首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The protective effect of PUFA concentrate prepared from fish oil on isoproterenol-induced myocardial infarction in male albino rats was investigated with respect to changes in the levels of diagnostic marker enzymes, cholesterol, triglycerides, free fatty acids, phospholipids, reduced glutathione (GSH) and lipid peroxides (LPO). Administration of PUFA concentrate significantly prevented the isoproterenol-induced elevation in the levels of plasma diagnostic marker enzymes (ALT [93.5%], AST [95.6%], LDH [94.7%] and CPK [96.1%]). PUFA concentrate feeding exerted a significant antilipidemic effect against isoproterenol-induced myocardial infarction by reducing the levels of lipid components in plasma (cholesterol [71.5%], triglycerides [79.7%] and free fatty acids [70.7%] and heart tissue (cholesterol [81.4%], triglycerides [76.3%] and free fatty acids [78.6%]). A tendency to prevent the isoproterenol-induced phospholipids depletion (74.4%) in the myocardium of experimental rats was also observed. The level of lipid peroxidation was also found to be significantly lower in PUFA treated animals (2.72+/-0.15nmol/ml in plasma; 1.18+/-0.08nmol/mg protein in heart tissue) as compared to that of isoproterenol-injected groups (5.77+/-0.43nmol/ml in plasma; 2.14+/-0.15nmol/mg protein in heart tissue) of rats. Also the level of reduced GSH significantly higher in the heart tissue of PUFA administered experimental rats (5.65+/-0.98 microg/g) as compared to myocardial infarction induced control rats (2.39+/-0.18 microg/g). The results of the present study indicate that the overall cardioprotective effect of PUFA concentrate is probably related to its ability to inhibit lipid accumulation by its hypolipidaemic property.  相似文献   

2.
This study determined whether rates of protein synthesis increase after acute resistance exercise in skeletal muscle from severely diabetic rats. Previous studies consistently show that postexercise rates of protein synthesis are elevated in nondiabetic and moderately diabetic rats. Severely diabetic rats performed acute resistance exercise (n = 8) or remained sedentary (n = 8). A group of nondiabetic age-matched rats served as controls (n = 9). Rates of protein synthesis were measured 16 h after exercise. Plasma glucose concentrations were >500 mg/dl in the diabetic rats. Rates of protein synthesis (nmol phenylalanine incorporated. g muscle(-1). h(-1), means +/- SE) were not different between exercised (117 +/- 7) and sedentary (106 +/- 9) diabetic rats but were significantly (P < 0.05) lower than in sedentary nondiabetic rats (162 +/- 9) and in exercised nondiabetic rats (197 +/- 7). Circulating insulin concentrations were 442 +/- 65 pM in nondiabetic rats and 53 +/- 11 and 72 +/- 19 pM in sedentary and exercised diabetic rats, respectively. Plasma insulin-like growth factor I concentrations were reduced by 33% in diabetic rats compared with nondiabetic rats, and there was no difference between exercised and sedentary diabetic rats. Muscle insulin-like growth factor I was not affected by resistance exercise in diabetic rats. The results show that there is a critical concentration of insulin below which rates of protein synthesis begin to decline in vivo. In contrast to previous studies using less diabetic rats, severely diabetic rats cannot increase rates of protein synthesis after acute resistance exercise.  相似文献   

3.
We tested the hypothesis that hepatic nitric oxide (NO) and glutathione (GSH) are involved in the synthesis of a putative hormone referred to as hepatic insulin-sensitizing substance HISS. Insulin action was assessed in Wistar rats using the rapid insulin sensitivity test (RIST). Blockade of hepatic NO synthesis with N(G)-nitro-l-arginine methyl ester (l-NAME, 1.0 mg/kg intraportal) decreased insulin sensitivity by 45.1 +/- 2.1% compared with control (from 287.3 +/- 18.1 to 155.3 +/- 10.1 mg glucose/kg, P < 0.05). Insulin sensitivity was restored to 321.7 +/- 44.7 mg glucose/kg after administration of an NO donor, intraportal SIN-1 (5 mg/kg), which promotes GSH nitrosation, but not after intraportal sodium nitroprusside (20 nmol x kg(-1) x min(-1)), which does not nitrosate GSH. We depleted hepatic GSH using the GSH synthesis inhibitor l-buthionine-[S,R]-sulfoximine (BSO, 2 mmol/kg body wt ip for 20 days), which reduced insulin sensitivity by 39.1%. Insulin sensitivity after l-NAME was not significantly different between BSO- and sham-treated animals. SIN-1 did not reverse the insulin resistance induced by l-NAME in the BSO-treated group. These results support our hypothesis that NO and GSH are essential for insulin action.  相似文献   

