首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied long-term effects of fertilization with wood ash on biomass, vitality and mycorrhizal colonization of fine roots in three conifer forest stands growing in Vacciniosa turf. mel. (V), Myrtillosa turf. mel. (M) and Myrtillosa turf. mel./Caricoso-phragmitosa (MC) forest types on peat soils. Fertilization trials amounting 5 kg/m2 of wood ash were established 12 years prior to this study. A total of 63 soil samples with roots were collected and analysed. Ectomycorrhizal (ECM) fungi in roots were identified by morphotyping and sequencing of the fungal internal transcribed spacer (ITS) region. In all forest types, fine root biomass was higher in fertilized plots than in control plots. In M forest type, proportion of living fine roots was greater in fertilized plots than in control plots, while in V and MC, the result was opposite. Fifty ECM species were identified, of which eight were common to both fertilized and control plots. Species richness and Shannon diversity index were generally higher in fertilized plots than in control plots. The most common species in fertilized plots were Amphinema byssoides (17.8 %) and Tuber cf. anniae (12.2 %), while in control plots, it was Tylospora asterophora (18.5 %) and Lactarius tabidus (20.3 %). Our results showed that forest fertilization with wood ash has long-lasting effect on diversity and composition of ECM fungal communities.  相似文献   

2.
Summary Various laboratory indices of N and P availability in forest soils correlated poorly among themselves and with on-site ion exchange resin (IER) estimates in both unfertilized and N+P fertilized loblolly pine plantations. IER nutrient availability estimates had greatest within-site variability than laboratory indices. Net nitrification was minimal in laboratory incubation of the mineral soil despite high rates of ammonification. In contrast, IER NO3–N values were usually of the same magnitude as IER NH4–N values. In both fertilized and unfertilized stands, at least one N availability index was negatively correlated with at least one P index. Soil N and P availabilities were generally higher on fertilized plots than on unfertilized plots 3.5 years after fertilization, and IER estimates showed the greatest number of plots with increased levels. The greater ability of the IER method to distinguish between fertilized and unfertilized plots indicated the method was affected by on-site factors that the laboratory methods do not assess.  相似文献   

3.
In this study, we use arepeated-measures analysis to test thehypothesis that soil fertility underpotassium-limited red pine (Pinusresinosa Ait.) stands at the Charles LathropPack Demonstration Forest in Warrensburg, NewYork is increasing toward a steady state thatwas artificially induced in fertilized standsby K-fertilization over 50 years ago. Wemeasured soil K by horizon and added new datato a 53-year database. We examine onemechanism that explains the higher rate of Kaccumulation in unfertilized stands comparedwith fertilized – lateral movement offertilizer K from treated plots to untreated –using the rubidium/potassium reverse tracermethod. Over the past five decades, soil Kconcentrations under both fertilized andunfertilized red pine have increasedsignificantly. The trends under fertilized andunfertilized plots demonstrate the gradualconvergence of soil K under unfertilized plotstoward concentrations in fertilized plots. Five decades after fertilization, treated soilsstill contain greater concentrations ofexchangeable K and lower bulk densities thanunfertilized plots. Analysis of Rb/K ratios inthe forest floor of fertilized and unfertilizedplots confirms the hypothesis that lateraltransport of surface broadcast fertilizer,applied over 50 years ago, extendsapproximately 11–16 m from the edges offertilized plots. The four unfertilized plotsclosest to fertilized plots have beensignificantly affected by inputs of fertilizerK, while the remaining five plots arerelatively unimpacted. Approximately 36% ofthe K in fertilized plots, and 23% of the K inunfertilized plots affected by fertilizermigration were derived directly from thefertilizer applied 5 decades ago, demonstratingthe highly conservative nature of mineralnutrient cycling in aggrading forests.  相似文献   

