首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review, we summarize the results of recent studies on the main phase transition behavior of phospholipid bilayers using the combined approaches of molecular mechanics simulations and high-resolution differential scanning calorimetry. Following a brief overview of the phase transition phenomenon exhibited by the lipid bilayer, we begin with the review by showing how several structural parameters underlying various phospholipids including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol are defined and determined. Specifically, these structural parameters are obtained with saturated lipids packed in the gel-state bilayer using computer-based molecular mechanics calculations. Then we proceed to present the calorimetric data obtained with the lipid bilayer composed of saturated phospholipids as it undergoes the gel-to-liquid-crystalline phase transition in excess water. The general equations that can correlate the gel-to-liquid-crystalline phase transition temperature (Tm) of the lipid bilayer with the structural parameters of the lipid molecule constituting the lipid bilayer are subsequently presented. From these equations, two tables of predicated Tm values for well over 400 molecular species of saturated phosphatidylcholine and saturated phosphatidylethanolamine are generated. We further review the structure and chain-melting behavior of a large number of sn-1 saturated/sn-2 unsaturated phospholipids. Two Tm-diagrams are shown, from which the effects of the number and the position of one to five cis carbon–carbon double bonds on Tm can be viewed simultaneously. Finally, in the last part of this review, simple molecular models that have been invoked to interpret the characteristic Tm trends exhibited by lipid bilayers composed of unsaturated lipids with different numbers and positions of cis carbon–carbon double bonds as seen in the Tm-diagram are presented.  相似文献   

2.
In an attempt to investigate systematically the effects of various single and multiple cis carbon-carbon double bonds in the sn-2 acyl chains of natural phospholipids on membrane properties, we have de novo synthesized unsaturated C20 fatty acids comprised of single or multiple methylene-interrupted cis double bonds. Subsequently, 15 molecular species of phosphatidylethanolamine (PE) with sn-1 C20-saturated and sn-2 C20-unsaturated acyl chains were semi-synthesized by acylation of C20-lysophosphatidylcholine with unsaturated C20 fatty acids followed by phospholipase D-catalyzed base-exchange reaction in the presence of excess ethanolamine. The gel-to-liquid crystalline phase transitions of these 15 mixed-chain PE, in excess H2O, were investigated by high resolution differential scanning calorimetry. In addition, the energy-minimized structures of these sn-1 C20-saturated/sn-2 C20-unsaturated PE were simulated by molecular mechanics calculations. It is shown that the successive introduction of cis double bonds into the sn-2 acyl chain of C(20):C(20)PE can affect the gel-to-liquid crystalline phase transition temperature, Tm, of the lipid bilayer in some characteristic ways; moreover, the effect depends critically on the position of cis double bonds in the sn-2 acyl chain. Specifically, we have constructed a novel Tm diagram for the 15 species of unsaturated PE, from which the effects of the number and the position of cis double bonds on Tm can be examined simultaneously in a simple, direct, and unifying manner. Interestingly, the characteristic Tm profiles exhibited by different series of mixed-chain PE with increasing degree of unsaturation can be interpreted in terms of structural changes associated with acyl chain unsaturation.  相似文献   