4.
The content of glutathione and other thiols in rat eggs was examined during sperm penetration and pronuclear formation by high-performance liquid chromatography with fluorescence detection. Reduced glutathione (GSH) content was higher in unfertilized oocytes (8.50 +/- 0.29 pmol/egg) and penetrated eggs with a decondensed sperm nucleus (DSH eggs; 7.72 +/- 0.56 pmol/egg) than eggs at the pronuclear stage (PN eggs; 5.93 +/- 0.10 pmol/egg). The content of oxidised glutathione (GSSG) was not different among experimental groups (152.6 +/- 74.1 nmol/egg in unfertilized eggs, 146.0 +/- 50.0 nmol/egg in DSH eggs and 39.7 +/- 17.3 nmol/egg in PN eggs). The GSSG/GSH ratio did not change during fertilization. Although the reduced cysteinylglycine content of eggs did not change among experimental groups, the oxidised form of cysteinylglycine increased (p < 0.025) between sperm decondensation (6.9 +/- 1.5 nmol/egg in unfertilized oocytes and 10.1 +/- 2.1 nmol/egg in DSH eggs) and pronuclear formation (40.5 +/- 11.5 nmol/egg in PN eggs). Low contents of cystine were detected during fertilization but cysteine and gamma-glutamylcysteine were not detected in any treatment groups. These results demonstrate that GSH content in rat eggs decreases between sperm decondensation and pronuclear formation, probably due to the increased activity of gamma-glutamyl transpeptidase.  相似文献   

5.
Cardiovascular disease is one of the most important causes of morbidity and mortality in diabetes mellitus, but there has been controversy over functional impairment of diabetic hearts and their tolerance to ischemia. We studied ischemic heart function in type 2 diabetic rats with different degrees of hyperglycemia and its relationship with cardiac norepinephrine release. Otsuka Long-Evans Tokushima Fatty rats (OLETF) and age-matched Long-Evans Tokushima Otsuka normal rats (LETO) were used. One group of OLETF rats was given 30% sucrose in drinking water (OLETF-S). Hearts were isolated and perfused in a working heart preparation and subjected to 30 min ischemia followed by 40 min reperfusion at age of 12 months. Hemodynamics and coronary norepinephrine overflow were examined. Fasting plasma glucose in OLETF increased markedly at 12 months and sucrose administration exacerbated hyperglycemia in diabetic rats (LETO 6.6 +/- 0.5, OLETF 8.3 +/- 0.7, OLETF-S 15.0 +/- 1.7 mmol/L, P < 0.01). Basic cardiac output in OLETF was decreased as compared with LETO and OLETF-S (LETO 29.4 +/- 2.5, OLETF 24.0 +/- 2.4, OLETF-S 27.0 +/- 0.9 ml/min/g, P < 0.05) and remained very low after ischemia, while in OLETF-S it was well preserved (OLETF 4.2 +/- 2.1, OLETF-S 13.7 +/- 2.6 ml/min/g, P < 0.01). Correspondently, cardiac norepinephrine released during ischemia and reperfusion was lower in OLETF-S (OLETF 2.3 +/- 1.0, OLETF-S 0.7 +/- 0.1 pmol/ml, P < 0.01). Thus, OLETF hearts were more vulnerable to ischemia but sucrose feeding rendered their hearts resistant to ischemia. Less norepinephrine release may play a role in preventing postischemic functional deterioration in sucrose-fed diabetic hearts.  相似文献   