4.
Hitherto, there are only few studies that have analysed the variation of P contents in individual tree rings to reconstruct fluctuations in soil P availability. Therefore, this pilot study aimed to assess the relationship between changes in P content in tree rings and known changes in soil P availability resulting from fertilization of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) in fertilization trials at two different sites. We compared P contents in single tree rings from fertilized and unfertilized plots formed before and after P fertilization and assessed (1) whether fertilization leads to an immediate increase in P uptake and higher P contents in tree rings formed after fertilization, and (2) whether P is translocated to older tree rings that were formed before fertilization.After application of 70 kg P ha−1, a prompt and extended increase in relative wood P contents could be observed in both Norway spruce and Scots pine. However, only at the Norway Spruce site, this increase could be properly assigned to a P fertilization signal in heartwood rings formed after fertilization. In sapwood rings, however, P fertilization signals were masked by the inherent increase in P content from older towards younger sapwood rings, which was at least one order of magnitude higher than the increase from fertilization. We could not observe a P translocation into older tree rings, which existed as sapwood rings at the time of fertilization.This pilot study underlines the potential of dendrochemistry for reconstructing changes in soil P availability and improves the conceptual basis for further dendrochemical research, not only in fertilized but also in unfertilized forest ecosystems.  相似文献   

5.
To control population of Monochamus beetles that transmit pine wood nematode, Bursaphelenchus xylophilus, a variety of insecticides have been applied to forest ecosystems in Korea. Non-target predatory insects can be directly or indirectly exposed to insecticides. We evaluated potential lethal and sublethal effects of thiacloprid on survival and behavior of carpenter ants, Camponotus japonicus Mayr. Field-collected ants were directly exposed to several food items such as thiacloprid-exposed Monochamus beetles, 10% sugar water with thiacloprid concentrations, and 10% sugar water at group and individual levels. In experiment for groups of individuals, dead beetle bodies generally had possible adverse effects on ants through dietary exposure, because two forager ants were dead or paralysis after they were exposed to thiacloprid-exposed Monochamus beetles. At individual level, dietary exposure to thiacloprid at concentrations of 10 and 50?mg/L was lethal to ants, causing paralysis and impaired walking. Mortality of ant workers was higher in direct or indirect exposure treatments than that in the control. Some ants exposed to thiacloprid showed abnormal behavior within a few days, especially at thiacloprid concentrations of 10 and 50?mg/L. However, some of them sometimes recovered from the abnormal behavior in a day. In consequence, application of thiacloprid in pine forests may disrupt species interaction and foraging behavior of ants, but the effect of thiacloprid through trophallaxis behavior should be further assessed using more extensive colonies composed of queen, workers, brood, and so on.  相似文献   

6.
Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July 1997 following a 7‐year continuous fertilization. We found that although there was no significant difference in total SOC in the top 0–10 cm of the soils between the fertilization plots (5.42±0.18 kg m?2) and the control plots (5.27±0.22 kg m?2), the proportion of the heavy‐fraction organic C in the total SOC was significantly higher in the fertilized plots (59%) than in the control plots (46%) (P<0.05). The annual decomposition rate of fertilized leaf litter was 13% higher than that of the control leaf litter. We also found that fertilization significantly increased microbial biomass (fungi+bacteria) with 952±48 mg kg?1soil in the fertilized plots and 755±37 mg kg?1soil in the control plots. Our results suggest that fertilization in tropical forests may enhance long‐term C sequestration in the soils of tropical wet forests.  相似文献   

7.
Land devoted to plantation forestry (50 million ha) has been increasing worldwide and the genus Eucalyptus is a popular plantation species (14 million ha) for its rapid growth and ability to grow well on a wide range of sites. Fertilization is a common silvicultural tool to improve tree growth with potential effects on stand water use, but the relationship between wood growth and water use in response to fertilization remains poorly quantified. Our objectives in this study were to determine the extent, timing and longevity of fertilization effects on water use and wood growth in a non‐water limited Eucalyptus saligna experimental forest near Hilo, HI. We evaluated the short‐ and long‐term effects of fertilization on water use by measuring sap flux per unit sapwood area, canopy conductance, transpiration per unit leaf area and water‐use efficiency in control and fertilized stands. Short‐term effects were assessed by comparing sap flux before and after fertilizer application. Long‐term effects were assessed by comparing control plots and plots that had received nutrient additions for 5 years. For the short‐term response, total water use in fertilized plots increased from 265 to 487 mm yr?1 during the 5 months following fertilization. The increase was driven by an increase in stand leaf area accompanied by an increase in sap flux per unit sapwood area. Sap flux per unit leaf area and canopy conductance did not differ during the 5 months following fertilizer additions. For the last 2 months of our short‐term measurements, fertilized trees used less water per unit carbon gain (361 compared with 751 kg H2O kg C?1 in control stands). Trees with 5 years of fertilization also used significantly more water than controls (401 vs. 302 mm yr?1) because of greater leaf area in the fertilized stands. Sap flux per unit sapwood area, sap flux per unit leaf area, and canopy conductance did not differ between control and fertilized trees in the long‐term plots. In contrast to the short‐term response, the long‐term response of water use per unit wood growth was not significant. Overall, fertilization of E. saligna at our site increased stand water use by increasing leaf area. Fertilized trees grew more wood and used more water, but fertilization did not change wood growth per unit water use.  相似文献   

