang and Yan Wu have contributed equally to this work.  相似文献   

3.
This study examined the role of calcineurin, a major calcium-dependent protein phosphatase, in dephosphorylating Ser-9 and activating glycogen synthase kinase-3β (GSK-3β). Treatment with calcineurin inhibitors increased phosphorylation of GSK-3β at Ser-9 in SH-SY5Y human neuroblastoma cells. The over-expression of a constitutively active calcineurin mutant, calcineurin A beta (1–401), led to a significant decrease in phosphorylation at Ser-9, an increase in the activity of GSK-3β, and an increase in the phosphorylation of tau. Km of calcineurin for a GSK-3β phosphopeptide was 469.3 μM, and specific activity of calcineurin was 15.2 nmol/min/mg. In addition, calcineurin and GSK-3β were co-immunoprecipitated in neuron-derived cells and brain tissues, and calcineurin formed a complex only with dephosphorylated GSK-3β. We conclude that in vitro, calcineurin can dephosphorylate GSK-3β at Ser-9 and form a stable complex with GSK-3β, suggesting the possibility that calcineurin regulates the dephosphorylation and activation of GSK-3β in vivo .  相似文献   

4.
Abstract: Deposit of β-amyloid protein (Aβ) in Alzheimer's disease brain may contribute to the associated neurodegeneration. We have studied the neurotoxicity of Aβ in primary cultures of murine cortical neurons, with the aim of identifying pharmacologic ways of attenuating the injury. Exposure of cultures to Aβ (25–35 fragment; 3–25 4mU M ) generally triggers slow, concentration-dependent neurodegeneration (over 24–72 h). With submaximal Aβ- (25–35) exposure (10 μ M ), substantial (>40% within 48 h) degeneration often occurs and is markedly attenuated by the presence of the Ca2+ channel blockers nimodipine (1–20 μ M ) and Co2+ (100 μ M ) during the Aβ exposure. However, Aβ neurotoxicity is not affected by the presence of glutamate receptor antagonists. We suggest that Ca2+ influx through voltage-gated Ca2+ channels may contribute to Aβ-induced neuronal injury and that nimodipine and Co2+, by attenuating such influx, are able to attenuate Aβ neurotoxicity.  相似文献   

5.
6.
The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase‐3β (GSK‐3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid‐beta (Aβ)42‐induced neuronal toxicity model of Alzheimer's disease. In Aβ42‐induced toxic conditions, each PP2A and GSK‐3β activity measured at different times showed time‐dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre‐treatment showed dose‐dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK‐3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42‐induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK‐3β and nAChRs activity would partially contribute to its effects.

  相似文献   


7.
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme of the kynurenine pathway of tryptophan metabolism, ultimately leading to production of the excitotoxin quinolinic acid (QUIN) by monocytic cells. In the Tg2576 mouse model of Alzheimer's disease, systemic inflammation induced by lipopolysaccharide leads to an increase in IDO expression and QUIN production in microglia surrounding amyloid plaques. We examined whether the IDO over-expression in microglia could be mediated by brain proinflammatory cytokines induced during the peripheral inflammation using THP-1 cells and peripheral blood mononuclear cells (PBMC) as models for microglia. THP-1 cells pre-treated with 5–25 μM amyloid β peptide (Aβ) (1–42) but not with Aβ (1–40) or Aβ (25–35) became an activated state as indicated by their morphological changes and enhanced adhesiveness. IDO expression was only slightly increased in the reactive cells but strongly enhanced following treatment with proinflammatory cytokine interferon-γ (IFN-γ) but not with interleukin-1β, tumor necrosis factor-α, or interleukin-6 at 100 U/mL. The concomitant addition of Aβ (1–42) with IFN-γ was totally ineffective, indicating that Aβ pre-treatment is prerequisite for a high IDO expression. The priming effect of Aβ (1–42) for the IDO induction was also observed for PBMC. These findings suggest that IFN-γ induces IDO over-expression in the primed microglia surrounding amyloid plaques.  相似文献   

