首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our previous study demonstrated the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in transporting bicarbonate that is necessary for sperm capacitation; however, whether its involvement is direct or indirect remains unclear. The present study investigated the possibility of a Cl-/HCO3- exchanger (solute carrier family 26, number 3 [SLC26A3]) operating with CFTR during guinea pig sperm capacitation. Incubating sperm in media with various concentrations of Cl- resulted in varied percentages of capacitated sperm in a concentration-dependent manner. Depletion of Cl-, even in the presence of HCO3-, abolished sperm capacitation and vice versa, indicating the involvement of both anions in the process. Capacitation-associated HCO3--dependent events, including increased intracellular pH, cAMP production, and protein tyrosine phosphorylation, also depend on Cl- concentrations. Similar Cl- dependence and inhibitor sensitivity were observed for sperm-hyperactivated motility and for sperm-egg fusion. The expression and localization of CFTR and SLC26A3 were demonstrated using immunostaining and Western blot analysis. Taken together, our results indicate that Cl- is required for the entry of HCO3- that is necessary for sperm capacitation, implicating the involvement of SLC26A3 in transporting HCO3-, with CFTR providing the recycling pathway for Cl-.  相似文献   

2.
Reduced gastrointestinal HCO3- secretion contributes to malabsorption and obstructive syndromes in cystic fibrosis. The apical HCO3- transport pathways in these organs have not been defined. We therefore assessed the involvement of apical Cl-/HCO3- exchangers and anion conductances in basal and cAMP-stimulated duodenal HCO3- secretion. Muscle-stripped rat and rabbit proximal duodena were mounted in Ussing chambers, and electrical parameters, HCO3- secretion rates, and 36Cl-, 22Na+, and 3H+ mannitol fluxes were assessed. mRNA expression levels were measured by a quantitative PCR technique. Removal of Cl- from or addition of 1 mM DIDS to the luminal perfusate markedly decreased basal HCO3- secretion but did not influence the HCO3- secretory response to 8-bromo-cAMP, which was inhibited by luminal 5-nitro-2-(3-phenylpropylamino)-benzoate. Bidirectional 22Na+ and 36Cl- flux measurements demonstrated an inhibition rather than a stimulation of apical anion exchange during cAMP-stimulated HCO3- secretion. The ratio of Cl- to HCO3- in the anion secretory response was compatible with both Cl- and HCO3- being secreted via the CFTR anion channel. CFTR expression was very high in the duodenal mucosa of both species. We conclude that in rat and rabbit duodena, an apical Cl-/HCO3- exchanger mediates a significant part of basal HCO3- secretion but is not involved in the HCO3- secretory response to cAMP analogs. The inhibitor profile, the strong predominance of Cl- over HCO3- in the anion secretory response, and the high duodenal CFTR expression levels suggest that a major portion of cAMP-stimulated duodenal HCO3- secretion is directly mediated by CFTR.  相似文献   

3.
Bestrophin-1 (Best1) is a Cl(-) channel that is linked to various retinopathies in both humans and dogs. Dysfunction of the Best1 Cl(-) channel has been proposed to cause retinopathy because of altered Cl(-) transport across the retinal pigment epithelium (RPE). In addition to Cl(-), many Cl(-) channels also transport HCO3(-). Because HCO3(-) is physiologically important in pH regulation and in fluid and ion transport across the RPE, we measured the permeability and conductance of bestrophins to HCO3(-) relative to Cl(-). Four human bestrophin homologs (hBest1, hBest2, hBest3, and hBest4) and mouse Best2 (mBest2) were expressed in HEK cells, and the relative HCO3(-) permeability (P HCO3/PCl) and conductance (G HCO3/GCl) were determined. P HCO3/PCl was calculated from the change in reversal potential (Erev) produced by replacing extracellular Cl(-) with HCO3(-). hBest1 was highly permeable to HCO3(-) (P HCO3)/PCl = approximately 0.44). hBest2, hBest4, and mBest2 had an even higher relative HCO3(-) permeability (P HCO3/PCl = 0.6-0.7). All four bestrophins had HCO3(-) conductances that were nearly the same as Cl(-) (G HCO3/GCl = 0.9-1.1). Extracellular Na+ did not affect the permeation of hBest1 to HCO3(-). At physiological HCO3(-) concentration, HCO3(-) was also highly conductive. The hBest1 disease-causing mutations Y85H, R92C, and W93C abolished both Cl(-) and HCO3(-) currents equally. The V78C mutation changed P HCO3/PCl and G HCO3/GCl of mBest2 channels. These results raise the possibility that disease-causing mutations in hBest1 produce disease by altering HCO3(-) homeostasis as well as Cl(-) transport in the retina.  相似文献   