8.
Abstract.
  • 1 The densities of insect herbivores in fertilized and unfertilized field plots of goldenrods, Solidago altissima (Compositae), were monitored over a period of 4 years.
  • 2 A total of seventeen insect taxa occurred on the plots over the course of the study, including sap feeders, leaf chewers, leaf miners, leaf gallers and stem gallers with multiple representatives in each of these feeding guilds.
  • 3 Nine of the seventeen taxa significantly increased in density on fertilized plots in at least one year of the study, two taxa showed marginally significant increases on fertilized plots, two significantly decreased in density on fertilized plots in at least one year, and the remaining taxa were unaffected by the fertilizer treatment.
  • 4 The effects of fertilization on the insects were not strongly related to feeding guild; the group of insects that increased on fertilized plots was functionally diverse, and for the most part members of the same guild did not respond to the fertilizer treatment in consistent ways.
  • 5 Differences between fertilized and unfertilized plots were greatest in the fourth year. The insects that showed delayed responses to fertilizer treatment may have been affected by changes in microclimate that developed slowly over the course of the study, suggesting that long-term studies may be necessary to detect effects of host plant stress on insect herbivores.
  相似文献   

9.
Abstract 1 Because of the large numbers within a colony and their aggressive nature, red wood ants (Formica rufa group) have a potential to greatly influence the cold‐temperate forest ecosystem. Wood ants are omnivorous and hunt in trees as well as on the forest floor. 2 A field experiment in a mixed forest in central Sweden was carried out to examine (i) the foraging behaviour of wood ants on the forest floor and (ii) the impact of increased numbers of wood ants on the soil fauna. The foraging behaviour of wood ants was manipulated by excluding the ants from their food resources in the tree canopy, with the intention to increase ant activity on the forest floor. To estimate this activity, the number of trees with foraging ants, the numbers of ants going to and from their nests and the prey carried by home‐running wood ants were determined during the summer period. Pitfall traps were placed in the soil to determine effects on mobile soil invertebrates. 3 When excluded from local trees, wood ants searched other trees further away from the nests rather than searching more intensively for prey on the forest floor. By contrast to the initial hypothesis, more soil‐living prey were caught by ants in the control plots than in the plots where the local trees were not accessible to the wood ants. The proportion of soil‐living to tree‐living prey tended to be greater in the control plots. 4 In the treated plots (no access to the trees), wood ants had a negative effect on the activity of Linyphiidae spiders. There was little effect of wood ants on other soil invertebrates. 5 This study suggests that the role of wood ants as top predators in the forest soil food‐web in central Sweden is limited.  相似文献   

