首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The persistence of gibberellin A3 on plant surfaces was examined using fruit of Marsh seedless grapefruit (Citrus paradisi Macf.) and an inert glass model system. 14C-gibberellin A3 was applied to surfaces in aqueous treatment solutions or in waxing solutions. Dried-out treatment residues were removed by washing and analyzed for total and GA3-like radioactivity. Gibberellin A3 persisted without significant loss for at least 7 d in aqueous treatment solutions (pH 4.0 or 6.2) but was less persistent in the pH 10.4 waxing solution (t1/2=7 d).Loss of total peel surface radioactivity was fast during the first 3 days, slowing down afterwards. After 14 days 73% of the initial radioactivity could still be recovered from fruit peel surface and 70% of the recovered radioactivity was still in the form of gibberellin A3. Gibberellin A3 was somewhat more persistent in residues from pH 4 than pH 7 treatment solutions. Light had a slight enhancing effect on gibberellin A3 decomposition on fruit peel under growth chamber conditions. After 12 d at 100% relative humidity, 88% of the radioactivity on glass surfaces was still in the form of gibberellin A3, as against 45% at a relative humidity of 50%. Simulated field conditions, combining daily fluctuations in light, temperature and relative humidity, markedly enhanced gibberellin A3 decomposition on glass surfaces (t1/2=2 d). Gibberellin A3 was very persistent (90% after 9 d) in the waxing residues on fruit peel surface.Abbreviations GA3 gibberellin A3 - RH relative humidity  相似文献   

2.
Cell-free systems were prepared from germinating seed and seedlings of Phaseolus coccineus. Gibberellin A4 (GA4)-metabolising activity was detected in vitro using preparations from roots, shoots and cotyledons of germinating seed, but only up to 24 h after imbibition. Cell-free preparations from cotyledons converted [3H]GA4 to GA1, GA34, GA4-glucosyl ester and a putative O-glucoside of GA34, and, in addition converted [3H]GA1 to GA8. Preparations from embryo tissues contained 2-hydroxylase activity, converting [3H]GA4 to GA34 and [3H]GA1 to GA8.The presence of GA-metabolising enzymes was also indicated by in-vivo feeds of [3H]GA4 to epicotyls of intact 4-d-old seedlings, which resulted in the accumulation of GA1, GA8, GA3-3-O-glucoside, GA4-glucosyl ester, GA8-2-O-glucoside and a putative O-glucoside of GA34. Gibberellin A1 was the first metabolite detected, 15 min after application of [3H]GA4, but after 24 h most of the label was associated with GA8-2-O-glucoside. Over 90% of the recovered radioactivity was found in the shoot. Within the shoot, movement was preferentially acropetal, and was not dependent upon metabolism of the applied [3H]GA4.Abbreviations DEAE diethylaminoethyl - GAn gibberellin An - GPC gel permeation chromatography - HPLC-RC high performance liquid chromatography-radio counting - S-1 1000·g supernatant - UDP uridine 5-diphosphate  相似文献   

3.
The relationship between protein synthesis and the incorporation of [3H]gibberellin A1 ([3H]GA1) into a 2,000xg pelletable (2KP) fraction from lettuce (Lactuca sativa L.) hypocotyl sections has been investigated. Concentrations of D-2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide (MDMP) between 10-7 M and 10-4 M caused increasing inhibition of growth, 2KP labelling and incorporation of [14C]leucine into soluble protein. Growth and 2KP radioactivity were highly correlated (r=0.996). Transfer to MDMP early or late in the course of GA response caused reductions in both growth and incorporation into the 2KP fraction. Exposure to the inhibitor had more effect at 4 h than at 20 h. The proportions of alkali-soluble and insoluble radioactivity in the 2KP fraction were also altered by this treatment. The implications of these findings are discussed.Abbreviations GA1 gibberellin A1 - MDMP D-2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide - 2KP a2,000xg pelletable fraction  相似文献   

