首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the effect on mitochondrial respiration and permeability of in vivo and in vitro aluminium (Al) exposure. Rats were treated intraperitoneally with AlCl3 to achieve serum and liver Al concentrations comparable to those seen in Al-related disorders. Mitochondria isolated from Al-treated rats had higher (p<0.01) Al concentration, lower (p<0.05) state 3 respiration, respiratory control (RCR), and ADP/O ratio (succinate substrate), and greater passive swelling in 100 mM KCl or 200 mM NH4NO3 than controls. The in vitro addition of Al (0–180 μM) to mitochondria from normal rats also decreased (p<0.01) state 3 respiration, RCR, and ADP/O and stimulated passive swelling in KCl and NH4NO3 at 42–180 μM Al. These studies show that Al depresses mitochondrial energy metabolism and increases membrane permeability. The toxicity associated with Al may be related to its effect on mitochondria.  相似文献   

2.
Mitochondrial dysfunction has been implicated in the regulation of myofiber loss during aging, possibly by apoptotic pathways. However, the mitochondrial-mediated pathway of apoptosis by cytochrome c in skeletal muscle remains ambiguous. To understand this, we have studied the upstream and downstream events of cytochrome c release, and assessed the efficacy of carnitine and lipoic acid cosupplementation. The results show that elevated levels of cytosolic cytochrome c activate apoptosis in aged rats, and was confirmed further by in vitro caspase-3 assay. Interestingly, the exogenous addition of cytochrome c results in a much higher increase of caspase-3 activity in aged treated rats than age-matched control rats, strongly suggesting that cytochrome c is a limiting factor for caspase-3 activation in the cytosol. Carnitine and lipoic acid supplement decreased apoptosis in aged rats by maintaining mitochondrial membrane integrity and thereby preventing further loss of cytochrome c in vivo. Furthermore, the upregulation of p53 observed in aged rats is attributed to the loss of outer mitochondrial membrane integrity and subsequent release of cytochrome c through BH3-only proteins. In conclusion, the p53-dependent activation of the mitochondrial-cytochrome c pathway of apoptosis in the present study suggests the existence of cross talk between mitochondria and nucleus. However, the exact molecular mechanism remains to be explored. Oral supplements of carnitine and lipoic acid play an antiapoptotic role in aged rat skeletal muscle by protecting mitochondrial membrane integrity.  相似文献   

3.
The effects of long-term carnitine supplementation on age-related changes in tissue carnitine levels and in lipid metabolism were investigated. The total carnitine levels in heart, skeletal muscle, cerebral cortex, and hippocampus were approximately 20% less in aged rats (22 months old) than in young rats (6 months old). On the contrary, plasma carnitine levels were not affected by aging. Supplementation of acetyl-l-carnitine (ALCAR; 100 mg/kg body weight/day for 3 months) significantly increased tissue carnitine levels in aged rats but had little effect on tissue carnitine levels in young rats. Plasma lipoprotein analyses revealed that triacylglycerol levels in VLDL and cholesterol levels in LDL and in HDL were all significantly higher in aged rats than in young rats. ALCAR treatment decreased all lipoprotein fractions and consequently the levels of triacylglycerol and cholesterol. The reduction in plasma cholesterol contents in ALCAR-treated aged rats was attributable mainly to a decrease of cholesteryl esters rather than to a decrease of free cholesterol. Another remarkable effect of ALCAR was that it decreased the cholesterol content and cholesterol-phospholipid ratio in the brain tissues of aged rats. These results indicate that chronic ALCAR supplementation reverses the age-associated changes in lipid metabolism.  相似文献   