10.
Post-clearcut silvicultural treatments, to improve tree growth and reduce salal (Gaultheria shallon) competition, were established in five different forest blocks on northern Vancouver Island, in 1984. Plots were either left untreated, brushed of competing salal vegetation, fertilized [(250 kg N + 100 kg P) ha-1], or brushed + fertilized. Three of these blocks were revisited 13 years later, in the summer of 1997, and various chemical, biochemical and microbial parameters were measured in forest floor humus samples to determine long-term effects of treatments on nutritional site quality. Brushing resulted in lower humus pH and extractable base cations, whereas fertilization increased Bray-extractable P. Over a 20-week aerobic incubation, significantly more N was mineralised in humus from fertilized plots than from brushed plots. Over a 14-d anaerobic incubation, significantly more N was mineralised in humus from the fertilized treatment than other treatments. Similarly, gross transformation rates of NH4 +and NO3 -, measured by 15N-dilution, were higher in humus from the fertilized treatment than other treatments. Ecophysiological indices of microbial communities (basal respiration, specific death rate, metabolic quotient, and energy deficiency index), derived by humus respirometry, suggested that there was higher available C in fertilized and brushed + fertilized treatments than in the brushed and control treatments. Total microbial biomass was equal to C-limited microbial biomass, which further confirmed that available C was the growth-limiting factor for microbial communities in all treatments. The prokaryotic fractions of microbial biomass in all treatments were approximately equal (≈ 65%). PCA ordination of microbial communities, based on C source utilisation patterns, showed a distinct clustering of humus samples taken from one of the sites. Within the cluster of samples taken from the other two sites, samples from fertilized plots scored separately from those from control plots. In salal foliage, concentrations of condensed tannins were higher in brushed and control plots than in fertilized and brushed + fertilized plots. In spite of other studies that have reported increased tree height following fertilization and/or removal of salal, results of the present study suggest improvement in nutritional site quality occurs only with fertilization, whereas brushing may in fact be detrimental. The long-term growth of hemlock observed in fertilized plots may be the result of changes to key ecosystem structures and processes brought about by increased speed of succession and accelerated canopy closure. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
American sycamore ( Platanus occidentalis L.) seedlings were grown in the field under different urea-nitrogen fertilization regimes to identify physiological variables that characterize the growth response. Treatments included fertilization at the beginning of the growing season with 50, 150, 450 kg N ha−1, fertilization 3 times each at 37.5 kg N ha−1 and unfertilized control. The greatest aboveground biomass accumulation (3× that of control) occurred in plots fertilized with 450 kg N ha−1, but nearly as much growth occurred when 37.5 kg N ha−1 was added periodically. Photosynthesis, chlorophyll concentrations and growth increased rapidly after the midseason application of 37.5 kg N ha−1 but not after the late-season application. Although nitrogen fertilization increased leaf area per plant, leaf nitrogen concentration did not differ between treatments. There was no evidence to indicate that fertilization extended the physiologically active season or increased susceptibility to drought or cold. Sycamore leaves accumulated sucrose and mannose in response to water stress in all treatments. Photosynthetic pigment concentrations and net photosynthetic rate were the most sensitive indicators of growth response to nitrogen fertilization in the first growing season. Careful timing (based on physiological indicators) of low level applications of nitrogen fertilizer can optimize growth.  相似文献   

12.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

13.
The influence of site fertility on soil microbial biomass and activity is not well understood but is likely to be complex because of interactions with plant responses to nutrient availability. We examined the effects of long-term (8 yr) fertilization and litter removal on forest floor microbial biomass and N and C transformations to test the hypothesis that higher soil resource availability stimulates microbial activity. Microbial biomass and respiration decreased by 20–30 % in response to fertilization. Microbial C averaged 3.8 mg C/g soil in fertilized, 5.8 mg C/g in control, and 5.5 mg C/g in litter removal plots. Microbial respiration was 200 µg CO2-C g–1 d–1 in fertilized plots, compared to 270 µg CO2-C g–1 d–1 in controls. Gross N mineralization and N immobilization did not differ among treatments, despite higher litter nutrient concentrations in fertilized plots and the removal of substantial quantities of C and N in litter removal plots. Net N mineralization was significantly reduced by fertilization. Gross nitrification and NO3 immobilization both were increased by fertilization. Nitrate thus became a more important part of microbial N cycling in fertilized plots even though NH4 + availability was not stimulated by fertilization.Soil microorganisms did not mineralize more C or N in response to fertilization and higher litter quality; instead, results suggest a difference in the physiological status of microbial biomass in fertilized plots that influenced N transformations. Respiration quotients (qCO2, respiration per unit biomass) were higher in fertilized plots (56 µg CO2-C mg C–1 d–1) than control (48 µg CO2-C mg C–1 d –1) or litter removal (45 µg CO2-C mg C–1 d–1), corresponding to higher microbial growth efficiency, higher proportions of gross mineralization immobilized, and lower net N mineralization in fertilized plots. While microbial biomass is an important labile nutrient pool, patterns of microbial growth and turnover were distinct from this pool and were more important to microbial function in nitrogen cycling.  相似文献   