3.
S Li  H N Lin  Z Q Wang    C Huang 《Biophysical journal》1994,66(6):2005-2018
As a cis carbon-carbon double bond (delta) is introduced into the middle of an isolated all-trans hydrocarbon chain, it can be shown by molecular graphics that this delta-bond makes a bend of 130 degrees in the chain axis, thus producing a boomerang-like conformation. Such a bent structure, indeed, has been detected experimentally for oleic acid by x-ray crystallography (Abrahamson and Ryderstedt-Nahringbaur, 1962). Membrane diacyl phospholipids are largely mixed-chain lipids containing a saturated sn-1 acyl chain and an unsaturated sn-2 acyl chain. 1-Palmitoyl-2-oleoyl-phosphatidylcholine (POPC), the most abundant phospholipid in animal cell membranes, is a typical example in which the sn-2 acyl chain is the acyl chain of an oleic acid. However, this sn-2 acyl chain of POPC is unlikely to adopt a boomerang-like configuration in the gel-state lipid bilayer due to the steric hindrance imposed by neighboring chains. Instead, it has been suggested that the oleate chain in POPC is kinked in the shape of a crankshaft in the gel-state bilayer (Huang, 1977; Lagaly et al., 1977), because POPC with such a kinked sn-2 acyl chain, which is denoted here as the secondary structural element or motif, can pack efficiently against other neighboring phospholipids. In this communication, 16 different types of secondary structural elements or motifs are derived for POPC at T < Tm based on a single protocol guided by two-dimensional steric contour maps and computer-based molecular graphics. After subjecting these derived molecular species to energy minimization using the molecular mechanics method, the number of the secondary structural motifs is reduced to 13 as a result of conformational degeneracy. The structure and steric energy of each of the energy-minimized lipid rotomers are presented in this communication. Furthermore, these rotomers packed in small clusters are also simulated to mimic the lipid bilayer structure of 1-palmitoyl-2-oleoyl-phosphatidylcholines at T < Tm.  相似文献   

4.
Previous studies from our laboratories have delineated the relationship between the acyl chain asymmetry of mixed-chain phosphatidylcholines, C(X):C(Y)PC, and the effect of ethanol concentration, [EtOH], on the main phase transition temperature, T(m), and the phase structure of the lipid bilayer composed of C(X):C(Y)PC using differential scanning calorimetry and X-ray diffraction techniques [Huang and McIntosh, Biophys. J. 72 (1997) 2702--2709]. In the present work, we have extended these studies to characterize the effect of [EtOH] on the T(m) and the phase structure of the lipid bilayer composed of sn-1 saturated/sn-2 monounsaturated phosphatidylcholines with various positions of the cis double bond. Specifically, five positional isomers of 1-eicosanoyl-2-eicosenoyl-sn-glycero-3-phosphocholines, C(20):C(20:1 Delta(n))PC with n=5, 8, 11, 13 and 17, were synthesized and studied. For C(20):C(20:1 Delta(n))PC with n=5 and 8, results from the calorimetric experiments showed that in response to various concentrations of ethanol, the change in T(m) of the lipid bilayer composed of monounsaturated lipids was characterized by a sigmoidal or biphasic profile in the plot of T(m) versus [EtOH]. In contrast, a continuous depression of the T(m) by ethanol was observed calorimetrically for C(20):C(20:1 Delta(n))PC with n> or =11. The X-ray diffraction experiments further demonstrated that C(20):C(20:1 Delta(5))PC and C(20):C(20:1 Delta(8))PC can undergo the ethanol-induced gel-to-fully interdigitated phase transition at T相似文献   

5.
The hydrogenation of unsaturated phospholipids by palladium di(sodium alizarine monosulphonate) activated for 5 min under H2 proceeded rapidly at 20 degrees C and 1 atm. H2. Multibilayer liposomes of dioleoyl- and dilinolenoylphosphatidylcholine were hydrogenated at similar rates while dilinoleoyl- and 1-palmitoyl-2-oleoylphosphatidylcholine were hydrogenated at slightly slower rates. The reduction of polyunsaturated fatty acids gave rise to a variety of natural and unnatural positional cis and trans isomers which were largely reduced further to saturated fatty acids as the hydrogenation continued. Dioleoylphosphatidylethanolamine was attacked by the catalyst more slowly at 20 degrees C than was the equivalent phosphatidylcholine molecular species. Experiments conducted using mixtures of phosphatidylethanolamine and phosphatidylcholine in varying proportions also suggested that phospholipids are slightly more susceptible to catalytic hydrogenation in the bilayer phase than in the hexagonalII phase. Understanding the sequence of hydrogenation reactions involving these one and two component lipid preparations is useful in interpreting the action of the palladium catalyst on living cells under the same mild conditions.  相似文献   