4.
AimsWe investigated the in vitro effects of 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, which accumulate in tissues of patients affected by mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies, on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats.Main methodsWe measured the respiratory parameters state 4, state 3, respiratory control ratio (RCR) and ADP/O ratio by the rate of oxygen consumption, as well as the mitochondrial membrane potential and the matrix NAD(P)H levels in the presence of the fatty acids.Key findingsWe found that 3HDA, 3HTA and 3HPA markedly increased state 4 respiration and diminished the RCR using glutamate plus malate or succinate as substrates. 3HTA and 3HPA also diminished the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, 3HTA decreased state 3 respiration using glutamate/malate, but not pyruvate/malate or succinate as substrates. Our data indicate that the long-chain 3-hydroxy fatty acids that accumulate in LCHAD/MTP deficiencies act as uncouplers of oxidative phosphorylation, while 3HTA also behaves as a metabolic inhibitor.SignificanceIt is presumed that impairment of brain energy homeostasis caused by these endogenous accumulating compounds may contribute at least in part to the neuropathology of LCHAD/MTP deficiencies.  相似文献   

5.
The physiologic effects of triiodothyronine (T3) on metabolic rate are well-documented; however, the effects of thyroxine (T4) are less clear despite its wide-spread use to treat thyroid-related disorders and other non-thyroidal conditions. Here, we investigated the effects of acute (3-day) T4 supplementation on energy expenditure at rest and during incremental exercise. Furthermore, we used a combination of in situ and in vitro approaches to measure skeletal muscle metabolism before and after T4 treatment. Ten healthy, euthyroid males were given 200 µg T4 (levothyroxine) per day for 3 days. Energy expenditure was measured at rest and during exercise by indirect calorimetry, and skeletal muscle mitochondrial function was assessed by in situ ATP flux (31P MRS) and in vitro respiratory control ratio (RCR, state 3/state 4 rate of oxygen uptake using a Clark-type electrode) before and after acute T4 treatment. Thyroxine had a subtle effect on resting metabolic rate, increasing it by 4% (p = 0.059) without a change in resting ATP demand (i.e., ATP flux) of the vastus lateralis. Exercise efficiency did not change with T4 treatment. The maximal capacity to produce ATP (state 3 respiration) and the coupled state of the mitochondria (RCR) were reduced by approximately 30% with T4 (p = 0.057 and p = 0.04, respectively). Together, the results suggest that T4, although less metabolically active than T3, reduces skeletal muscle efficiency and modestly increases resting metabolism even after short-term supplementation. Our findings may be clinically relevant given the expanding application of T4 to treat non-thyroidal conditions such as obesity and weight loss.  相似文献   

6.
Due to the complex mechanisms of l-arginine activity, it is difficult to determine the clinical significance of supplementation with this amino acid. The objective of this study was to determine the influence of short-term supplementation with l-arginine in stress conditions, induced by ischemia–reperfusion syndrome, by assessing the damage to muscular and hepatic cells on the basis of creatine kinase (CK), alanine aminotransferase (ALAT) and aspartic aminotransferase (AspAT) activity in blood and the level of oxygen free radicals in analyzed tissues of rats. We observed that induced ischemia of hind limb caused an increase in CK, ALAT and AspAT activity and an increase in the level of free radicals in liver, but not in skeletal muscle. Supplementation with l-arginine led to a reduction in serum activity of CK and AspAT and reduction of the level of free radicals in analysed tissues. Simultaneous supplementation with l-arginine AND l-NAME resulted in a reversal of changes induced by l-arginine supplementation in the case of AspAT and free radicals in skeletal muscle. The results indicate that under conditions of ischemia–reperfusion, short-term administration of l-arginine has a protective effect on skeletal muscle manifesting itself by reduction of CK in the serum and reduction of free radicals level in THIS tissue.  相似文献   

