首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
Streptococcus phocae, a bacterial pathogen of seals, could reliably be identified by PCR amplification using oligonucleotide primers designed according to species specific segments of the previously sequenced 16S rRNA gene and the 16S-23S rDNA intergenic spacer region of this species. The PCR mediated assay allowed an identification of S. phocae isolated from harbor and gray seals and from Atlantic salmons. No cross-reaction could be observed with 13 different other streptococcal species and subspecies and with Lactococcus garvieae strains investigated for control purposes.  相似文献   

2.
AIMS: To establish the specific DNA patterns in 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) regions from different kinds of Serratia marcescens strains using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequences analysis. METHODS AND RESULTS: Two pairs of primers based on the 16S rDNA and 16S-23S rDNA IGS were applied to amplify the rrn operons of two kinds of S. marcescens strains. About 1500 bp for 16S rDNA and four fragments of different sizes for 16S-23S rDNA IGS were obtained. PCR-amplified fragments were analysed by RFLP and sequence analysis. Two distinct restriction patterns revealing three to five bands between two kinds of strains were detected with each specific enzyme. According to the sequence analysis, two kinds of strains showed approximately 97% sequence homology of 16S rDNA. However, there was much difference in the sequences of IGS between the two kinds of strains. Intercistronic tRNA of strains H3010 and A3 demonstrated an order of tRNA of 5'-16S-tRNA(Ala)-tRNA(Ile)-23S-3', but strain B17 harboured the tRNA of 5'-16S-tRNA(Glu)-tRNA(Ile)-23S-3'. CONCLUSIONS: The method was specific, sensitive and accurate, providing a new technique for differentiating different strains from the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper provided the first molecular characterization of 16S rDNA and 16S-23S rDNA IGS from S. marcescens strains.  相似文献   

3.
An oligonucleotide-microarray method was developed for the detection of Kitasatospora species in soil samples. The 16S-23S rDNA internal transcribed spacer (ITS) sequence of these antibiotics-producing actinomycetes was applied to design short oligonucleotide probes. Two different 26-mers were synthesized, specific to each species used. Additionally, four oligonucleotide probes were designed to evaluate the system. The oligonucleotides were spotted onto slides of the ArrayTube microarray system and examined with a new silver-labeling detection technique. Prior to hybridization analysis, the 16S-23S rDNA were amplified by polymerase chain reaction both from bacterial cells and environmental samples using two actinomycetes specific primers containing a 5' biotin labeling. The type strains of eight Kitasatospora species included in this study were K. phosalacinea DSM 43860, K. setae DSM 43861, K. cochleata DSM 41652, K. cystarginea DSM 41680, K. azatica DSM 41650, K. mediocidica DSM 43929, K. paracochleata DSM 41656, and K. griseola DSM 43859. The actinomycetes-specific primers were shown to amplify the entire 16S-23S rDNA ITS region from all tested strains. More importantly, the described technique allows the detection of Kitasatospora strains from soil samples by extracting metagenomic DNA followed by a PCR amplification step. This indicates that the oligonucleotide-microarray method developed in this study is a reliable tool for the detection of Kitasatospora species in environmental samples.  相似文献   

4.
The method for DNA fingerprinting of the 16S-23S rDNA intergenic spacer region was modified to increase resolution of bacterial strains by thermal gradient gel electrophoresis (TGGE) analysis. By utilizing the high melting temperature region of the tRNA gene located in the middle of the 16S-23S rDNA intergenic spacer region as an internal clamp for TGGE, multiple melting domain problems were solved. PCR primers lacking a stretch of GC-rich sequences (GC-clamp) amplified the intergenic spacer region more efficiently than GC-clamped primers. Therefore, PCR artifacts were avoided by using low, 17-cycle, PCR. The method was successfully applied to diverse bacterial species for strain differentiation by TGGE without requiring a special PCR primer set.  相似文献   