6.
Comparative studies on bilayer systems of saturated phosphatidylcholines and phosphatidylethanolamines revealed a maximum in ionic permeability in phosphatidylcholine bilayers at the temperature of the gel to liquid-crystalline phase transition but such an increase in permeability was not detectable in bilayers of phosphatidylethanolamine. Furthermore, it was found that at the phase transition temperature the phosphatidylcholine bilayers are subject to rapid hydrolysis by pancreatic phospholipase A2 whereas phosphatidylethanolamine bilayers are not. These differences are discussed in view of detailed information on the molecular organization in the gel and liquid crystalline phases of the two phospholipid classes.  相似文献   

7.
Summary The interaction of furosemide with different phospholipids was investigated. Its influence on the lipid structure was inferred from its effect on the phase transition properties of lipids and on the conductance of planar bilayer membranes. The thermotropic properties of dipalmitoyl phosphatidylcholine, phosphatidylethanolamine (natural), dipalmitoyl phosphatidylethanolamine, brain sphingomyelin, brain cerebrosides and phosphatidylserine in the presence and absence of furosemide were investigated by differential scanning calorimetry,. The modifying effect of furosemide seems to be strongest on phosphatidylethanolamine (natural) and sphingomyelin bilayers. The propensity of furosemide to decrease the electrical resistance of planar lipid membranes was also studied and it is shown that the drug facilitates the transport of ions. Partition coefficients of furosemide between lipid bilayers and water were measured.Abbreviations DSC differential scanning calorimetry - PLM planar lipid membranes - DPPC dipalmitoyl phosphatidylcholine - DMPC dimyristoyl phosphatidylcholine - PE phosphatidyl ethanol  相似文献   

8.
Deuterium nuclear magnetic resonance (2H NMR) spectra from aqueous dispersions of phosphatidylcholines in which perdeuterated palmitic acid is esterified at the sn-1 position have several very useful features. The powder spectra show six well-resolved 90 degree edges which correspond to the six positions closest to the methyl end of the acyl chain. The spectral overlap inherent in the multiple powder pattern line shape of these dispersions can be removed by using a "dePaking" procedure [Bloom, M., Davis, J.H., & Mackay, A. (1981) Chem. Phys. Lett. 80, 198-202] which calculates the spectra that would result if the lipid bilayers were oriented in the magnetic field. This procedure produces six well-resolved doublets whose NMR properties can be observed without interference from the resonances of other labeled positions. The presence of a single double bond in the sn-2 chain increases the order of the saturated 16:0 sn-1 chain at every position in the bilayer compared with a saturated sn-2 chain at the same reduced temperature. Surprisingly, addition of five more double bonds to the sn-2 chain only slightly reduces the order of the 16:0 sn-1 chain at many positions in the bilayer compared with the single double bond. Calculating oriented spectra from a spin-lattice (T1) relaxation series of powder spectra allows one to obtain the T1 relaxation times of six positions on the acyl chain simultaneously. As an example of the utility of these molecules, we demonstrate that the dependence of the spin-lattice (T1) relaxation rate as a function of orientational order for two unsaturated phospholipids differs significantly from the corresponding fully saturated analogue. Interpreting this difference using current models of acyl chain dynamics suggests that the bilayers containing either of the two unsaturated phospholipids are significantly more deformable than bilayers made from the fully saturated phospholipid.  相似文献   

9.
Using the high resolution 1H-NMR spectroscopy and spin-probes the influence of alpha-tocopherol on lipid bilayer microviscosity has been studied. It has been established that alpha-tocopherol shows the cholesterol-like action on the physical state of lipid bilayer: alpha-tocopherol increase microviscosity of unsaturated bilayers and decrease microviscosity of saturated bilayers. The character of alpha-tocopherol action is determined by the fatty acidic lipid composition but does not depend on the polar group structure of phospholipid molecule as cholesterol-like action of alpha-tocopherol is found itself in liposomes prepared both from phosphatidylcholine and phosphatidylethanolamine. Analog of alpha-tocopherol without phytol chain 2,2,5,7,8-penthamethyl-6-oxychroman does not show the cholesterol-like action as it is not able to disorder the saturated bilayers.  相似文献   