4.
A cell-free system prepared from developing seed of runner bean (Phaseolus coccineus L.) converted [14C]gibberellin A12-aldehyde to several products. Thirteen of these were identified by capillary gas chromatography-mass spectrometry as gibberellin A1 (GA1), GA4, GA5, GA6, GA15, GA17, GA19, GA20, GA24, GA37, GA38, GA44 and GA53-aldehyde, all giving mass spectra with 14C-isotope peaks. GA8 and GA28 were also identified but contained no 14C. All the [14C]GA12-aldehyde metabolites, except GA15, GA24 and GA53-aldehyde, are known endogenous GAs of P. coccineus.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC highperformance liquid chromatography - MVA mevalonic acid - S-2 2000-g supernatant  相似文献   

5.
[2H, 3H]Gibberellin A4 (GA4) or [2H, 3H] GA9 were applied to the shoot tips of seedlings of elongated internode (ein), a tall mutant of rapid cycling Brassica rapa. Following [2H]GA9 application, [2H]GA51, [2H]GA20 and [2H]GA4 were identified as products by GC-MS, while [2H]GA34 and [2H]GA1 were formed from [2H]GA4. Other isotopically labelled products, including abundant putative conjugates, were also produced, but were not identified. Thus, in B. rapa, GA1 biosynthesis involves the convergence of at least two metabolic pathways; it can be formed via GA4 or GA20, the latter of which can originate from GA9 or from GA19.  相似文献   

6.
The metabolism and growth-promoting activity of gibberellin A20 (GA20) were compared in the internode-length genotypes of pea, na le and na Le. Gibberellin A29 and GA29-catabolite were the major metabolites of GA20 in the genotype na le. However, low levels of GA1, GA8 and GA8-catabolite were also identified as metabolites in this genotype, confirming that the le allele is a leaky mutation. Gibberellin A20 was approximately 20 to 30 times as active in promoting internode growth of genotype na Le as of genotype na le. However, the levels of the 3-hydroxylated metabolite of GA20, GA8 (2-hydroxy GA1), were similar for a given growth response in both genotypes. In each case a close linear relationship was observed between internode growth and the logarithm of GA8 levels. A similar relationship was found on comparing GA20 metabolism in the three genotypes le d, le and Le. The former mutation results in a more severe dwarf phenotype than the le allele (which has previously been shown to reduce the 3-hydroxylation of GA20 to GA1). These results indicate that GA20 has negligible intrinsic activity and support the contention that GA1 is the only GA active per se in promoting stem growth in pea.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

7.
The relationship between shoot growth and [3H]gibberellin A20 (GA20) metabolism was investigated in the GA-deficient genotype of peas, na Le. [17-13C, 3H2]gibberellin A20 was applied to the shoot apex and its metabolic fate examined by gas chromatographic-mass spectrometric analysis of extracts of the shoot and root tissues. As reported before, [13C, 3H2]GA1, [13C, 3H2]GA8 and [13C, 3H2]GA29 constituted the major metabolites of [13C, 3H2]GA20 present in the shoot. None of these GAs showed any dilution by endogenous 12C-material. [13C, 3H2]GA29-catabolite was also a prominent metabolite in the shoot tissue but showed pronounced isotope dilution probably due to carry-over of endogenous [12C]GA29-catabolite from the mature seed. In marked contrast to the shoot tissue, the two major metabolites present in the roots were identified as [13C, 3H2]GA8-catabolite and [13C, 3H2]GA29-catabolite. Both of these compounds showed strong dilution by endogenous 12C-material. Only low levels of [13C, 3H2]GA1, [13C, 3H2]GA8, [13C, 3H2]GA20 and [13C, 3H2]GA29 accumulated in the roots. It is suggested that compartmentation of GA-catabolism may occur in the root tissue in an analogous manner to that shown in the testa of developing seeds. Changes in the levels of [1,3-3H2]GA20 metabolites over 10 d following application of the substrate to the shoot apex of genotype na Le confirmed the accumulation of [3H]GA-catabolites in the root tissues. No evidence was obtained for catabolic loss of [3H]GA20 by complete oxidation or conversion to a methanol-inextractable form. The results indicate that the root system may play an important role in the regulation of biologically active GA levels in the developing shoot of Na genotypes of peas.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