4.
5.
精子获能中HCO-3介导的信号转导途径   总被引:2,自引:0,他引:2  
获能是哺乳动物精子受精前必须经历的一个生理过程。获能涉及精子膜性质的改变、Ca2 通道活化、胞内cAMP增加,以及蛋白酪氨酸磷酸化(PTP)等。实验证明,HCO3-在该过程中起重要作用。本文旨在介绍HCO3-介导的cAMP信号转导途径。  相似文献   

6.
Recent reports have provided evidence for the presence of amino acid neurotransmitter receptor/chloride channels in human and porcine spermatozoa and their involvement in the acrosome reaction (AR). In this work we investigated whether a glycine receptor (GlyR) was present in golden hamster sperm, and whether it had a role in the hamster AR. The neuronal GlyR agonist glycine, stimulated in a dose-dependent manner, the AR of hamster spermatozoa previously capacitated for at least 3 hr. This stimulation was completely inhibited by 50 microM (+)-bicuculline and by concentrations of strychnine as low as 10-50 nM; both agents are antagonists of neuronal GlyR when used at the concentrations reported in this study. beta-Alanine, another agonist of the neuronal GlyR, also stimulated the AR. The AR-stimulatory effect of this compound was completely abolished by 50 nM strychnine. The inhibitory effect of strychnine on the glycine-induced hamster sperm AR was completely overcome by subsequent treatment with the calcium ionophore ionomycin, demonstrating that the strychnine effect was specific for GlyR. Additional binding studies with (3)[H]-strychnine, the typical radioligand used to detect GlyR in several cells, demonstrated for the first time the presence of specific binding sites for strychnine in the hamster spermatozoa. Interestingly, binding increased during in vitro capacitation, particularly in those sperm suspensions showing high percentages of AR. Taken together these results strongly suggest the presence of a GlyR in the hamster spermatozoa, with a role in the AR when activated.  相似文献   

7.
8.
9.
Cl-/HCO3- exchange at the apical membrane of Necturus gallbladder   总被引:7,自引:5,他引:2       下载免费PDF全文
The hypothesis of Cl-/HCO3- exchange across the apical membrane of the epithelial cells of Necturus gallbladder was tested by means of measurements of extracellular pH (pHo), intracellular pH (pHi), and Cl- activity (alpha Cli) with ion-sensitive microelectrodes. Luminal pH changes were measured after stopping mucosal superfusion with a solution of low buffering power. Under control conditions, the luminal solution acidifies when superfusion is stopped. Shortly after addition of the Na+/H+ exchange inhibitor amiloride (10(-3) M) to the superfusate, alkalinization was observed. During prolonged (10 min) exposure to amiloride, no significant pHo change occurred. Shortly after amiloride removal, luminal acidification increased, returning to control rates in 10 min. The absence of Na+ in the superfusate (TMA+ substitution) caused changes in the same direction, but they were larger than those observed with amiloride. Removal of Cl- (cyclamate or sulfate substitution) caused a short-lived increase in the rate of luminal acidification, followed by a return to control values (10-30 min). Upon re-exposure to Cl-, there was a transient reduction of luminal acidification. The initial increase in acidification produced by Cl- removal was partially inhibited by SITS (0.5 mM). The pHi increased rapidly and reversibly when the Cl- concentration of the mucosal bathing solution was reduced to nominally 0 mM. The pHi changes were larger in 10 mM HCO3-Ringer's than in 1 mM HEPES-Ringer's, which suggests that HCO3- is transported in exchange for Cl-. In both HEPES- and HCO3-Ringer's, SITS inhibited the pHi changes. Finally, intracellular acidification or alkalinization (partial replacement of NaCl with sodium propionate or ammonium chloride, respectively) caused a reversible decrease or increase of alpha Cli. These results support the hypothesis of apical membrane Cl-/HCO3- exchange, which can be dissociated from Na+/H+ exchange and operates under control conditions. The coexistence at the apical membrane of Na+/H+ and Cl-/HCO3- antiports suggests that NaCl entry can occur through these transporters.  相似文献   