7.
Impaired mitochondrial function is implicated in the development of type 2 diabetes mellitus (T2DM). This was investigated in mitochondria from skeletal muscle and liver of the Goto-Kakizaki (GK) rat, which spontaneously develops T2DM with age. The early and the manifest stage of T2DM was studied in 6- and 16-wk-old GK rats, respectively. In GK16 compared with GK6 animals, a decrease in state 3 respiration with palmitoyl carnitine (PC) as substrate was observed in muscle. Yet an increase was seen in liver. To test the complex II contribution to the state 3 respiration, succinate was added together with PC. In liver mitochondria, this resulted in an ~50% smaller respiratory increase in the GK6 group compared with control and no respiratory increase at all in the GK16 animals. Yet no difference between groups was seen in muscle mitochondria. RCR and P/O ratio was increased (P < 0.05) in liver but unchanged in muscle in both GK groups. We observed increased lipid peroxidation and decreased Akt phosphorylation in liver with the progression of T2DM but no change in muscle. We conclude that, during the progression of T2DM in GK rats, liver mitochondria are affected earlier and/or more severely than muscle mitochondria. Succinate dehydrogenase flux in the presence of fatty acids was reduced severely in liver but not in muscle mitochondria during manifest T2DM. The observations support the notion that T2DM pathogenesis is initiated in the liver and that only later are muscle mitochondria affected.  相似文献   

8.
Use of norepinephrine to increase blood pressure in septic animals has been associated with increased efficiency of hepatic mitochondrial respiration. The aim of this study was to evaluate whether the same effect could be reproduced in isolated hepatic mitochondria after prolonged in vivo exposure to faecal peritonitis. Eighteen pigs were randomized to 27?h of faecal peritonitis and to a control condition (n?=?9 each group). At the end, hepatic mitochondria were isolated and incubated for one hour with either norepinephrine or placebo, with and without pretreatment with the specific receptor antagonists prazosin and yohimbine. Mitochondrial state 3 and state 4 respiration were measured for respiratory chain complexes I and II, and state 3 for complex IV using high-resolution respirometry, and respiratory control ratios were calculated. Additionally, skeletal muscle mitochondrial respiration was evaluated after incubation with norepinephrine and dobutamine with and without the respective antagonists (atenolol, propranolol and phentolamine for dobutamine). Faecal peritonitis was characterized by decreasing blood pressure and stroke volume, and maintained systemic oxygen consumption. Neither faecal peritonitis nor any of the drugs or drug combinations had measurable effects on hepatic or skeletal muscle mitochondrial respiration. Norepinephrine did not improve the efficiency of complex I- and complex II-dependent isolated hepatic mitochondrial respiration [respiratory control ratio (RCR) complex I: 5.6?±?5.3 (placebo) vs. 5.4?±?4.6 (norepinephrine) in controls and 2.7?±?2.1 (placebo) vs. 2.9?±?1.5 (norepinephrine) in septic animals; RCR complex II: 3.5?±?2.0 (placebo) vs. 3.5?±?1.8 (norepinephrine) in controls; 2.3?±?1.6 (placebo) vs. 2.2?±?1.1 (norepinephrine) in septic animals]. Prolonged faecal peritonitis did not affect either hepatic or skeletal muscle mitochondrial respiration. Subsequent incubation of isolated mitochondria with norepinephrine and dobutamine did not significantly influence their respiration.  相似文献   

9.
The goal of the present study was to discern the cellular mechanism(s) that contributes to the age-associated decrease in skeletal muscle aerobic capacity. Skeletal muscle mitochondrial content, a parameter of oxidative capacity, was significantly lower (25 and 20% calculated on the basis of citrate synthase and succinate dehydrogenase activities, respectively) in 24-mo-old Fischer 344 rats compared with 6-mo-old adult rats. Mitochondria isolated from skeletal muscle of both age groups had identical state 3 (ADP-stimulated) and ADP-stimulated maximal respiratory rates and phosphorylation potential (ADP-to-O ratios) with both nonlipid and lipid substrates. In contrast, mitochondria from 24-mo-old rats displayed significantly lower state 4 (ADP-limited) respiratory rates and, consequently, higher respiratory control ratios. Consistent with the tighter coupling, there was a 68% reduction in uncoupling protein-3 (UCP-3) abundance in mitochondria from elderly compared with adult rats. Congruent with the respiratory studies, there was no age-associated decrease in carnitine palmitoyltransferase I and carnitine palmitoyltransferase II activities in isolated skeletal muscle mitochondria. However, there was a small, significant decrease in tissue total carnitine content. It is concluded that the in vivo observed decrease in skeletal muscle aerobic capacity with advanced age is a consequence of the decreased mitochondrial density. On the basis of the dramatic reduction of UCP-3 content associated with decreased state 4 respiration of skeletal muscle mitochondria from elderly rats, we propose that an increased free radical production might contribute to the metabolic compromise in aging.  相似文献   