10.
F R Taylor  J E Cronan 《Biochemistry》1979,18(15):3292-3300
The cyclopropane fatty acid (CFA) synthase of Escherichia coli catalyzes the methylenation of the unsaturated moieties of phospholipids in a phospholipid bilayer. The methylene donor is S-adenosyl-L-methionine. The enzyme is loosely associated with the inner membrane of the bacterium and binds to and is stabilized by phospholipid vesicles. The enzyme has been purified over 500-fold by flotation with phospholipid vesicles and appears to be a monomeric protein having a molecular weight of about 90 000. The enzyme binds only to vesicles of phospholipids which contain either unsaturated or cyclopropane fatty acid moieties. CFA synthase is active on phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin, the major phospholipids of E. coli, and also has some activity on phosphatidylcholine. The enzyme is equally active on phospholipid vesicles in the ordered or the disordered states of the lipid phase transition. Studies with a reagent that reacts only with the phosphatidylethanolamine molecules of the outer leaflet of a phospholipid bilayer indicate that CFA synthase reacts with phosphatidylethanolamine molecules of both the outer and the inner leaflets of phospholipid vesicles.  相似文献   

11.
G Wang  S Li  H N Lin    C Huang 《Biophysical journal》1997,73(1):283-292
We have semisynthesized 19 species of mixed-chain phosphatidylethanolamines (PEs) in which the sn-1 acyl chain is derived from saturated fatty acids with varying chain lengths and the sn-2 acyl chain has different chain lengths but contains 0, 1, and 2 cis double bond(s). The gel-to-liquid crystalline phase transition temperatures (Tm) of lipid bilayers prepared from these 19 mixed-chain PEs were determined calorimetrically. When the Tm values are compared with those of saturated and monounsaturated counterparts, a common Tm profile is observed in the plot of Tm versus the number of cis double bonds. Specifically, a marked stepwise decrease in Tm is detected as the number of cis double bonds in the sn-2 acyl chain of the mixed-chain PE is successively increased from 0 to 1 and then to 2. The large Tm-lowering effect of the acyl chain unsaturation can be attributed to the increase in Gibbs free energy of the gel-state bilayer as a result of weaker lateral chain-chain interactions. In addition, we have applied molecular mechanics calculations to simulate the molecular structure of dienoic mixed-chain C(X):C(Y:2 delta n,n+3)PE in the gel-state bilayer, thus enabling the three independent structural parameters (N, delta C, and LS) to be calculated in terms of X, Y, and n, which are intrinsic quantities of C(X):C(Y:2 delta n,n+3)PE. When the Tm values and the corresponding N and delta C values of all dienoic mixed-chain PEs under study are first codified and then analyzed statistically by multiple regressions, the dependence of Tm on the structural parameters can be described quantitatively by a simple and general equation. The physical meaning and the usefulness of this simple and general equation are explained.  相似文献   