14.
Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA), with little change in either aboveground plant respiration (APR) or GPP. Alternatively, increases in nutrient supply may increase GPP, with the quantity of GPP allocated aboveground increasing more steeply than the quantity of GPP allocated belowground. To examine the effects of an elevated nutrient supply on the C allocation patterns in forests, we determined whole‐ecosystem C budgets in unfertilized plots of Eucalyptus saligna and in adjacent plots receiving regular additions of 65 kg N ha?1, 31 kg P ha?1, 46 kg K ha?1, and macro‐ and micronutrients. We measured the absolute flux of C allocated to the components of GPP (ANPP, TBCA and APR), as well as the fraction of GPP allocated to these components. Fertilization dramatically increased GPP. Averaged over 3 years, GPP in the fertilized plots was 34% higher than that in the unfertilized controls (3.95 vs. 2.95 kg C m?2 yr?1). Fertilization‐related increases in GPP were allocated entirely aboveground – ANPP was 85% higher and APR was 57% higher in the fertilized than in the control plots, while TBCA did not differ significantly between treatments. Carbon use efficiency (NPP/GPP) was slightly higher in the fertilized (0.53) compared with the control plots (0.51). Overall, fertilization increased ANPP and APR, and these increases were related to a greater GPP and an increase in the fraction of GPP allocated aboveground.  相似文献   

15.
In many environments land use intensification is likely to result in a decrease in species richness and in an increase in eutrophication. Although the importance of both factors for higher trophic levels such as insect herbivores is well documented, their impact has rarely been studied in combination. Herbivorous insects have a strong impact on the functioning of ecosystems and it is therefore important to understand how they are affected by eutrophication in high or low diversity environments.We used a grassland biodiversity experiment to investigate the combined effect of fertilization and plant diversity loss on the fitness of the generalist grasshopper Chorthippus parallelus by rearing grasshopper nymphs for four weeks in cages on unfertilized or fertilized (NPK) subplots across a species richness gradient from 1 to 60 plant species. Survival, the number of oothecae, body mass and the number of hatchlings were measured separately for each cage. Plant diversity had no effect on any of the grasshopper fitness measures, neither in unfertilized nor in fertilized plots. NPK-fertilization reduced grasshopper survival but increased body mass of males and reproductive success of the surviving females. Fertilization effects were not mediated by plant community structure, productivity or composition, suggesting that higher food plant quality was one of the main drivers. There was no interaction between plant diversity and fertilization on any of the measures. In conclusion, an increase in eutrophication, in both species-rich and species-poor grasslands, could lead to higher reproductive success and therefore higher abundances of herbivorous insects including insect pests, with fertilization effects dominating plant diversity effects.  相似文献   

16.
The shoot tip-galling wasp Tetramesa romana Walker (Hymenoptera: Eurytomidae) has been released for biological control of giant reed or arundo (Arundo donax L.) (Poaceae), an invasive grass in the USA and Mexico. The role of urea fertilization to improve plant-based mass-rearing was examined. In a greenhouse study, rhizomes were fertilized with urea pellets at rates equivalent to 1000 kg (low), 2000 kg (moderate), and 4000 (high) kg N per ha–1. Total nitrogen content of ungalled stems was significantly 0.60–0.65% higher under low and moderate fertilization compared to unfertilized pots, and shoot water content was elevated 3–4% at all urea levels. Moderate fertilization significantly (by 1.4-fold) increased the relative growth rate of all shoots in pots, but did not affect final dry biomass. Fertilization did not affect number and duration of probing events by females. The percentage of shoots colonized by wasps that were galled, progeny production per shoot and per female, and emergent wasp size were not affected. However, average generation time (adult to adult) of emergent wasps was 4–5 days shorter on shoots in pots under moderate and high urea fertilization. After a four-week wasp emergence period, only 3–9% of progeny remained in fertilized shoots, while 21% of progeny remained inside unfertilized shoots. In field plots, fertilization did not affect gall density per m shoot length or per female released. Urea fertilization increased the efficiency of greenhouse rearing of the arundo wasp and availability of adults for release, even without direct effects on gall production.  相似文献   

17.
Abstract.
  • 1 Juveniles of the Australian lycaenid butterfly, Jalmenus evagorus (Donovan), secrete to ants a solution of sugars and amino acids, primarily serine. The attendant ants protect the larvae and pupae from parasites and predators.
  • 2 The effect of caterpillar nutrition on the defence provided by ants was investigated. Potted food plants of Acacia decurrens were either given water containing nitrogenous fertilizer or were given water alone. Fertilized plants had a higher nitrogen content than unfertilized plants.
  • 3 Fifth instar larvae of J.evagoras feeding on fertilized plants attracted a larger ant guard than those feeding on unfertilized plants. In the absence of caterpillars, ants were not differentially attracted to fertilized and unfertilized plants.
  • 4 In the presence of ants, over a 10-day period, larvae on fertilized plants survived better than larvae on unfertilized plants. In the absence of ants larvae survived equally on fertilized and unfertilized plants. It is concluded that larvae on fertilized plants attracted a larger ant guard, and thereby survived better, than larvae on unfertilized plants.
  • 5 Adult females of J. evagoras preferred to lay egg batches on fertiized, rather than unfertilized plants, but they did not lay larger egg batches.
  相似文献   