10.
1. Respiration of mitochondria, membrane potential and mitochondrial ATPase under energized conditions were studied in rat myocardium during cell injury induced by treatment with isoproterenol. 2. Increase in the state 4 rate of respiration and ADP:O ratio, as well as decrease in the state 3 rate and Respiratory Control Ratio (RCR) were found. 3. The optimum pH for RCR and for maximum ATPase activity was shifted to lower values. 4. The state 3 respiration was more sensitive to oligomycin inhibition. 5. The mitochondria showed lower ability to generate membrane potential. 6. An increase in the K0.5 values for catalytic sites II and III of mitochondrial ATPase at pH 7.4 and 5.5 was found. 7. These results are consistent with alterations on the integrity of mitochondrial membrane, and corroborate with the hypothesis of changes on the mitochondrial ATPase during isoproterenol-induced cell injury of myocardium.  相似文献   

11.
The effect of the herbicide paraquat (N,N'-dimethyl 4,4'-bipyridium), known to damage the lipid cellular membrane by peroxidation with superoxide radicals and a singlet oxygen, was investigated on skeletal muscle mitochondria. Minced rat gastrocnemius muscles were incubated in 8 mM paraquat solution. Mitochondrial fractions prepared from the incubated muscles were examined with respect to respiratory function and the enzyme activity of cytochrome c oxidase and succinate-cytochrome c reductase in the electron transport chain. The ADP/O ratio, RCR, and state 3 rates (= oxygen consumption in state 3) decreased gradually. State 4 rates (= oxygen consumption in state 4) increased in the initial stages and decreased after longer incubations. Enzyme activities gradually increased. These results suggested that paraquat damaged the mitochondrial membrane and disrupted oxidative phosphorylation in the early stage of incubation. Also, the electron transport chain was accelerated in the earlier stage and broken following a longer incubation. The inhibitory modality of paraquat on mitochondrial respiration was shown to be different from that of other known inhibitors.  相似文献   

12.
Glutamate-supported respiration in mitochondria is inhibited by palmityl-CoA in the presence of carnitine. Palmityl-CoA-induced lag phase and depressed state 3 rates increase with increasing ADP. Palmityl-CoA inhibition of state 3 respiration with glutamate shows an increased I50 for palmityl-CoA (three to fourfold) when ADP increases and carnitine is present. ADP alone has a small effect. Glutamate-supported respiration is more profoundly inhibited by palmityl-CoA (+carnitine) than palmityl-CoA oxidation. With palmityl-CoA (+ carnitine) alone, the I50 for palmityl-CoA is two-to threefold greater than when glutamate is also present. Active respiration with palmityl-CoA as substrate demonstrates a 2.5-fold greater apparent affinity for ADP than when glutamate is also present. The kinetics are competitive in both cases. Palmitylcarnitine, above 30 μm, produces inhibition of glutamate-supported respiration, concomitant with mitochondrial swelling and eventual lysis. At 15 μm palmitylcarnitine (minimal swelling), succinate (+ rotenone)-supported respiration decreases with a decrease in Kapp for ADP; no effect of 15–20 μm palmitylcarnitine on glutamate-supported respiration is observed. However, palmityl-CoA (+ carnitine)-inhibited respiration with glutamate is further decreased with 15 and 20 μm palmitylcarnitine, i.e., by 13 and 29%, respectively. Inhibition is competitive with ADP. With 3 μm palmitylCoA and 20 μm palmitylcarnitine, a decrease in carnitine (1.5 to 0.25 mm) decreases the apparent Ki for palmityl-CoA from 2.6 to 1.8 μm. The results suggest that glutamate increases the palmityl-CoA available to inhibit adenine nucleotide transport. Inhibition may take place external to the inner membrane. Competition of carnitine and palmitylcarnitine for substrate sites may explain the decreased apparent Ki for palmityl-CoA as carnitine decreases.  相似文献   