12.
A Arora  D Marsh 《Biophysical journal》1998,75(6):2915-2922
The change in vertical location of spin-labeled N-biotinyl phosphatidylethanolamine in fluid-phase dimyristoyl phosphatidylcholine bilayer membranes, on binding avidin to the biotinyl headgroup, has been investigated by progressive saturation electron spin resonance measurements. Spin-labeled phospholipids were present at a concentration of 1 mol%, relative to total membrane lipids. For avidin-bound N-biotinyl phosphatidylethanolamine spin-labeled on the 8 C atom of the sn-2 chain, the relaxation enhancement induced by 30 mM Ni2+ ions confined to the aqueous phase was 2.5 times that induced by saturating molecular oxygen, which is preferentially concentrated in the hydrophobic core of the membrane. For phosphatidylcholine also spin-labeled at the 8 position of the sn-2 chain, this ratio was reversed: the relaxation enhancement by Ni2+ ions was half that induced by molecular oxygen. In the absence of avidin, the enhancement by either relaxant was the same for both spin-labeled phospholipids. For a double-labeled system, in which both N-biotinyl phosphatidylethanolamine and phosphatidylcholine were spin-labeled on the 12 C atom of the sn-2 chain, the relaxation rate in the absence of avidin was greater than that predicted from linear additivity of the corresponding singly labeled systems, because of mutual spin-spin interactions between the two labeled lipid species. On binding of avidin to the N-biotinyl phosphatidylethanolamine, this relaxation enhancement by mutual spin-spin interaction was very much decreased. These results indicate that, on binding of avidin to the lipid headgroup, N-biotinyl phosphatidylethanolamine is lifted vertically within the membrane, relative to the phosphatidylcholine host lipids. The specific binding of avidin to N-biotinyl phosphatidylethanolamine parallels the liftase activity proposed for activator proteins associated with the action of certain gangliosidases.  相似文献   

13.
Molecular dynamics (MD) computer simulations of five different hydrated unsaturated phosphatidylcholine lipid bilayers built up by 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules with 40 mol% cholesterol, and the same five pure phosphatidylcholine bilayers have been performed at 303 K. The simulation box of a lipid bilayer contained 96 phosphatidylcholines, 64 cholesterols, and 3840 water molecules (48 phosphatidylcholine molecules and 32 cholesterols per layer and 24 water molecules per phospholipid or cholesterol in each case). The lateral self-diffusion coefficients of the lipids in these systems and mass density profiles with respect to the bilayer normal have been analyzed. It has been found that the lateral diffusion coefficients of phosphatidylcholine molecules increase with increasing number of double bonds in one of the lipid chains, both in pure bilayers and in bilayers with cholesterol. It has been found as well that the lateral diffusion coefficient of phosphatidylcholine molecules of a lipid bilayer with 40 mol% cholesterol is smaller than that for the corresponding pure phosphatidylcholine bilayer.  相似文献   

14.
B Perly  I C Smith  H C Jarrell 《Biochemistry》1985,24(17):4659-4665
The dynamical behavior of the acyl chains of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, and 1-palmitoyl-2-dihydrosterculoyl-sn-glycero-3-phosphoethanolamine has been investigated by using 2H T1 and T2 relaxation times. Lipids were labeled at the 5-,9-,10-, and 16-positions of the sn-2 acyl chain. The profile of deuterium spin-lattice relaxation rate (T1(-1) vs. chain position is characterized in all systems by a marked discontinuity at the positions of the carbon-carbon double bond and the cyclopropane ring; the deuterons at these positions have relaxation rates which are greater than at any other labeled position of the sn-2 chain. For both types of sn-2 acyl chain, assuming a single-exponential correlation time and that the motion is within the rapid regime, the phosphatidylcholine lipid systems are less mobile than their phosphatidylethanolamine analogues. Systems containing an oleoyl chain are more dynamic than their analogues containing a dihydrosterculoyl chain. The rates of motion of the sn-2 acyl chains of phosphatidylethanolamine in a bilayer structure are slower than those of the lipid in an inverted hexagonal structure. In the hexagonal phase, the motional rates of a dihydrosterculoyl chain are slower than those of the corresponding positions of an oleoyl chain.  相似文献   