8.
Elongation growth and gibberellin (GA9) metabolism in excised hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Exogenously supplied GA9 stimulates elongation of hypocotyl sections and this response is intermediate between that elicited by GA1 or GA20 and GA4/7 mixture. Although uptake of radioactivity from [3H]GA9 increases with time, this gibberellin does not accumulate in the tissue but is rapidly converted to a compound with HPLC properties resembling those of [3H]GA20. After 2 h incubation in [3H]GA9, the presumptive GA20 represents 90% of the acidic ethyl acetate-soluble radioactivity in the tissue. Radioactivity is also associated with an acidic butanol-soluble fraction containing two components resolvable by HVE. The major component is similar in electrophoretic properties to a GA-glucosyl ether while the other compares to a GA-glucosyl ester. Conversion of [3H]GA9 to its [3H]GA20-like metabolite is reduced by addition of carrier GA9 or GA4/7 at concentrations as low as 1 M, while GA1, GA3 and L-proline are without effect. Formation of the GA20-like compound can be blocked by the addition of 2,2-dipyridyl, and this inhibitory effect of dipyridyl can be reversed by addition of Fe2+. At 200 M dipyridyl, elongation growth as well as [3H]GA9 metabolism are reduced by 80%. The relationship of the metabolism of GA9 to the growth response is discussed.Abbreviations AB butanol-soluble - AE ethyl-acetate-soluble - GA gibberellin - GA1, GA4 gibberellin A1, gibberellin A4, etc. - TLC thin layer chromatography - HPLC high performance liquid chromatography - HVE high voltage electrophoresis  相似文献   

9.
The properties of the water-soluble metabolites of [3H]gibberellin A1 ([3H]GA1) from lettuce (Lactuca sativa L.) hypocotyls were compared with those of authentic samples of gibberellin (GA) glucosyl esters and ethers. Partitioning against l-butanol at high and low pH was not an efficient method of differentiating between ester and ether conjugates of GA1 or GA3. Extraction into l-butanol at pH 2.5 was, however, useful as a group purification step. Gel-filtration on acrylamide indicated a mean molecular weight of ca. 600 for the polar material and high-voltage electrophoresis separated two compounds (LH 1 and LH 2) with differing charge properties. Both metabolites incorporated 14C from glucose and 3H from GA1. Subsequent enzymatic hydrolysis of LH 1 released material with identical properties to [14C]glucose together with a second uncharacterised component. Feeding with [3H]GA1 methyl ester greatly reduced the formation of LH 1 but not LH 2. The metabolites were provisionally identified as GA1-glucosyl ester (LH 1) and GA1-glucosyl ether (LH 2).Abbreviations GA gibberellin - LH1 GA3-glucosyl ester - LH2 GA1-glucosyl ether - HVE high voltage paper electrophoresis - TLC thin-layer chromatography  相似文献   