13.
14.
It is known that permeability of the inner mitochondrial membrane is low to most univalent cations (K+, Na+, H+) but high to Tl+. Swelling, state 4, state 3, and 2,4-dinitrophenol (DNP)-stimulated respiration as well as the membrane potential (ΔΨmito) of rat liver mitochondria were studied in media containing 0–75 mM TlNO3 either with 250 mM sucrose or with 125 mM nitrate salts of other monovalent cations (KNO3, or NaNO3, or NH4NO3). Tl+ increased permeability of the inner mitochondrial membrane to K+, Na+, and H+, that was manifested as stimulation of the swelling of nonenergized and energized mitochondria as well as via an increase of state 4 and dissipation of ΔΨmito. These effects of Tl+ increased in the order of sucrose <K+ <Na+ ≤ NH4+. They were stimulated by inorganic phosphate and decreased by ADP, Mg2+, and cyclosporine A. Contraction of energized mitochondria, swollen in the nitrate media, was markedly inhibited by quinine. It suggests participation of the mitochondrial K+/H+ exchanger in extruding of Tl+-induced excess of univalent cations from the mitochondrial matrix. It is discussed that Tl+ (like Cd2+ and other heavy metals) increases the ion permeability of the inner membrane of mitochondria regardless of their energization and stimulates the mitochondrial permeability transition pore in low conductance state. The observed decrease of state 3 and DNP-stimulated respiration in the nitrate media resulted from the mitochondrial swelling rather than from an inhibition of respiratory enzymes as is the case with the bivalent heavy metals.  相似文献   

15.
Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats.   总被引:2,自引:0,他引:2  
Mitochondrial dysfunction appears to contribute to some of the loss of function accompanying ageing. Mitochondria from aged tissue use oxygen inefficiently impairing ATP synthesis and results in increased oxidant production. A high flux of oxidants not only damages mitochondria, but other important cell biomolecules as well. In the present investigation, the levels of lipid peroxidation, oxidized glutathione, non-enzymatic antioxidants and the activities of mitochondrial enzymes were measured in liver and kidney mitochondria of young and aged rats before and after lipoic acid supplementation. In both liver and kidney increase in the levels of mitochondrial lipid peroxidation and oxidized glutathione and decrease in the levels of antioxidants and the activities of mitochondrial enzymes were observed in aged rats. DL-alpha-lipoic acid supplemented aged rats showed a decrease in the levels of lipid peroxidation and oxidized glutathione and increase in the levels of reduced glutathione, vitamins C and E and the activities of mitochondrial enzymes like isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, NADH-dehydrogenase and cytochrome-c-oxidase. Thus, lipoic acid reverses the age-associated decline in endogenous low molecular weight antioxidants and mitochondrial enzymes and, therefore, may lower the increased risk of oxidative damage that occurs during ageing. From our results it can be concluded that lipoic acid supplementation enhances the activities of mitochondrial enzymes and antioxidant status and thereby protects mitochondria from ageing.  相似文献   

16.
The process of skeletal muscle aging is characterized by a progressive loss of muscle mass and functionality. The underlying mechanisms are highly complex and remain unclear. This study was designed to further investigate the consequences of aging on mitochondrial oxidative phosphorylation in rat gastrocnemius muscle, by comparing young (6 months) and aged (21 months) rats. Maximal oxidative phosphorylation capacity was clearly reduced in older rats, while mitochondrial efficiency was unaffected. Inner membrane properties were unaffected in aged rats since proton leak kinetics were identical to young rats. Application of top-down control analysis revealed a dysfunction of the phosphorylation module in older rats, responsible for a dysregulation of oxidative phosphorylation under low activities close to in vivo ATP turnover. This dysregulation is responsible for an impaired mitochondrial response toward changes in cellular ATP demand, leading to a decreased membrane potential which may in turn affect ROS production and ion homeostasis. Based on our data, we propose that modification of ANT properties with aging could partly explain these mitochondrial dysfunctions.  相似文献   