15.
A method was developed to track the distributional preferences of phospholipids in polymorphism based on sideband analyses of the 31P magic angle spinning nuclear magnetic resonance spectra. The method was applied to lipid mixtures containing phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and either cholesterol (Chol) or tetradecane, as well as mixtures containing the anionic phosphatidylmethanol, phosphatidylethanolamine, and diolein. The phospholipid composition of coexisting lamellar (Lalpha) and inverted hexagonal (HII) phases remained constant throughout the Lalpha --> HII transition in all mixtures, except those that contained saturated PtdCho and unsaturated PtdEtn in the presence of cholesterol-mixtures that are known to be microimmiscible because of favored associations between Chol and saturated acyl chains. In the latter mixture, saturated PtdCho was enriched in the planar bilayer structure, and unsaturated PtdEtn was enriched in the highly curved HII structure. This enrichment was coincident with an increase in the transition width. When compositional heterogeneity among coexisting phases was observed, it appeared that preexisting lateral microheterogeneities led to compositionally distinct transitional clusters, such that the distributional preferences that resulted were not those of the individual phospholipids.  相似文献   

16.
New structural model for mixed-chain phosphatidylcholine bilayers   总被引:13,自引:0,他引:13  
Multilamellar suspensions of a mixed-chain saturated phosphatidylcholine with 18 carbon atoms in the sn-1 chain and 10 carbon atoms in the sn-2 chain have been analyzed by X-ray diffraction techniques. The structural parameters for this lipid in the gel state are quite different than usual phosphatidylcholine bilayer phases. A symmetric and sharp wide-angle reflection at 4.11 A indicates that the hydrocarbon chains in hydrated C(18):C(10)PC bilayers are more tightly packed than in usual gel-state phosphatidylcholine bilayers and that there is no hydrocarbon chain tilt. The lipid thickness is about 12 A smaller than would be expected in a normal bilayer phase, and the area per molecule is 3 times the area per hydrocarbon chain. In addition, the bilayer thickness increases upon melting to the liquid-crystalline state, whereas normal bilayer phases decrease in thickness upon melting. On the basis of these data, we propose a new lipid packing model for gel-state C(18):C(10)PC bilayers in which the long C(18) chain spans the entire width of the hydrocarbon region of the bilayer and the short C(10) chain aligns or abuts with the C(10) chain from the apposing molecule. This model is novel in that there are three hydrocarbon chains per head group at the lipid-water interface. Calculations show that this phase is energetically favorable for mixed-chain lipids provided the long acyl chain is nearly twice the length of the shorter chain. In the liquid-crystalline state C(18):C(10)PC forms a normal fluid bilayer, with two chains per head group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have examined the effects of cholesterol on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylserines by high-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy. We find that the incorporation of increasing quantities of cholesterol progressively reduces the temperature, enthalpy, and cooperativity of the gel-to-liquid-crystalline phase transition of the host phosphatidylserine bilayer, such that a cooperative chain-melting phase transition is completely or almost completely abolished at 50 mol % cholesterol, in contrast to the results of previous studies. We are also unable to detect the presence of a separate anhydrous cholesterol or cholesterol monohydrate phase in our binary mixtures, again in contrast to previous reports. We further show that the magnitude of the reduction in the phase transition temperature induced by cholesterol addition is independent of the hydrocarbon chain length of the phosphatidylserine studied. This result contrasts with our previous results with phosphatidylcholine bilayers, where we found that cholesterol increases or decreases the phase transition temperature in a chain length-dependent manner (1993. Biochemistry, 32:516-522), but is in agreement with our previous results for phosphatidylethanolamine bilayers, where no hydrocarbon chain length-dependent effects were observed (1999. Biochim. Biophys. Acta, 1416:119-234). However, the reduction in the phase transition temperature by cholesterol is of greater magnitude in phosphatidylethanolamine as compared to phosphatidylserine bilayers. We also show that the addition of cholesterol facilitates the formation of the lamellar crystalline phase in phosphatidylserine bilayers, as it does in phosphatidylethanolamine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of cholesterol. We ascribe the limited miscibility of cholesterol in phosphatidylserine bilayers reported previously to a fractional crystallization of the cholesterol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. In general, the results of our studies to date indicate that the magnitude of the effect of cholesterol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipid dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se.  相似文献   