8.
Studies on amyloid beta (Aβ|), the peptide thought to play a crucial role in the pathogenesis of Alzheimer's disease, have implicated mitochondria in Aβ-mediated neurotoxicity. We used differentiated PC12 cells stably transfected with an inducible green fluorescent protein (GFP) fusion protein containing an N'-terminal mitochondrial targeting sequence (mtGFP), to examine the effects of sub-lethal Aβ on the import of nuclear-encoded proteins to mitochondria. Exposure to sub-lethal Aβ25–35 (10 μmol/L) for 48 h inhibited mtGFP import to mitochondria; average rates decreased by 20 ± 4%. Concomitant with the decline in mtGFP, cytoplasmic mtGFP increased significantly while mtGFP expression and intramitochondrial mtGFP turnover were unchanged. Sub-lethal Aβ1–42 inhibited mtGFP import and increased cytoplasmic mtGFP but only after 96 h. The import of two endogenous nuclear-encoded mitochondrial proteins, mortalin/mtHsp70 and Tom20 also declined. Prior to the decline in import, mitochondrial membrane potential (mmp), and reactive oxygen species levels were unchanged in Aβ-treated cells versus reverse phase controls. Sustained periods of decreased import were associated with decreased mmp, increased reactive oxygen species, increased vulnerability to oxygen-glucose deprivation and altered mitochondrial morphology. These findings suggest that an Aβ-mediated inhibition of mitochondrial protein import, and the consequent mitochondrial impairment, may contribute to Alzheimer's disease.  相似文献   

9.
Excessive generation and accumulation of the β-amyloid (Aβ) peptide in selectively vulnerable brain regions is a key pathogenic event in the Alzheimer's disease (AD), while epigallocatechin gallate (EGCG) is a very promising chemical to suppress a variety of Aβ-induced neurodegenerative disorders. However, the precise molecular mechanism of EGCG responsible for protection against neurotoxicity still remains elusive. To validate and further investigate the possible mechanism involved, we explored whether EGCG neuroprotection against neurotoxicity of Aβ is mediated through the α7 nicotinic acetylcholine receptor (α7 nAChR) signaling cascade. It was shown in rat primary cortical neurons that short-term treatment with EGCG significantly attenuated the neurotoxicity of Aβ1–42, as demonstrated by increased cell viability, reduced number of apoptotic cells, decreased reactive oxygen species (ROS) generation, and downregulated caspase-3 levels after treatment with 25-μM Aβ1–42. In addition, EGCG markedly strengthened activation of α7nAChR as well as its downstream pathway signaling molecules phosphatidylinositol 3-kinase (PI3K) and Akt, subsequently leading to suppression of Bcl-2 downregulation in Aβ-treated neurons. Conversely, administration of α7nAChR antagonist methyllycaconitine (MLA; 20 μM) to neuronal cultures significantly attenuated the neuroprotection of EGCG against Aβ-induced neurototoxicity, thus presenting new evidence that the α7nAChR activity together with PI3K/Akt transduction signaling may contribute to the molecular mechanism underlying the neuroprotective effects of EGCG against Aβ-induced cell death.  相似文献   

10.
Linarin, a natural occurring flavanol glycoside derived from Mentha arvensis and Buddleja davidii is known to have anti-acetylcholinesterase effects. The present study intended to explore the neuroprotective effects of linarin against Aβ(25-35)-induced neurotoxicity with cultured rat pheochromocytoma cells (PC12 cells) and the possible mechanisms involved. For this purpose, PC12 cells were cultured and exposed to 30 μM Aβ(25-35) in the absence or presence of linarin (0.1, 1.0 and 10 μM). In addition, the potential contribution of the PI3K/Akt neuroprotective pathway in linarin-mediated protection against Aβ(25-35)-induced neurotoxicity was also investigated. The results showed that linarin dose-dependently increased cell viability and reduced the number of apoptotic cells as measured by MTT assay, Annexin-V/PI staining, JC-1 staining and caspase-3 activity assay. Linarin could also inhibit acetylcholinesterase activity induced by Aβ(25-35) in PC12 cells. Further study revealed that linarin induced the phosphorylation of Akt dose-dependently. Treatment of PC12 cells with the PI3K inhibitor LY294002 attenuated the protective effects of linarin. Furthermore, linarin also stimulated phosphorylation of glycogen synthase kinase-3β (GSK-3β), a downstream target of PI3K/Akt. Moreover, the expression of the anti-apoptotic protein Bcl-2 was also increased by linarin treatment. These results suggest that linarin prevents Aβ(25-35)-induced neurotoxicity through the activation of PI3K/Akt, which subsequently inhibits GSK-3β and up-regulates Bcl-2. These findings raise the possibility that linarin may be a potent therapeutic compound against Alzheimer's disease acting through both acetylcholinesterase inhibition and neuroprotection.  相似文献   