17.
Ion channels selective for chloride ions are present in all biological membranes, where they regulate the cell volume or membrane potential. Various chloride channels from mitochondrial membranes have been described in recent years. The aim of our study was to characterize the effect of stilbene derivatives on single-chloride channel activity in the inner mitochondrial membrane. The measurements were performed after the reconstitution into a planar lipid bilayer of the inner mitochondrial membranes from rat skeletal muscle (SMM), rat brain (BM) and heart (HM) mitochondria. After incorporation in a symmetric 450/450 mM KCl solution (cis/trans), the chloride channels were recorded with a mean conductance of 155 ± 5 pS (rat skeletal muscle) and 120 ± 16 pS (rat brain). The conductances of the chloride channels from the rat heart mitochondria in 250/50 mM KCl (cis/trans) gradient solutions were within the 70–130 pS range. The chloride channels were inhibited by these two stilbene derivatives: 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS). The skeletal muscle mitochondrial chloride channel was blocked after the addition of 1 mM DIDS or SITS, whereas the brain mitochondrial channel was blocked by 300 μM DIDS or SITS. The chloride channel from the rat heart mitochondria was inhibited by 50–100 μM DIDS. The inhibitory effect of DIDS was irreversible. Our results confirm the presence of chloride channels sensitive to stilbene derivatives in the inner mitochondrial membrane from rat skeletal muscle, brain and heart cells.  相似文献   

18.
A significant proportion of standard metabolic rate is devoted to driving mitochondrial proton leak, and this futile cycle may be a site of metabolic control during hibernation. To determine if the proton leak pathway is decreased during metabolic depression related to hibernation, mitochondria were isolated from liver and skeletal muscle of nonhibernating (active) and hibernating arctic ground squirrels (Spermophilus parryii). At an assay temperature of 37 degrees C, state 3 and state 4 respiration rates and state 4 membrane potential were significantly depressed in liver mitochondria isolated from hibernators. In contrast, state 3 and state 4 respiration rates and membrane potentials were unchanged during hibernation in skeletal muscle mitochondria. The decrease in oxygen consumption of liver mitochondria was achieved by reduced activity of the set of reactions generating the proton gradient but not by a lowered proton permeability. These results suggest that mitochondrial proton conductance is unchanged during hibernation and that the reduced metabolism in hibernators is a partial consequence of tissue-specific depression of substrate oxidation.  相似文献   