10.
In a carrot (Daucus carota L.) cell line lacking the ability to undergo somatic embryogenasis, and in carrot and anise (Pimpinella anisum L.) cell lines in which embryogenesis could be regulated by presence or absence of 2,4-dichlorophen-oxyacetic acid (2,4-D), in the medium (+2,4-D=no embryogenesis,-2,4-D=embryo differentiation and development), the levels of endogenous gibberellin(s) (GA) were determined by the dwarfrice bioassay, and the metabolism of [3H]GA1 was followed. Embryos harvested after 14 d of subculture in-2,4-D had low levels (0.2–0.3 g g-1 dry weight) of polar GA (e.g. GA1-like), but much (3–22 times) higher levels of less-polar GA (GA4/7-like); GA1, GA4 and GA7 are native to these cultures. Conversely, the undifferentiated cells in a non-embryogenic strain, and proembryos of an embryogenic strain (+2,4-D) showed very high levels of polar GA (2.9–4.4 g g-1), and somewhat reduced levels of less-polar GA. Cultures of anise undergoing somatic embryo development (-2,4-D) metabolized [3H]GA1 very quickly, whereas proembryo cultures of anise (+2,4-D) metabolized [3H]GA1 slowly. The major metabolites of [3H]GA1 in anise were tentatively identified as GA8-glucoside (24%), GA8 (15%), GA1-glucoside (8%) and the 1(10)GA1-counterpart (2%). Thus, high levels of a GA1-like substance and a reduced ability to metabolize GA1 are correlated with the absence of embryo development, while lowered levels of GA1-like substance and a rapid metabolism of GA1 into GA8 and GA-conjugates are correlated with continued embryo development. Exogenous application of GA3 is known to reduce somatic embryogenesis in carrot cultures; GA4 was found to have the same effect in anise cultures. Thus, a role (albeit negative) in somatic embryogenesis for a polar, biologically active GA is implied.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GA gibberellin(s) or gibberellin-like substances - GC-RC gas chromatography-radiochromatogram counting - HPLC high-presare liquid chromatography - Rt retention time - TLC thinlaver chromatography  相似文献   

11.
W. Hartung  I. D. J. Phillips 《Planta》1974,118(4):311-322
Summary Movement of both [3H]GA1 and [14C]GA3 through root segments from P. coccineus seedlings was basipetally polarised. The basipetal/acropetal ratio of radioactivity from [3H]GA1 in agar receiver blocks was 9.2 for apical, elongating segments, and 4.0 for more basal, non-elongating segments. Polarity of gibberellin transport was restricted to the stele, and absent from cortical tissues. Transport of [14C]IAA through root segments to agar receivers was preferentially acropetal, particularly so in the stele. Despite the existence of basipetal polarity of gibberellin transport in the root, [3H]GA1 injected into cotyledons moved into and acropetally along the seedling root.  相似文献   

12.
Spray  Clive  Phinney  Bernard O.  Gaskin  Paul  Gilmour  Sarah J.  MacMillan  Jake 《Planta》1984,160(5):464-468
[13C, 3H]Gibberellin A20 (GA20) has been fed to seedlings of normal (tall) and dwarf-5 and dwarf-1 mutants of maize (Zea mays L.). The metabolites from these feeds were identified by combined gas chromatography-mass spectrometry. [13C, 3H]Gibberellin A20 was metabolized to [13C, 3H]GA29-catabolite and [13C, 3H]GA1 by the normal, and to [13C, 3H]GA29 and [13C, 3H]GA1 by the dwarf-5 mutant. In the dwarf-1 mutant, [13C, 3H]GA20 was metabolized to [13C, 3H]GA29 and [13C, 3H]GA29-catabolite; no evidence was found for the metabolism of [13C, 3H]GA20 to [13C, 3H]GA1. [13C, 3H]Gibberellin A8 was not found in any of the feeds. In all feeds no dilution of 13C in recovered [13C, 3H]GA20 was observed. Also in the dwarf-5 mutant, the [13C]label in the metabolites was apparently undiluted by endogenous [13C]GAs. However, dilution of the [13C]label in metabolites from [13C, 3H]GA20 was observed in normal and dwarf-1 seedlings. The results from the feeding studies provide evidence that the dwarf-1 mutation of maize blocks the conversion of GA20 to GA1.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - RP reverse phase  相似文献   

13.
Prothallia of Lygodium japonicum (Thunb.) Sw. were aseptically cultured under white light in a mineral solution. Solvent fractionation of the resultant culture medium and subsequent preparative thinlayer chromatography yielded a fraction that induced antheridium formation and inhibited archegonium formation. Combined gas chromatography-selected ion monitoring analysis of this fraction confirmed the presence of gibberellin A9 methyl ester (GA9-me) as an antheridiogen and an inhibitor of archegonium formation. Exogenously applied [3H]GA9 was rapidly converted to [3H]GA9-me in the prothallial tissue. Authentic GA9-me was active to 10-10M in antheridium formation and to 10-9M in the inhibition of archegonium formation.Abbreviations GAs gibberellins - GAn gibberellin An - GAn me, gibberellin An methyl ester - TLC thin-layer chromatography - GCSIM Combined gas chromatography-selected ion monitoring  相似文献   