10.
The effect of serum, phorbol-12-myristate-13-acetate (TPA), and forskolin on the activity Na+/H+ antiport and the Na(+)-coupled and Na(+)-independent Cl-/HCO3- antiport was studied in Vero cells by measuring 22Na+ and 36Cl- fluxes and changes in cytosolic pH (pHi). The Na(+)-independent Cl-/HCO3- antiport, which acts as an acidifying mechanism, is strongly pH-sensitive. In serum-starved cells it is activated at alkaline cytosolic pH, with a half-maximal activity at pHi approximately 7.20. Incubation with serum increased the activity of the Na(+)-independent Cl-/HCO3- antiport at pHi values from 6.8 to 7.2. Thus serum appeared to alter the pHi sensitivity of this antiporter such that the threshold value for activation of the antiport was shifted to a more acidic value. Na+/H+ antiport was somewhat stimulated initially by addition of serum, but further incubation with serum (greater than 45 min) decreased its activity. The activity of the Na(+)-coupled Cl-/HCO3- antiport, which is the major alkalinizing antiport in Vero cells, was not altered by short-term incubation with serum (less than 10 min) but decreased after prolonged incubation (greater than 45 min). Our findings with TPA and forskolin indicate that the effect of serum is partly mediated by the protein kinase C pathway, whereas the cyclic adenosine monophosphate pathway does not appear to play an important role. The net effect of serum on the pHi-regulating antiports was a slight decrease in intracellular pH.  相似文献   