11.
The neurotoxicity of amyloid-β (Aβ) involves caspase-dependent and -independent programmed cell death. The latter is mediated by the nuclear translocation of the mitochondrial flavoprotein apoptosis inducing factor (AIF). Nicotine has been shown to decrease Aβ neurotoxicity via inhibition of caspase-dependent apoptosis, but it is unknown if its neuroprotection is mediated through caspase-independent pathways. In the present study, pre-treatment with nicotine in rat cortical neuronal culture markedly reduced Aβ(1-42) induced neuronal death. This effect was accompanied by a significant reduction of mitochondrial AIF release and its subsequent nuclear translocation as well as significant inhibition of cytochrome c release and caspase 3 activation. Pre-treatment with selective α7nicotinic acetylcholine receptor(nAChR) antagonist (methyllycaconitine), but not the α4 nAChR antagonist (dihydro-β-erythroidine), could prevent the neuroprotective effect of nicotine on AIF release/translocation, suggesting that nicotine inhibits the caspase-independent death pathway in a α7 nAChR-dependent fashion. Furthermore, the neuroprotective action of nicotine on AIF release/translocation was suppressed by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Pre-treatment with nicotine significantly restored Akt phosphorylation, an effector of PI3K, in Aβ(1-42) -treated neurons. These findings indicate that the α7 nAChR activation and PI3K/Akt transduction signaling contribute to the neuroprotective effects of nicotine against Aβ-induced cell death by modulating caspase-independent death pathways.  相似文献   

12.
Pharmacological modulation of the GABAA receptor has gained increasing attention as a potential treatment for central processes affected in Alzheimer disease (AD), including neuronal survival and cognition. The proteolytic cleavage of the amyloid precursor protein (APP) through the α-secretase pathway decreases in AD, concurrent with cognitive impairment. This APP cleavage occurs within the β-amyloid peptide (Aβ) sequence, precluding formation of amyloidogenic peptides and leading to the release of the soluble N-terminal APP fragment (sAPPα) which is neurotrophic and procognitive. In this study, we show that at nanomolar-low micromolar concentrations, etazolate, a selective GABAA receptor modulator, stimulates sAPPα production in rat cortical neurons and in guinea pig brains. Etazolate (20 nM–2 μM) dose-dependently protected rat cortical neurons against Aβ-induced toxicity. The neuroprotective effects of etazolate were fully blocked by GABAA receptor antagonists indicating that this neuroprotection was due to GABAA receptor signalling. Baclofen, a GABAB receptor agonist failed to inhibit the Aβ-induced neuronal death. Furthermore, both pharmacological α-secretase pathway inhibition and sAPPα immunoneutralization approaches prevented etazolate neuroprotection against Aβ, indicating that etazolate exerts its neuroprotective effect via sAPPα induction. Our findings therefore indicate a relationship between GABAA receptor signalling, the α-secretase pathway and neuroprotection, documenting a new therapeutic approach for AD treatment.  相似文献   

13.
Increasingly, published evidence links glutamate with the pathogenesis of Alzheimer's disease. We investigated the molecular mechanism underlying glutamate-induced neurotoxicity in hippocampus, which is primarily linked to cognitive dysfunction in Alzheimer's disease. Acute exposure of rat hippocampal slices to glutamate significantly induced cell death, as determined by media lactate dehydrogenase levels and PI staining. Moreover, this was accompanied by Ca2+ influx and calpain-1 activation, as confirmed by the proteolytic pattern of spectrin. Notably, glutamate-induced calpain-1 activation decreased the level of β-catenin, and this process appeared to be independent of glycogen synthase kinase 3beta (GSK-3β), since glutamate also led to loss of GSK-3β. Calpeptin, a calpain inhibitor, attenuated the glutamate-mediated degradations of spectrin, synaptophysin, and β-catenin except GSK-3β and modestly increased cell survival. In contrast, the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) effectively reduced all glutamate-evoked responses, i.e., the breakdowns of spectrin, synaptophysin, β-catenin and GSK-3β, and cell death. Pharmacological studies and in vitro calpain-1 proteolysis confirmed that in the glutamate-treated hippocampus, calpain-1-mediated decrease of β-catenin could occur independently of GSK-3β and of proteasome, and that GSK-3β degradation is independent of calpain-1. These findings together provide the first direct evidence that glutamate promotes the down-regulations of β-catenin and GSK-3β, which potently contribute to neurotoxicity in hippocampus during excitotoxic cell death, and a molecular basis for the protection afforded by calpeptin and APV from the neurotoxic effect of glutamate.  相似文献   