5.
AIMS: The molecular diversity of 25 strains of rhizobia, isolated in Sicily from root nodules of the Mediterranean shrubby legume Spanish broom (Spartium junceum L.), is presented in relation to the known rhizobial reference strains. METHODS AND RESULTS: Our approach to the study of the S. junceum rhizobial diversity combined the information given by the 16S and the intergenic spacer (IGS) 16S-23S rDNA polymorphic region by obtaining them in a single polymerase chain reaction (PCR) step. The PCR fragment size of the S. junceum isolates was 2400-2500 bp and that of the reference strains varied from 2400 in Bradyrhizobium strains to 2800 in Sinorhizobium strains. Inter- and intrageneric length variability was found among the reference strains. Restriction fragment length polymorphisms (RFLP) analysis allowed us to identify eight genotypes among the S. junceum rhizobia that were clustered into two groups, both related to the Bradyrhizobium lineage. Sequencing of representative strains of the two clusters confirmed these data. The 16S-IGS PCR-RFLP approach, when applied to rhizobial reference strains, allowed very close species (i.e. Rhizobium leguminosarum/R. tropici) to be separated with any of the three enzymes used; however, cluster analysis revealed inconsistencies with the 16S-based phylogenesis of rhizobia. CONCLUSIONS: Rhizobia nodulating S. junceum in the Mediterranean region belong to the Bradyrhizobium lineage. Our results confirm the resolution power of the 16S-23S rDNA in distinguishing among rhizobia genera and species, as well as the usefulness of the PCR-RFLP method applied to the entire 16S-IGS region for a rapid tracking of the known relatives of new isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: The present paper is, to our knowledge, the first report on rhizobia nodulating a Mediterranean wild woody legume.  相似文献   

6.
The taxonomic and discriminatory power of RFLP analysis of PCR amplified parts of rhizobial rrn operons was compared to those of genomic PCR fingerprinting with arbitrary and repetitive primers. For this purpose, the two methods were applied for characterization of a group of bacterial isolates referred to as Rhizobium 'hedysari'. As outgroups, representatives of the family Rhizobiaceae, belonging to the Rhizobium galegae, Rhizobium meliloti, Rhizobium leguminosarum and Agrobacterium tumefaciens species were used. By the RFLP analysis of the PCR products corresponding to the variable 5'-half of the 23S rRNA gene and of the amplified spacer region between the 16S and 23S rRNA genes all Rh. 'hedysari' strains studied were tightly clustered together while the outgroups were placed in an outer position. The PCR products of the 3' end parts of the 23S rDNA did not show significant RFL polymorphism and no species differentiation on their basis was possible. In parallel, analysis of the same strains was performed by PCR amplification of their total DNA with 19, 18 and 10 bp long arbitrary primers (AP-PCR) as well as with single primers corresponding to several bacterial repetitive sequences (rep-PCR). By both AP and rep-PCR an identification of every particular strain was achieved. In general, all primers provided taxonomic results that are in agreement with the species and group assignments based on the RFLP analysis of the rrn operons. On the basis of the results presented here it can be concluded that AP and rcp-PCR are more informative and discriminative than rDNA and RFLP analysis of the rhizobial strains studied.  相似文献   

7.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNA(Ala) and tRNA(Ile), which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

8.
AIMS: The restriction fragment length polymorphism (RFLP) method was used to differentiate Lactobacillus species having closely related identities in the 16S-23S rDNA intergenic spacer region (ISR). Species-specific primers for Lact. farciminis and Lact. alimentarius were designed and allowed rapid identification of these species. METHODS AND RESULTS: The 16S-23S rDNA spacer region was amplified by primers tAla and 23S/p10, then digested by HinfI and TaqI enzymes and analysed by electrophoresis. Digestion by HinfI was not sufficient to differentiate Lact. sakei, Lact. curvatus, Lact. farciminis, Lact. alimentarius, Lact. plantarum and Lact. paraplantarum. In contrast, digestion carried out by TaqI revealed five different patterns allowing these species to be distinguished, except for Lact. plantarum from Lact. paraplantarum. The 16S-23S rDNA spacer region of Lact. farciminis and Lact. alimentarius were amplified and then cloned into vector pCR(R)2.1 and sequenced. The DNA sequences obtained were analysed and species-specific primers were designed from these sequences. The specificity of these primers was positively demonstrated as no response was obtained for 14 other species tested. RESULTS AND CONCLUSIONS: The species-specific primers for Lact. farciminis and Lact. alimentarius were shown to be useful for identifying these species among other lactobacilli. The RFLP profile obtained upon digestion with HinfI and TaqI enzymes can be used to discriminate Lact. farciminis, Lact. alimentarius, Lact. sakei, Lact. curvatus and Lact. plantarum. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have established the first species-specific primer for PCR identification of Lact. farciminis and Lact. alimentarius. Both species-specific primer and RFLP, could be used as tools for rapid identification of lactobacilli up to species level.  相似文献   

9.
Using the polymerase chain reaction the 16S rRNA genes and the 16S-23S spacer regions of phytoplasmas associated with lethal decline diseases of coconut palm (Cocos nucifera), were amplified from infected plants from Florida and the Yucatan region in Mexico and from east and west Africa. Following sequencing of the rDNA products, phylogenetic analysis confirmed that these coconut phytoplasmas form a separate cluster within the phytoplasma clade and that the pathogen causing diseases in west Africa formed a new sub-clade within this cluster. Analysis of the 16S-23S intergenic spacer regions confirmed the sequence diversity of this region and enabled two primers to be designed which were specific for the diseases found in east and west Africa. None of these specific primers, when paired with a universal primer, produced PCR amplification products from healthy coconut DNA, infected coconut DNA from the Caribbean or DNA from a variety of periwinkle (Catharanthus roseus)-maintained phytoplasmas. These specific primers can serve as effective tools for identifying particular coconut phytoplasmas in field samples.  相似文献   