18.
Management practices favoring conifers at the expense of deciduous tree species, and the eradication of deciduous trees, especially aspen Populus tremula , from managed forests have resulted in population declines in several species in Fennoscandia. In addition to species depending on decaying wood of deciduous trees, earlier evidence suggests that leaf litter, especially that of aspen, is favored by many carabid species. We ran a four-year experiment in order to compare carabid assemblages of unchanged forest floor with artificially created leaf-litter plots in central Finland. A total of 18 plots (5 m in diameter) were established in three forest stands without aspen a few kilometers apart. Each stand had 3 litter plots (litter added) and 3 control plots, Pre-treatment samples were compared with those collected alter litter addition.
The litter addition affected the carabid-assemblage structure by increasing the catches of some species and decreasing the catch of one species. The number of carabid species was similar in control and litter plots. The litter effect was smaller than variation among forest stands and year-lo-year fluctuations. There was a strong temporal constancy among the plots: 'rich' plots remained 'rich' from year to year and similarly, 'poor' plots remained 'poor'.
The significant influence of leaf litter on carabid abundance can be attributable to both abiotic factors (microenvironmental conditions, especially humidity and temperature), and biotic ones (changes in niche structure, improved food supply). Leal litter seems to have an effect on carabid distribution patterns, and deciduous trees scattered among conifers are likely to be of importance on carabid fauna in boreal forests.  相似文献   

19.
The activity of fructose 1,6-bisphosphatase [EC 3.1.3.11] in sea urchin eggs decreased following fertilization. During the first 30 min after fertilization, the activity was considerably lower than that in unfertilized eggs, but by 30 min the activity was similar to that in unfertilized eggs. The enzyme activity in fertilized eggs, estimated in the presence of EGTA, was similar to that in unfertilized eggs. The activity in unfertilized eggs was reduced by Ca2+ at concentrations between 1 X 10(-5) M and 5 X 10(-3) M. Immediately after fertilization, the enzyme was insensitive to concentrations of Ca2+ lower than 2 X 10(-4) M, but the Ca2+ sensitivity of the enzyme recovered 30 min after fertilization. In the presence of Ca2+ at concentrations higher than 2 X 10(-4) M, the enzyme activity in unfertilized eggs was similar to that in fertilized eggs. Mg2+ restored the Ca2+-induced inhibition of fructose 1,6-bisphosphatase. 3-Phosphoglycerate and citrate hardly affected the enzyme activity, and AMP at concentrations above 10 mM inhibited it.  相似文献   

20.
研究湘南红壤丘陵区11种植被类型下施肥区域和未施肥区域红壤剖面(0~100 cm)pH及交换性酸的变化特征.结果表明: 施肥区域0~60 cm土层土壤的pH大小顺序为茶园<花生地<柑橘园,交换性酸含量大小为花生地≤柑橘园<茶园;种植茶树和花生后,表层(0~40 cm)相对底层(60~100 cm)均产生酸化,pH分别降低0.55和0.17,而种植柑橘后,土层间无显著差异.未施肥区域中,植被恢复区0~40 cm土层pH大小为白檵木林≤湿地松林<板栗园<白茅草地,交换性酸含量大小为白茅草地<板栗园<白檵木林≤湿地松林;天然林区0~20 cm土层中次生林和油茶林的pH均显著低于马尾松林0.34和0.20个单位,马尾松林和次生林交换性酸含量显著低于油茶林.与裸地相比,未施肥区域除白茅草地外,其他植被类型均加速了表层土壤酸化,其中天然次生林酸化最严重,pH降低0.52;未施肥区域除天然次生林外,其他植被类型均提高了深层土壤pH,其中白茅草地提升效果最显著,pH升高0.43.无论施肥区域还是未施肥区域,整体上随着土层深度的增加,植被类型或施肥对土壤酸度的影响越来越小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号