14.
John L. Stoddart 《Planta》1984,161(5):432-438
Growth parameters were determined for tall (rht3) and dwarf (Rht3) seedlings of wheat (Triticum aestivum L.). Plant statures and leaf length were reduced by 50% in dwarfs but root and shoot dry weights were less affected. Leaves of dwarf seedlings had shorter epidermal cells and the numbers of cells per rank in talls and dwarfs matched the observed relationships in overall length. Talls grew at twice the rate of dwarfs (2.3 compared with 1.2 mm h-1). [3H]Gibberellin A1 ([3H]GA1) was fed to seedlings via the third leaf and metabolism was followed over 12 h. Immature leaves of tall seedlings transferred radioactivity rapidly to compounds co-chromatographing with [3H]gibberellin A8 ([3H]GA8) and a conjugate of [3H]GA8, whereas leaves of dwarf seedlings metabolised [3H]GA1 more slowly. Roots of both genotypes produced [3H]GA8-like material at similar rates. Isotopic dilution studies indicated a reduced 2-hydroxylation capacity in dwarfs, but parallel estimates of the endogenous GA pool size, obtained by radioimmunoassay, indicated a 12–15 times higher level of GA in the dwarf immature leaves. Dwarfing by the Rht3 gene does not appear to operate through enhanced, or abnormal metabolism of active gibberellins and the act of GA metabolism does not bear an obligate relationship to the growth response.Abbreviations GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

15.
The relationship between elongation growth and the incorporation of [3H]gibberellin A1 ([3H]GA1) into a 2,000g pelletable (2KP) fraction from lettuce (Lactuca sativa L., cv. Arctic) hypocotyl sections has been examined. Sections were loaded with incremental amounts of GA1 under conditions where growth was arrested (5° C) or permitted (30° C) and, after 16 h, all were transferred to a GA-free medium at 30° C. Growth and 2KP radioactivity were measured at this point and after a further 24 h in the chase medium. Uptake was reduced by 80% at 5° C, as compared to 30° C, but 2KP labelling and protein synthesis were only reduced by half. The growth rate of the 5° C pretreated sections during the chase period was comparable to that observed during the pulse in the 30° C material but the dose/response relationship was flatter. Low temperature sections incorporated a much higher percentage of GA1 uptake into the 2KP fraction (27% at maximum) but the absolute levels of labelling at this temperature were lower than those measured at 30° C. The data are interpreted as showing that 2KP labelling is not a consequence of growth. It must either precede response or be an unconnected concurrent process.  相似文献   

16.
The metabolism of GA29 during seed maturation in Pisum sativum cv. Progress No. 9 was further investigated. [17-13C1]GA29 was metabolised to a GA-catabolite (structure 3), with incorporation of the [13C] label from the GA29 substrate into the GA-catabolite being demonstrated by GC-MS. Quantitation of the GA-catabolite using GC-MS was achieved by adding GA-catabolite, labelled with [18O], to seed extracts as an internal standard. At least 50% conversion of [13C1]GA29 to [13C1]GA-catabolite was demonstrated with the build up of exogenous [13C1]GA-catabolite strictly paralleling the accumulation of native GA-catabolite. These results strongly suggest that conversion of GA29 to the GA-catabolite is a natural metabolic step occurring during the final stages of seed maturation. 25 g per seed of native GA-catabolite was recorded in 37 day old seeds. Some problems encountered in the analysis of extracts containing the GA-catabolite are discussed briefly.Abbreviations BSTFA bis(trifluoromethylsilyl)acetamide - GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatography-mass spectrometry - Me methyl ester - SICM selected ion current monitoring - TMSi trimethylsilyl ether  相似文献   