6.
BACKGROUND: It has been reported that macrophage migration inhibitory factor (MIF) stimulated insulin secretion from pancreatic islet beta-cells in an autocrine manner, which suggests its pivotal role in the glucose metabolism. According to this finding, we evaluated MIF expression in cultured adipocytes and epididymal fat pads of obese and diabetic rats to investigate its role in adipose tissue. MATERIALS AND METHODS: The murine adipocyte cell line 3T3-L1 was used to examine MIF mRNA expression and production of MIF protein in response to various concentrations of glucose and insulin. Epididymal fat pads of Otsuka Long-Evans Tokushima fatty (OLETF) and Wistar fatty rats, animal models of obesity and diabetes, were subjected to Northern blot analysis to determine MIF mRNA levels. RESULTS: MIF mRNA of 3T3-L1 adipocytes was up-regulated by costimulation with glucose and insulin. Intracellular MIF content was significantly increased by stimulation, whereas its content in the culture medium was decreased. When the cells were treated with cytochalasin B, MIF secretion in the medium was increased. Pioglitazone significantly increased MIF content in the culture medium of 3T3-L1 cells. However, MIF mRNA expression of both epididymal fat pads of OLETF and Wistar fatty rats was down-regulated despite a high plasma glucose level. The plasma MIF level of Wistar fatty rats was significantly increased by treatment with pioglitazone. CONCLUSION: We show here that the intracellular glucose level is critical to determining the MIF mRNA level as well as its protein content in adipose tissue. MIF is known to play an important role in glucose metabolism as a positive regulator of insulin secretion. In this context, it is conceivable that MIF may affect the pathophysiology of obesity and diabetes.  相似文献   

7.
The aim of this study was to determine the effects of insulin infusion on oxidative stress induced by acute changes in glycemia in non-stressed hereditary hypertriglyceridemic rats (hHTG) and Wistar (control) rats. Rats were treated with glucose and either insulin or normal saline infusion for 3 hours followed by 90 min of hyperglycemic (12 mmol/l) and 90 min of euglycemic (6 mmol/l) clamp. Levels of total glutathione (GSH), oxidized glutathione (GSSG) and total antioxidant capacity (AOC) were determined to assess oxidative stress. In steady states of each clamp, glucose infusion rate (GIR) was calculated for evaluation of insulin sensitivity. GIR (mg.kg(-1).min(-1)) was significantly lower in hHTG in comparison with Wistar rats; 25.46 (23.41 - 28.45) vs. 36.30 (27.49 - 50.42) on glycemia 6 mmol/l and 57.18 (50.78 - 60.63) vs. 68.00 (63.61 - 85.92) on glycemia 12 mmol/l. GSH/GSSG ratios were significantly higher in hHTG rats at basal conditions. Further results showed that, unlike in Wistar rats, insulin infusion significantly increases GSH/GSSG ratios in hHTG rats: 10.02 (9.90 - 11.42) vs. 6.01 (5.83 - 6.43) on glycemia 6 mmol/l and 7.42 (7.15 - 7.89) vs. 6.16 (5.74 - 7.05) on glycemia 12 mmol/l. Insulin infusion thus positively influences GSH/GSSG ratio and that way reduces intracellular oxidative stress in insulin-resistant animals.  相似文献   

8.
Studies were conducted in rats to determine the effect of maternal diabetes and the consequent hyperglycemia on cardiovascular function in the offspring. Diabetes was induced in pregnant Wistar rats through streptozotocin injection (50 mg/kg). Cardiovascular parameters were measured in 2-mo-old offspring animals of diabetic (OD, n=12) and control rats (OC, n=8). Arterial pressure (AP), heart rate (HR), baroreflex sensitivity, and vascular responsiveness to phenylephrine (PH) and sodium nitroprusside (SN) were measured. Angiotensin-converting enzyme (ACE) activity in heart, kidney, and lung was determined. OD rats exhibited increases in systolic AP (138+/-8 vs. 119+/-6 mmHg, OD vs. OC), with no change in HR (342+/-21 vs. 364+/-39 beats per minute (bpm), OD vs. OC). The reflex tachycardia elicited by SN was reduced in OD rats, as indicated by the slope of the linear regression (-2.2+/-0.4 vs. -3.6+/-0.8 bpm/mmHg, OD vs. OC). Vascular responsiveness to PH was increased 63% in OD rats compared with OC. OD rats showed increases in ACE activity in heart, kidney, and lung (1.13+/-0.24, 3.04+/-0.86, 40.8+/-8.9 vs. 0.73+/-0.19, 1.7+/-0.45, 28.1+/-6 nmol His-Leu.min-1 mg protein-1, OD vs. OC). Results suggest that diabetes during pregnancy affects cardiovascular function in offspring, seen as hypertension, baroreflex dysfunction, and activation of tissue renin-angiotensin system.  相似文献   