18.
Abscisic acid (ABA)-induced phospholipid bilayer perturbations (permeability and lipid vesicle aggregation) are shown to be reversed by incorporation of a commercially available mixture of plant sterols (60% beta-sitosterol, 27% campesterol and 13% dihydrobrassicasterol) into the membranes. As little and 5 membrane mol% plant sterol inhibits ABA-stimulated permeability of both saturated and unsaturated mixed phosphatidylcholine/phosphatidylethanolamine bilayers to the fluorescent anion carboxyfluorescein by more than 50%. The same conclusion was reached by an osmotic swelling technique for the uncharged permeant solute erythritol. Hormone-induced carboxyfluorescein permeability to mixed acyl chain phosphatidylcholine bilayers was similarly inhibited by the sterols, but only if the membranes were tested at a temperature where liquid crystal and gel states coexist. The plant sterols were also shown to prevent the ABA-induced fusion of mixed phosphatidylcholine/phosphatidylethanolamine bilayers. The ABA effect on membranes is inhibited equally by plant sterols as well as cholesterol. From these experiments a possible role is suggested for plant sterols in controlling the mode of action of ABA.  相似文献   

19.
The thermotropic properties and acyl chain packing characteristics of multilamellar dispersions of highly unsaturated lipids were examined by Raman spectroscopy. Bilayer assemblies were composed of POPC (1-palmitoyl-2-oleoylphosphatidylcholine), PAPC (1-palmitoyl-2-arachidonylphosphatidylcholine), and PDPC (1-palmitoyl-2-docosahexaenoylphosphatidylcholine), lipid systems possessing saturated sn-1 chains and unsaturated sn-2 chains with one, four, and six double bonds, respectively. Raman spectra were recorded in the acyl chain 2800-3100-cm-1 carbon-hydrogen (C-H) stretching and 1100-1200-cm-1 carbon-carbon (C-C) stretching mode regions, spectral intervals reflecting both the inter- and intrachain order/disorder properties of the various lipid dispersions. In order to obtain C-H stretching mode spectra relevant solely to the sn-1 chains of PAPC and PDPC, liquid-phase spectra of arachidonic and docosahexaenoic acid, respectively, were subtracted from the observed phospholipid spectra. The unsaturated sn-2 chains of PAPC and PDPC undergo minimal conformational reorganizations as the bilayers pass from the gel to liquid-crystalline phases. Phase transition temperatures, Tm, derived from statistically fitting the temperature-dependent Raman spectral data are approximately -2.5, -22.5, and -3 degrees C for POPC, PAPC, and PDPC, respectively. As the degree of unsaturation increases from POPC to PAPC and PDPC, the cooperativity of the phase transition, as measured by its breadth, decreases. Estimates of the transition widths from the temperature profiles are approximately 15 degrees C for PAPC and 20 degrees C for PDPC. The behavior of various Raman spectral parameters for the lipid gel phase reflects the formation of lateral microdomains, or clusters, whose packing properties maximize the van der Waals interactions between sn-1 chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Planar bilayer lipid membranes formed from trepang phospholipids possess an intrinsic Ca2(+)-permeability. These phospholipids dissolved in a non-polar solvent can extract 45Ca2+ from the aqueous to the organic phase. The triterpenic glycoside holotoxin A isolated from the trepang Stichopus japonicus inhibits the Ca2+ flux of lipid bilayers from trepang phospholipids as well as the Ca2+ flux induced in phosphatidylcholine bilayers by the calcium ionophore X-537A. Toxin inhibits the Ca2+ ionophore A23187 induced Ca2+ efflux from phosphatidylcholine liposomes and 45Ca2+ transition from the aqueous to the organic phase. Holotoxin A does not inhibit the 45Ca2+ transfer to the non-polar phase induced by holoturia phospholipids and does not affect the phosphatidylcholine hydroperoxide-induced Ca2+ flux of lipid bilayers. Using the fluorescent probe pyrene, it was demonstrated that toxin increases the microviscosity of liposomal membranes and trepang oocyte "ghosts".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号