14.
Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways.  相似文献   

15.
The primary molecules for mediating the innate immune response are the Toll-like family of receptors (TLRs). Recent work has established that amyloid-beta (Aβ) fibrils, the primary components of senile plaques in Alzheimer's disease (AD), can interact with the TLR2/4 accessory protein CD14. Using antibody neutralization assays and tumor necrosis factor alpha release in the human monocytic THP-1 cell line, we determined that both TLR2 and TLR4 mediated an inflammatory response to aggregated Aβ(1–42). This was in contrast to exclusive TLR ligands lipopolysaccharide (LPS) (TLR4) and tripalmitoyl cysteinyl seryl tetralysine (Pam3CSK4) (TLR2). Atomic force microscopy imaging showed a fibrillar morphology for the proinflammatory Aβ(1–42) species. Pre-treatment of the cells with 10 μg/mL of a TLR2-specific antibody blocked ∼50% of the cell response to fibrillar Aβ(1–42), completely blocked the Pam3CSK4 response, and had no effect on the LPS-induced response. A TLR4-specific antibody (10 μg/mL) blocked ∼35% of the cell response to fibrillar Aβ(1–42), completely blocked the LPS response, and had no effect on the Pam3CSK4 response. Polymyxin B abolished the LPS response with no effect on Aβ(1–42) ruling out bacterial contamination of the Aβ samples. Combination antibody pre-treatments indicated that neutralization of TLR2, TLR4, and CD14 together was much more effective at blocking the Aβ(1–42) response than the antibodies used alone. These data demonstrate that fibrillar Aβ(1–42) can trigger the innate immune response and that both TLR2 and TLR4 mediate Aβ-induced tumor necrosis factor alpha production in a human monocytic cell line.  相似文献   

16.
α4β2 Nicotinic acetylcholine receptors play an important role in the reward pathways for nicotine. We investigated whether receptor up-regulation of α4β2 nicotinic acetylcholine receptors involves expression changes for non-receptor genes. In a microarray analysis, 10 μM nicotine altered expression of 41 genes at 0.25, 1, 8 and 24 h in hα4β2 SH-EP1 cells. The maximum number of gene changes occurred at 8 h, around the initial increase in 3[H]-cytisine binding. Quantitative RT-PCR corroborated gene induction of endoplasmic reticulum proteins CRELD2, PDIA6, and HERPUD1, and suppression of the pro-inflammatory cytokines IL-1β and IL-6. Nicotine suppresses IL-1β and IL-6 expression at least in part by inhibiting NFκB activation. Antagonists dihydro-β-erythroidine and mecamylamine blocked these nicotine-induced changes showing that receptor activation is required. Antagonists alone or in combination with nicotine suppressed CRELD2 message while increasing α4β2 binding. Additionally, small interfering RNA knockdown of CRELD2 increased basal α4β2 receptor expression, and antagonists decreased CRELD2 expression even in the absence of α4β2 receptors. These data suggest that endoplasmic reticulum proteins such as CRELD2 can regulate α4β2 expression, and may explain antagonist actions in nicotine-induced receptor up-regulation. Further, the unexpected finding that nicotine suppresses inflammatory cytokines suggests that nicotinic α4β2 receptor activation promotes anti-inflammatory effects similar to α7 receptor activation.  相似文献   

17.
Aggregation of amyloid-β (Aβ) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Aβ aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Aβ42 fibrillization and initiate formation of non-fibrillar Aβ42 aggregates, and that the inhibitory effect of Zn(II) (IC50 = 1.8 μmol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Aβ42 aggregation. Moreover, their addition to preformed aggregates initiated fast Aβ42 fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Aβ42. H13A and H14A mutations in Aβ42 reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-β core structure within region 10–23 of the amyloid fibril. Cu(II)-Aβ42 aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Aβ42 aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Aβ aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.  相似文献   