9.
Endoplasmic reticulum (ER) dysfunction plays a prominent role in the pathophysiology of diabetic nephropathy (DN). This study aimed to investigate the novel role of Naringenin (a flavanone mainly found in citrus fruits) in modulating ER stress in hyperglycemic NRK 52E cells and STZ/nicotinamide induced diabetes in Wistar rats. The results demonstrated that Naringenin supplementation downregulated the expression of ER stress marker proteins, including p-PERK, p-eIF2α, XBP1s, ATF4 and CHOP during hyperglycemic renal toxicity in vitro and in vivo. Naringenin abrogated hyperglycemia-induced ultrastructural changes in ER, evidencing its anti-ER stress effects. Interestingly, treatment of Naringenin prevented nuclear translocation of ATF4 and CHOP in hyperglycemic renal cells and diabetic kidneys. Naringenin prevented apoptosis in hyperglycemic renal cells and diabetic kidney tissues by downregulating expression of apoptotic marker proteins. Further, photomicrographs of TEM confirmed anti-apoptotic potential of Naringenin as it prevented membrane blebbing and formation of apoptotic bodies in hyperglycemic renal cells. Naringenin improved glucose tolerance, restored serum insulin level and reduced serum glucose level in diabetic rats evidencing its anti-hyperglycemic effects. Histopathological examination of kidney tissues also confirmed prevention of damage after 28 days of Naringenin treatment in diabetic rats. Additionally, Naringenin diminished oxidative stress and improved antioxidant defense response during hyperglycemic renal toxicity. Taken together, our study revealed a novel role of Naringenin in ameliorating ER stress during hyperglycemic renal toxicity along with prevention of apoptosis, cellular and tissue damage. The findings suggest that prevention of ER stress can be exploited as a novel approach for the management of hyperglycemic nephrotoxicity. Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00644-0.  相似文献   

10.
This study was aimed to evaluate the preventive effect of diosgenin and exercise on tissue antioxidant status in isoproterenol-induced myocardial infarction (MI) in male Wistar rats. Levels of lipid peroxides, reduced glutathione (GSH), and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidise and glutathione reductase) and antiperoxidative enzymes (catalase and superoxide dismutase) in the plasma and the heart tissue of experimental groups of rats were determined. Pretreatment with diosgenin and exercise exerted an antioxidant effect against isoproterenol-induced myocardial infarction by blocking the induction of lipid peroxidation. A tendency to prevent the isoproterenol-induced alterations in the level of GSH, in the activities of glutathione-dependent antioxidant enzymes and antiperoxidative enzymes was also observed. Histopathological findings of the myocardial tissue showed a protective role for combination of diosgenin and exercise in isoproterenol (ISO)-treated rats. Thus, the present study reveals that preconditioning with diosgenin and exercise exerts cardioprotective effect against ISO-induced MI due to its free radical scavenging and antioxidant effects, which maintains the tissue defense system against myocardial damage.  相似文献   

11.
Increased oxidative stress is believed to be an important factor in the development of diabetic complications. In this study, the effect of diabetes on the susceptibility of synaptosomes to oxidative stress, induced by the oxidizing system ascorbate/Fe2+, on the activity of antioxidant enzymes and on the levels of glutathione and vitamin E was investigated. Synaptosomes were isolated from brain of 29-weeks-old Goto-Kakizaki (GK) rats, a model of non-insulin dependent diabetes mellitus and from normal Wistar rats. Synaptosomes isolated from GK rats displayed a lower susceptibility to lipid peroxidation, as assessed by quantifying thiobarbituric acid reactive substances (TBARS), than normal rats (5.33 +/- 0.79 and 7.58 +/- 0.7 nmol TBARS/mg protein, respectively). In the absence of oxidants, no significant differences were found between the levels of peroxidation in synaptosomes of diabetic or control rats. Superoxide dismutase (SOD), glutathione peroxidase and glutathione reductase activities were unaltered in the brain of diabetic rats. There were no statistically significant differences in fatty acid composition of total lipids and reduced glutathione levels in synaptosomes of diabetic and control rats. The decreased susceptibility to membrane lipid peroxidation of diabetic rats synaptosomes correlated with a 1.3-fold increase in synaptosomal vitamin E levels. Vitamin E levels in plasma were also higher in diabetic rats (21.32 micromol/l) as compared to normal rats (15.13 micromol/l). We conclude that the increased resistance to lipid peroxidation in GK rat brain synaptosomes may be due to the increased vitamin E content, suggesting that diabetic animals might develop enhanced defense systems against brain oxidative stress.  相似文献   