17.
By combined gas chromatography-mass spectrometry the gibberellin present in suspensors of heart-shaped embryos of Phaseolus coccineus has been identified as Gibberellin A1 (GA1). The amount of GA1 in 2000 suspensors (452 mg), as estimated by gas chromatography. was 4g. The presence of GA1 in suspensors of P. coccineus is discussed in relation to our present knowledge of the occurrence of many gibberellins in developing seeds and immature fruits of the same species.Abbreviations FID flame ionization detector - GA gibberellin - GC gas chromatography - MS mass spectrometry - PGC preparative gas chromatography - Stage A heart-shaped embryo - Stage B cotytedonary embryo - TMS trimethylsilyl  相似文献   

18.
The role and source of gibberellins (GAs) involved in the development of parthenocarpic fruits of Pisum sativum L. has been investigated. Gibberellins applied to the leaf adjacent to an emasculated ovary induced parthenocarpic fruit development on intact plants. The application of gibberellic acid (GA3) had to be done within 1 d of anthesis to be fully effective and the response was concentration-dependent. Gibberellin A1 and GA3 worked equally well and GA20 was less efficient. [3H]Gibberellin A1 applied to the leaf accumulated in the ovary and the accumulation was related to the growth response. These experiments show that GA applied to the leaf in high enough concentration is translocated to the ovary. Emasculated ovaries on decapitated pea plants develop without application of growth hormones. When [3H] GA1 was applied to the leaf adjacent to the ovary a substantial amount of radioactivity accumulated in the growing shoot of intact plants. In decapitated plants, however, this radioactivity was mainly found in the ovary. There it caused growth proportional to the accumulation of CA1. Application of LAB 150978, an inhibitor of GA biosynthesis, to decapitated plants inhibited parthenocarpic fruit development and this inhibition was counteracted by the application of GA3 (either to the fruit, or the leaf adjacent to the ovary, or through the lower cut end of the stem). All evidence taken together supports the view that parthenocarpic pea fruit development on topped plants depends on the import of gibberellins or their precursors, probably from the vegetative aerial parts of the plant.Abbreviations FW flesh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

19.
Reaction of gibberellin A3 (GA3) with carrier-free tritium gas and 5% palladium on calcium carbonate as catalyst gave a complex mixture of products, several of which were isolated and identified. Three of the purified products are the radioactive forms of naturally occurring gibberellins: [3H]GA3 (1), [3H]GA1 (2) and [3H]tetrahydro GA3 (4). Another substance was isolated and tentatively identified as [3H]16,17-dihydro GA3 (3). GLC was used to determine the specific activities of 1 and 2. [3H]GA3 likely arises from palladium catalysed nonspecific exchange of GA3 alkane hydrogen atoms with tritium. [3H]GA1 is also exchange labeled but most of its radioactivity is due to tritium addition to the C-1,2 olefinic bond of GA3.  相似文献   

20.
Gibberellin A5 (GA5), a native GA of immature seeds of Pharbitis nil, was fed to Pharbitis nil cell suspension cultures as [C-l, 3H] GA5 (3.1 Ci/mmol), and its metabolism over a 48 hr period was investigated. Radioactivity in free GA metabolites was 13.1%, with 79.9% in GA glucosyl conjugate-like metabolites. Only 7.0% of the radioactivity remained as [3H] GA5. Tentative identifications were based on comparison with retention times of authentic free GAs and/or glucosyl conjugates after sequential chromatography on Si gel partition column → gradient-eluted C18 HPLC-radiocounting (RC) → isocratic-eluted C18 HPLC-RC, and showed that [3H] GA5 was converted to [3H] GA1 (2%), [3H] GA3 (4%), [3H] GA6 (2%), [3H] GA22 (1%) and their glucosyl conjugates, and also to [3H] GA8 glucoside, and [3H] GA5 glucosyl conjugates. The major conjugate-like substances were [3H] GA1 and [3H] GA3 glucosyl esters, at 15% and 34%, respectively, of the total extractable radioactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号