19.
In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine dimunition was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete β-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome.Disturbances in mitochondrial genesis, morphology, and function are increasingly recognized as components of insulin resistance and the metabolic syndrome (13). Still unclear is whether poor mitochondrial performance is a predisposing factor or a consequence of the disease process. The latter view is supported by recent animal studies linking diet-induced insulin resistance to a dysregulated mitochondrial phenotype in skeletal muscle, marked by excessive β-oxidation, impaired substrate switching during the fasted to fed transition, and coincident reduction of organic acid intermediates of the tricarboxylic acid cycle (4, 5). In these studies, both diet-induced and genetic forms of insulin resistance were specifically linked to high rates of incomplete fat oxidation and intramuscular accumulation of fatty acylcarnitines, byproducts of lipid catabolism that are produced under conditions of metabolic stress (5, 6). Most compelling, we showed that genetically engineered inhibition of fat oxidation lowered intramuscular acylcarnitine levels and preserved glucose tolerance in mice fed a high fat diet (5, 7). In aggregate, the findings established a strong connection between mitochondrial bioenergetics and insulin action while raising new questions regarding the roles of incomplete β-oxidation and acylcarnitines as potential biomarkers and/or mediators of metabolic disease.In another recent investigation we found that oral carnitine supplementation improved insulin sensitivity in diabetic mice, in parallel with a marked rise in plasma acylcarnitines (8). This occurred in three distinct models of glucose intolerance; aging, genetic diabetes, and high fat feeding (8). The antidiabetic actions of carnitine were accompanied by an increase in whole body glucose oxidation, a surprising result given that carnitine is best known for its essential role in permitting mitochondrial translocation and oxidation of long chain acyl-CoAs. Carnitine palmitoyltransferase 1 (CPT1)2 executes the initial step in this process by catalyzing the reversible transesterification of long chain acyl-CoA with carnitine. The long chain acylcarnitine (LCAC) product of CPT1 traverses the inner membrane via carnitine/acylcarnitine translocase (CACT) and is then delivered to CPT2, which regenerates acyl-CoA on the matrix side of the membrane where β-oxidation occurs. Notably, however, in addition to its requisite role in fatty acid oxidation, carnitine also facilitates mitochondrial efflux of excess carbon fuels. Thus, in the event that rates of substrate catabolism exceed energy demand, accumulating acyl-CoA intermediates are converted back to acylcarnitines, which can then exit the organelle and the tissue. This aspect of carnitine function has remained relatively understudied.The finding that carnitine supplementation improved glucose tolerance while increasing circulating acylcarnitines favors the interpretation that production and efflux of these metabolites is beneficial rather than detrimental (9, 10). Thus, at present, we view these metabolites as biomarkers rather than mediators of metabolic dysfunction. Acylcarnitine accumulation in insulin-resistant skeletal muscles might reflect a failed attempt to combat “mitochondrial stress” and/or an impediment in tissue export; either of which could arise should availability of free carnitine become limiting. Fitting with this scenario, we postulated that carnitine insufficiency might contribute to mitochondrial dysfunction and insulin resistance. To address this possibility carnitine homeostasis was examined in rodent models of obesity, diabetes, and aging. Our results show that chronic metabolic stress does indeed compromise whole body carnitine status. Low carnitine levels in severely obese rats were associated with aberrant mitochondrial fuel metabolism, whereas oral carnitine supplementation reversed these perturbations in concert with improved glucose tolerance and increased acylcarnitine efflux. Complementary studies in primary human myocytes suggest that the therapeutic actions of carnitine are mediated in part through carnitine acetyltransferase (CrAT), a mitochondrial matrix enzyme that promotes glucose disposal. These findings underscore the multifaceted roles of the carnitine shuttle system, not only in permitting β-oxidation but also for maintaining mitochondrial performance and glucose homeostasis in the face of energy surplus.  相似文献   

20.
The effect of dietary supplementation of old rats (26–33 months) with hydrogenated peanut oil on the activity of mitochondrial enzymes in skeletal muscles has been studied. The activities of NADH-coenzyme Q1 oxidoreductase, cytochrome c oxidase, and citrate synthase were determined spectrophotometrically in muscle homogenates. The activities of respiratory complexes I and IV were shown to significantly decrease with the age compared to the activity of the same enzymes in young animals, while the activity of citrate synthase was virtually unchanged. The fatty acid composition of muscle homogenates of old rats differed from that of young animals by a reduced content of myristic, oleic, linoleic, and α-linolenic acids and enhanced content of dihomo-γ-linolenic, arachidonic, and docosahexaenoic acids. Per oral supple-mentation of the old rats with hydrogenated peanut oil completely restored the activity of complex IV and increased the activity of complex I to 80% of the value observed in muscles of young animals, reducing the content of stearic, dihomo-γ-linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids relative to that in the groups of old and young rats. The content of oleic and linoleic acids increased relatively to that in the group of the old rats, as well as young animals. The possible mechanisms of the restoration of the activity of the respiratory enzymes under the administration of hydrogenated peanut oil are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号