12.
目的:观察人脐带间充质干细胞(hu MSCs)移植对糖尿病大鼠血糖、胰岛素和血清因子表达的影响。方法:随机选择12只Wistar大鼠通过腹腔注射链脲佐菌素50 mg/kg,血糖高于16.7 mmol/L者定为糖尿病大鼠,再将其随机分为糖尿病组和干细胞组,每组6只,同时选择6只雄性Wistar大鼠为正常组。干细胞组大鼠腹腔注射hu MSCs细胞悬液,糖尿病组注射PBS液。分别于注射2周、4周和6周后测定和比较各组大鼠的血糖、血清胰岛素、肿瘤坏死因子(TNF-α)和白介素-6(IL-6)的表达。结果:与正常组比较,糖尿病组和干细胞组大鼠的血糖水平均显著升高,胰岛素水平均显著降低(P0.01)。与糖尿病组比较,干细胞组大鼠注射hu MSCs后的血糖水平明显降低,胰岛素水平明显升高(P0.05),血清TNF-α和IL-6 m RNA水平均显著降低(P0.01)。结论:hu MSCs移植能显著降低糖尿病大鼠的血糖,促进其胰岛素分泌,同时降低血清TNF-α和IL-6的表达。  相似文献   

13.
Hepatic glutathione (GSH) plays an important role in the detoxification of reactive molecular intermediates. Because of evidence that the intrahepatic turnover of glutathione in the rat may be largely accounted for by efflux from hepatocytes into the general circulation, the quantitation of plasma GSH turnover in vivo could provide a noninvasive index of hepatic glutathione metabolism. We developed a method to estimate plasma glutathione turnover and clearance in the intact, anesthetized rat using a 30-min unprimed, continuous infusion of 35S-labelled GSH. A steady state of free plasma glutathione specific radioactivity was achieved within 10 min, as determined by high-pressure liquid chromatography with fluorometric detection after precolumn derivatization of the plasma samples with monobromobimane. The method was tested after two treatments known to alter hepatic GSH metabolism: 90 min after intraperitoneal injection of 4 mmol/kg buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, and after a 48-h fast. Liver glutathione concentration (mean +/- SEM) was 5.00 +/- 0.53 mumol/g wet weight in control rats. It decreased to 3.10 +/- 0.35 mumol/g wet weight after BSO injection and to 3.36 +/- 0.14 mumol/g wet weight after fasting (both p less than 0.05). Plasma glutathione turnover was 63.0 +/- 7.46 nmol.min-1.100 g-1 body weight in control rats, 35.0 +/- 2.92 nmol.min-1.g-1 body weight in BSO-treated rats, and 41.7 +/- 2.28 nmol.min-1.g-1 body weight after fasting (both p less than 0.05), thus reflecting the hepatic alterations. This approach might prove useful in the noninvasive assessment of liver glutathione status.  相似文献   

14.
V T Maddaiah 《FASEB journal》1990,4(5):1513-1518
The temporal relationship of changes in state 3 respiration, lipid peroxidation, and glutathione (GSH) content was investigated in liver mitochondria of hypophysectomized rats after an injection of 3,3',5-triiodo-L-thyronine (T3). Lipid peroxidation induced by ADP/Fe3+/NADPH was determined by the amount of malondialdehyde formed. Hypophysectomy decreased respiration and lipid peroxidation (from 19.88 +/- 3.04 to 14.19 +/- 1.14 nmol malondialdehyde.mg protein-1.10 min-1) but increased GSH content (from 7.06 +/- 2.08 to 12.46 +/- 3.58 nmol/mg protein). Daily injections of a low dose (5 micrograms/100 g) of T3 for 7 days restored the parameters. Time course (up to 96 h) of these changes was followed after one injection of a moderate (100 micrograms/100 g) and high (1000 micrograms/100 g) dose of the hormone. Respiration showed a significant increase at 24 h and declined slightly at 96 h. There was a slow loss of respiratory control ratio after 24 h. Lipid peroxidation remained unchanged at 24 h and showed a gradual increase, becoming significantly higher at 72-96 h depending on the hormone dosage. Changes in GSH content followed a time course similar to that of lipid peroxidation except that it showed a decrease instead of an increase. There was a high degree of inverse linear correlation between lipid peroxidation and GSH (correlation coefficient = 0.95). Because GSH is required for detoxification of hydroperoxides generated by the respiratory chain, it is suggested that lipid peroxidation may play a major role in the modulation of intramitochondrial GSH.  相似文献   