18.
The endogenous neurotransmitter noradrenaline (NA) can protect neurons from the toxic consequences of various inflammatory stimuli, however the exact mechanisms of neuroprotection are not well known. In the current study, we examined neuroprotective effects of NA in primary cultures of rat cortical neurons. Exposure to oligomeric amyloid beta (Aβ) 1-42 peptide induced neuronal damage revealed by increased staining with fluorojade, and toxicity assessed by LDH release. Aβ-dependent neuronal death did not involve neuronal expression of the inducible nitric oxide synthase 2 (NOS2), since Aβ did not induce nitrite production from neurons, LDH release was not reduced by co-incubation with NOS2 inhibitors, and neurotoxicity was similar in wildtype and NOS2 deficient neurons. Co-incubation with NA partially reduced Aβ-induced neuronal LDH release, and completely abrogated the increase in fluorojade staining. Treatment of neurons with NA increased expression of γ-glutamylcysteine ligase, reduced levels of GSH peroxidase, and increased neuronal GSH levels. The neuroprotective effects of NA were partially blocked by co-treatment with an antagonist of peroxisome proliferator activated receptors (PPARs), and replicated by incubation with a selective PPARdelta (PPARδ) agonist. NA also increased expression and activation of PPARδ. Together these data demonstrate that NA can protect neurons from Aβ-induced damage, and suggest that its actions may involve activation of PPARδ and increases in GSH production.  相似文献   

19.
The mechanisms underlying neuronal degeneration in Alzheimer's disease (AD) are very controversial and none more so than whether apoptosis plays a role. Although neurons in AD face a wide assortment of apoptogenic stimuli, the temporal dichotomy between the acuteness of apoptosis vs. the chronicity of AD suggests that apoptosis should be extremely rare in AD. In this regard, survival factor(s) must be involved. In this study, we investigated Bcl-w, a pro-survival member of the Bcl-2 family. Although expressed at low levels in brains of control cases, Bcl-w is significantly up-regulated in AD as shown by both immunocytochemistry and immunoblot analysis. Astonishingly, increased Bcl-w was found to be associated with neurofibrillary pathologies in AD, which was further demonstrated by an EM study. Since neuronal death in AD is thought to be triggered by increased production of amyloid-β (Aβ), it was interesting to find that exposure of human M17 neuroblastoma cells to Aβ1–42 (1 n m −10 μ m ) dramatically up-regulates Bcl-w protein levels. Such increases may be a protective response that attenuates apoptotic processes. Consistent with this, transfected M17 cells overexpressing Bcl-w were protected from both STS-induced and Aβ-induced apoptosis compared to vector-transfected controls. Notably, both tau phosphorylation and p38 is inhibited in Bcl-w transfected cells which may contribute to the neuroprotective role of Bcl-w. Taken together, these set of in vitro and in vivo results suggest that Bcl-w plays an important protective role in neurons in the AD brain.  相似文献   

20.
Administration of small oligomeric β-amyloid (Aβ)1–42 45 min before one-trial bead discrimination learning in day-old chicks abolishes consolidation of learning 30 min post-training (Gibbs et al. Neurobiol. Aging , in press). Administration of the β3-adrenergic agonist CL316243, which specifically stimulates astrocytic but not neuronal glucose uptake, rescues Aβ impaired memory. Weakly reinforced training can be consolidated by various metabolic substrates and we have demonstrated neuronal dependence on oxidative metabolism of glucose soon after training versus astrocytic glucose dependence 20 min later. Based on these findings we examined whether different metabolic substrates were able to counteract memory inhibition by Aβ1–42. Although lactate, the medium-chain fatty acid octanoate, and the ketone body β-hydroxybutyrate consolidated weakly reinforced training when injected close to learning, none of them were able to salvage Aβ-impaired memory; at this early time. All three metabolites and the astrocytic-specific acetate consolidated weak learning and rescued Aβ-impaired memory when injected 10–20 min post-training. However, neither glucose nor insulin rescued memory when injected at 20 min. Rescue of memory by providing astrocytes with alternative substrates for oxidative metabolism suggests that Aβ1–42 exerts its amnestic effects specifically by impairing astrocytic glycolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号