10.
A direct molecular method for assessing the diversity of specific populations of rhizobia in soil, based on nested PCR amplification of 16S-23S ribosomal RNA gene (rDNA) intergenic spacer (IGS) sequences, was developed. Initial generic amplification of bacterial rDNA IGS sequences from soil DNA was followed by specific amplification of (1) sequences affiliated with Rhizobium leguminosarum "sensu lato" and (2) R. tropici. Using analysis of the amplified sequences in clone libraries obtained on the basis of soil DNA, this two-sided method was shown to be very specific for rhizobial subpopulations in soil. It was then further validated as a direct fingerprinting tool of the target rhizobia based on denaturing gradient gel electrophoresis (DGGE). The PCR-DGGE approach was applied to soils from fields in Brazil cultivated with common bean (Phaseolus vulgaris) under conventional or no-tillage practices. The community fingerprints obtained allowed the direct analysis of the respective rhizobial community structures in soil samples from the two contrasting agricultural practices. Data obtained with both primer sets revealed clustering of the community structures of the target rhizobial types along treatment. Moreover, the DGGE profiles obtained with the R. tropici primer set indicated that the abundance and diversity of these organisms were favoured under NT practices. These results suggest that the R. leguminosarum-as well as R. tropici-targeted IGS-based nested PCR and DGGE are useful tools for monitoring the effect of agricultural practices on these and related rhizobial subpopulations in soils.  相似文献   

11.
Streptococcus canis isolates, also including S. canis of artificially contaminated milk, could be identified by polymerase chain reaction (PCR) amplification using oligonucleotide primers designed according to species-specific parts of the 16S rRNA gene and, after sequencing, according to S. canis-specific parts of the 16S-23S rDNA intergenic spacer region and with oligonucleotide primers detecting an internal fragment of the group G streptococcal CAMP factor gene cfg. The 16S rRNA gene- and CAMP factor gene cfg-specific oligonucleotide primers could be used together in a multiplex PCR. No cross-reactivities could be observed with other group G streptococcal isolates or with any of the other control strains of various streptococcal species and serogroups. The PCR methods presented in this study allowed a rapid and reliable identification of S. canis and might help to improve the diagnosis of this bacterial species in animal and human infections.  相似文献   

12.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

13.
Phenotypic and genetic characterization indicated that Hup+ bean rhizobial strains are type IIA and type IIB Rhizobium tropici. The Hup+ strain USDA 2840, which did not cluster with either of the two types of R. tropici in a restriction fragment length polymorphism analysis, had electrophoretic patterns of PCR products generated with primers for repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus sequences similar to those of three reference strains of R. tropici type IIA. The Hup+ strain USDA 2738, which clustered with the reference strain of R. tropici IIB in a restriction fragment length polymorphism analysis, had electrophoretic patterns of PCR products generated with primers for repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus sequences more closely resembling those of the reference strains of R. tropici type IIA than those of type IIB. DNA amplification with the Y1 and Y2 primers to generate a portion of the 16S rDNA operon was useful to distinguish R. tropici type IIA strains from other bean rhizobial strains. The phylogenetic position of the type IIA strain of R. tropici USDA 2840, determined from the partial 16S rDNA sequence, indicated a more distant relationship with the type IIB strain of R. tropici CIAT899 than with the as yet unnamed rhizobial species of Leucaena leucocephala, TAL 1145. Therefore, we suggest that it may be appropriate either to separate R. tropici types IIA and IIB into two different species or to identify TAL 1145 to the species level as a third type of R. tropici.  相似文献   

14.
This study explores the potential of the amplified ribosomal DNA restriction analysis (ARDRA) for intra- and interspecies identification of the genus Mycobacteria. A set of primers was used to amplify part of the 16S and 23S rDNA as well as the 16S-23S rDNA spacer from 121 isolates belonging to 13 different mycobacterial species. Restriction analysis was carried out with five different restriction enzymes, namely CfoI, HaeIII, RsaI, MspI and TaqI. Restriction digestion of the PCR product using CfoI enabled differentiation between 9 of the 13 mycobacterial species, whereas the remaining four enzymes differentiated between 7 of these 13 species. None of the five enzymes distinguished between different isolates of Mycobacterium tuberculosis or between species within the M. tuberculosis complex i.e., M. tuberculosis, M. bovis, M. bovis BCG and M. africanum. Although ARDRA analysis of the 16S-23S rDNA does not seem to have a potential for intraspecies differentiation, it has proven to be a rapid and technically relatively simple method to recognise strains belonging to the M. tuberculosis complex as well as to identify mycobacterial species outside this complex.  相似文献   