15.
The aim of this study was to investigate the protective effects of vanadyl sulfate on aorta tissue of normal and streptozotocin (STZ)-induced diabetic rats, morphologically and biochemically. The animals were made diabetic by an intraperitoneal injection of streptozotocin (65 mg/kg) and vanadyl sulfate (100 mg/kg) that was given every day for 60 days by gavage technique to rats. Under the light and transmission electron microscopes, hypertrophy of the vessel wall, focal disruption in the elastic lamellae, an increase in thickness of total aortic wall, tunica intima, subendothelial space and adventitial layer, and a disorganization in smooth muscular cells of the tunica media were observed in diabetic animals. The aorta lipid peroxidation (LPO) levels were significantly increased and the aorta glutathione (GSH) levels were significantly reduced in STZ diabetic rats. In diabetic rats administered vanadyl sulfate for 60 days, aorta LPO levels significantly decreased and the aorta GSH level significantly increased. In conclusion, in vivo treatment with vanadyl sulfate of diabetic rats prevented the morphological and biochemical changes observed in thoracic aorta of diabetic animals.  相似文献   

16.
Effect of selenium deficiency on the disposition of plasma glutathione   总被引:1,自引:0,他引:1  
Selenium deficiency causes increased hepatic synthesis and release of GSH into the blood. The purpose of this study was to examine the effect of selenium deficiency on the disposition of plasma glutathione. Plasma glutathione concentration was 40 +/- 3.4 nmol GSH equivalents/ml in selenium-deficient rats and 17 +/- 5.4 nmol GSH equivalents/ml in control rats. The half-life and systemic clearance of plasma glutathione were found to be the same in selenium-deficient and control rats (t1/2 = 3.4 +/- 0.7 min). Because selenium-deficient plasma glutathione concentration was twice that of control, the determination that selenium deficiency did not affect glutathione plasma systemic clearance indicated that the flux of glutathione through the plasma was doubled by selenium deficiency. It has been proposed that the kidney is responsible for the removal of a major fraction of plasma glutathione. In these studies, renal clearance accounted for 24% of plasma systemic glutathione clearance in controls and 44% in selenium-deficient rats. This indicates that a significant amount of glutathione is metabolized at extrarenal sites, especially in control animals. More than half of the increased plasma glutathione produced in selenium deficiency was removed by the kidney. Thus, selenium deficiency results in a doubling of cysteine transport in the form of glutathione from the liver to the periphery as well as a doubling of plasma glutathione concentration.  相似文献   

17.
Han X  Yang J  Cheng H  Yang K  Abendschein DR  Gross RW 《Biochemistry》2005,44(50):16684-16694
Diabetic cardiomyopathy is characterized by excessive utilization of fatty acid substrate, diminished glucose transport, and mitochondrial dysfunction. However, the chemical mechanisms linking altered substrate utilization to mitochondrial dysfunction are unknown. Herein, we use shotgun lipidomics and multidimensional mass spectrometry to identify dramatic decreases in the critical mitochondrial inner membrane lipid, cardiolipin, in diabetic murine myocardium (from 7.2 +/- 0.3 nmol/mg of protein in control hearts to 3.1 +/- 0.1 nmol/mg of protein in diabetic myocardium; p < 0.001, n = 7). Moreover, the direct metabolic precursor of cardiolipin, phosphatidylglycerol, was also substantially depleted (2.5 +/- 0.2 nmol/mg of protein in control hearts vs 1.3 +/- 0.1 nmol/mg of protein in diabetic myocardium; p < 0.001, n = 7). Similarly, glycerol 3-phosphate, necessary for the penultimate step in phosphatidylglycerol production, decreased by 58% in diabetic myocardium (from 4.9 +/- 0.9 to 2.2 +/- 0.3 nmol/mg of protein; n = 4). Since Barth's syndrome (a disorder of cardiolipin metabolism) induces mitochondrial dysfunction and cardiomyopathy, and since decreases in cardiolipin content precipitate mitochondrial dysfunction, these results provide a unifying hypothesis linking altered substrate utilization and metabolic flux in diabetic myocardium with altered lipid metabolism, cardiolipin depletion, mitochondrial dysfunction, and resultant hemodynamic compromise.  相似文献   

18.
In order to investigate the metabolic abnormalities in hyperosmolar diabetes from the viewpoint of insulin or glucagon, experimental hyperosmolar diabetes was produced by a combination of cortisol injection and water deprivation or only by the latter in streptozotocin-induced moderately hyperglycemic rat. They had a high blood glucose level and high plasma osmotic pressure. Fasting plasma insulin tended to decrease in the dehydrated state whether diabetic or not. Fasting plasma glucagon was increased to 0.047 +/- 0.009 nmol/l (P less than 0.05) in the non-diabetic dehydrated state (normal 0.026 +/- 0.004 nmol/l), and a similar high level of plasma glucagon was observed in the dehydrated diabetic rat (0.052 +/- 0.020 nmol/l), especially after cortisol treatment. In isolated rat islet, insulin released from the dehydrated diabetic rat at a high concentration of glucose was to some extent lower than that of diabetic rat, and released IRG vice versa. The insulin:glucagon ratio in the presence of high glucose was significantly lower in the dehydrated diabetic rat than in the normal rat (P less than 0.01). In the diabetic rat this ratio was not significantly different. This finding was also consistent with the results of in vivo experiments. Thus more catabolic hormonal changes were found in in vivo and in vitro studies in the hyperosmolar diabetic rat.  相似文献   

19.
We have studied the effects of red wine on brain oxidative stress and nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats with a single intraperitonally injection of STZ (50 mg/kg). Two weeks before and four weeks after injection, red wine was given orally in both normal and diabetic rats. Blood samples were taken from the neck vascular trunk in order to determine the glucose, triglycerides, total cholesterol, HDL-cholesterol (HDL-c), atherogenic index (AI), total protein, blood urea nitrogen (BUN), creatinine, insulin, lipid peroxidation products, reduced glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. As well, we estimated the lipid peroxidtion, GSH and SOD, GSH-Px and catalase activities in brain and renal homogenates, and the excretion of albumin, proteins and glucose in urine over 24 h period. The administration of STZ caused significant increases in levels of glycosuria, proteinuria, albuminuria, glycemia, total cholesterol and AI, as well as in lipid peroxidation products in the brain, plasma and kidney, whereas it decreased the GSH content and SOD, GSH-Px and catalase activities. Treatment with red wine significantly prevented the changes induced by STZ. These data suggested that red wine has a protective effect against brain oxidative stress, diabetic nephropathy and diabetes induced by STZ, as well as it protects against hypercholesterolemia and atherogenic risk.  相似文献   

20.
Hydroperoxide decomposition by the NADP-glutathione system in rat liver mitochondria was analyzed. Mitochondria were found to contain high concentrations of the reduced form of glutathione (GSH) (4.32 +/- 0.50 nmol/mg) and NADPH (4.74 +/- 0.64 nmol/mg), and high activities of glutathione peroxidase and reductase. In the initial phase of the reaction, the rate of hydroperoxide decomposition was proportional to both the GSH level and the activity of GSH peroxidase. However, in the later steady state, the step of NADP reduction was rate-limiting, and the overall reaction rate was independent of the initial concentration of GSH, and activities of glutathione peroxidase and reductase. Some GSH was released from mitochondria during incubation, but the rate of the decomposition could be simply expressed as kappa [GSH]/2, where kappa is the first-order rate constant of the peroxidase and [GSH] is the intramitochondrial level of GSH in the steady state. The rate of the reaction in the steady state was also dependent on the NADPH level, its reciprocal being linearly correlated with [NADPH]-1. The rate of decomposition of hydroperoxide was influenced by the respiratory state. During state 3 respiration, the rate was greatly depressed, but was still considered to exceed by far the rate of physiological generation of hydroperoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号