15.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNAAla and tRNAIle, which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

16.
Mycoplasma arginini, M. fermentans, M. hyorhinis, M. orale, and Acholeplasma laidlawii are the members of the class Mollicutes most commonly found in contaminated cell cultures. Previous studies have shown that the published PCR primer pairs designed to detect mollicutes in cell cultures are not entirely specific. The 16S rRNA gene, the 16S-23S rRNA intergenic spacer region, and the 5' end of the 23S rRNA gene, as a whole, are promising targets for design of mollicute species-specific primer pairs. We analyzed the 16S rRNA genes, the 16S-23S rRNA intergenic spacer regions, and the 5' end of the 23S rRNA genes of these mollicutes and developed PCR methods for species identification based on these regions. Using high melting temperatures, we developed a rapid-cycle PCR for detection and identification of contaminant mollicutes. Previously published, putative mollicute-specific primers amplified DNA from 73 contaminated cell lines, but the presence of mollicutes was confirmed by species-specific PCR in only 60. Sequences of the remaining 13 amplicons were identified as those of gram-positive bacterial species. Species-specific PCR primers are needed to confirm the presence of mollicutes in specimens and for identification, if required.  相似文献   

17.
The intergenic spacer region (ISR) between the 16S and 23S rRNA genes was tested as a tool for differentiating lactococci commonly isolated in a dairy environment. 17 reference strains, representing 11 different species belonging to the genera Lactococcus, Streptococcus, Lactobacillus, Enterococcus and Leuconostoc, and 127 wild streptococcal strains isolated during the whole fermentation process of "Fior di Latte" cheese were analyzed. After 16S-23S rDNA ISR amplification by PCR, species or genus-specific patterns were obtained for most of the reference strains tested. Moreover, results obtained after nucleotide analysis show that the 16S-23S rDNA ISR sequences vary greatly, in size and sequence, among Lactococcus garvieae, Lactococcus raffinolactis, Lactococcus lactis as well as other streptococci from dairy environments. Because of the high degree of inter-specific polymorphism observed, 16S-23S rDNA ISR can be considered a good potential target for selecting species-specific molecular assays, such as PCR primer or probes, for a rapid and extremely reliable differentiation of dairy lactococcal isolates.  相似文献   

18.
We analyzed polymorphism of the PCR-amplified 16S-23S rDNA spacer of Aeromonas species. A total of 69 isolates representing 18 DNA hybridization groups were used in this study. The analysis of PCR products of 16S-23S rDNA spacers revealed patterns consisting of two to eight DNA fragments. The fragment sizes ranged from 730 to 1050 bp. DNA patterns revealed a considerable genetic diversity between species and within a species. When a procedure to eliminate heteroduplex formation was performed, the number of bands was reduced to 2-5. Nevertheless the homoduplex ISR (intergenic spacer region) patterns obtained were not useful for species distinguishing.  相似文献   

19.
A rapid and reliable PCR-based method for distinguishing closely related species within two groups of lactobacilli is described. Primers complementary to species-specific sequences in the 16S/23S rDNA spacer regions were designed after sequencing and sequence comparison of the spacer regions of 32 strains. The strains belong to two groups of closely related Lactobacillus species; one composed of Lactobacillus curvatus, Lactobacillus graminis and Lactobacillus sake, the other of Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus plantarum. PCR assays with the designed primers and subsequent agarose gel analysis of the amplified fragments allowed the same species identification as the DNA/DNA hybridization procedure.  相似文献   

20.
The genetic diversity among twenty three strains of Xylella fastidiosa, isolated from sweet orange citrus, was assessed by RFLP analysis of the 16S rDNA and 16S-23S intergenic spacer and by rep-PCR fingerprinting together with strains isolated from coffee, grapevine, plum and pear. The PCR products obtained by amplification of the 16S rDNA and 16S-23S spacer region were digested with restriction enzymes and a low level of polymorphism was detected. In rep-PCR fingerprinting, a relationship between the strains and their hosts was observed by using the BOX, ERIC and REP primers. Two major groups were obtained within the citrus cluster and relationships to the geographic origin of the strains revealed. Citrus strains isolated from the States of São Paulo and Sergipe formed one group and strains from the Southern States formed another group. Distinct origins of X. fastidiosa in the Southern and Southeastern States is postulated. The pear isolate was distantly related to all of the other X. fastidiosa strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号