11.
The minute by minute net water movement (Jw) was measured, in the human distal colon in vitro, simultaneously with the transepithelial potential difference (PD) and short circuit current (SCC) with the following results: (1) An absorptive Jw (+0.36 +/- 0.04 microliters/(min.cm2)) was observed, in 21 cases, when the colon was mounted between two identical standard salines (Na+ 140, Cl- 110, HCO3- 25 mequiv./L) and in the presence of a hydrostatic pressure gradient (delta P) of 13 cm of H2O (mucosal side positive). (2) This absorptive Jw was a linear function of the applied delta P or the imposed osmotic transepithelial gradient (Phydr = 0.22 +/- 0.03 cm/s; Posm = 0.0020 +/- 0.005 cm/s; n = 6). (3) A fraction of this Jw was independent of the presence of any hydrostatic, osmotic or chemical gradient while associated with a serosal side positive and partially amiloride sensitive PD (11.3 +/- 1.8 mV). (4) Both Jw and PD were dependent on the presence of Na+ in the incubating media. (5) Replacement of Cl- by SO(4)2- did not change the absorptive Jw, but increased the observed PD and the transepithelial resistance. (6) HCO3- removal strongly reduced the SCC and PD together with an important increase in Jw. Unexpectedly, other 9 colon fragments spontaneously showed a secretory Jw when mounted between two identical standard salines (-0.55 +/- 0.11 microliters/(min.cm2). In these experiments it was observed that: (7) The tissue moved water against the imposed delta P (13 cm of H2O), while the associated PD (+11.9 +/- 2.1 mV) was similar to the one observed in absorptive fragments. (8) As in the case of absorptive preparations, PD, SCC and the transport associated Jw fell to zero in the absence of Na+. (9) When SO(4)2- replaced Cl-, secretory Jw reversed to absorptive Jw, together with an increase in PD and resistance. In both absorptive and secretory preparations it was finally observed that: (10) norepinephrine (5 x 10(-6) M) decreased SCC and increased the absorptive Jw in a tightly parallel manner (half-times for each response: SCC = 11.4 +/- 2.1 min; Jw = 11.4 +/- 2.0 min, n = 4) and (11) 8-Br cyclic AMP (10(-3) M) increased SCC while simultaneously decreasing the absorptive Jw. It is concluded that the observed Jw in the distal human colon in vitro results from the complex addition of osmotic, hydrostatic and transport associated driving forces. The transport-associated Jw has absorptive and secretory components.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
1. The effect of thiocyanate on chloride and sodium fluxes across the gill was studied in the goldfish Carassius auratus. At low external chloride concentrations, addition of SCN- to the bathing solution markedly inhibited chloride influx and efflux, the net flux being reversed, SCN- injection was without effect. SCN- had no effect on sodium fluxes when injected or added to the external medium. 2. The inhibition of chloride influx by SCN- was of a mixed type involving simultaneous modifications of the affinity constant of the carrier for Cl- and of the maximal Cl- influx. The affinity constant of the carrier for SCN- was 10 times lower than that for Cl-. 3. The gill of the goldfish was found to be practically impermeable to SCN-. 4. In the presence of external SCN-, the Cl-/HCO3- exchange was reversed: Cl- was lost against HCO3- which is absorbed. This suggests an obligatory exchange. 5. Exchange diffusion for chloride was also demonstrated. 6. A kinetic model is proposed to explain chloride and bicarbonate transport across the gill of Carassius auratus.  相似文献   

13.
14.
During the ascidian sperm reaction the single large cylindrical mitochondrion which lies next to the nucleus in the head swells, becomes spherical, and migrates along the tail to be lost when it reaches the end. This sequence is initiated by eggs, egg water, high pH, low Na+, or the ionophore X537A. Accompanying the sperm reaction induced by low Na+ are H+ efflux and Ca2+ influx in a ratio of near 100:1 as determined by 45Ca2+ and atomic absorption analysis. Simultaneous pH and Ca2+ electrode measurements suggest that the movement of H+ begins 10–13 sec before the movement of Ca2+. Ca2+ uptake can be inhibited by verapamil without affecting H+ efflux or the sperm reaction. Acid release and Ca2+ uptake are proportional to the initial pH of the medium when the reaction is triggered by high pH. Acid release initiated by low Na+ is proportional to Ca2+ concentrations above 2 mM. H+ and Ca2+ movements differ in magnitude, kinetics, and inhibition by verapamil, thus suggesting that H+ is probably not exchanged for Ca2+. Instead we propose that loss of H+ triggers the uptake of Ca2+, which initiates the sperm reaction.  相似文献   

15.
Anion exchanger proteins facilitate the exchange of bicarbonate for chloride across the plasma membrane. When bicarbonate combines with a proton it undergoes conversion into CO2, either spontaneously, or catalyzed by carbonic anhydrase enzymes. The CO2/HCO3- equilibrium is the body’s central pH buffering system. Rapid bicarbonate transport across the plasma membrane is essential to maintain cellular and whole body pH, to dispose of metabolic waste CO2, and to control fluid movement in our bodies. Cl-/HCO3- exchangers are found in two distinct gene families: SLC4A and SLC26A. Differences in the tissue distribution, electrogenicity, and regulation of the specific anion exchanger proteins allow for precise regulation of bicarbonate transport throughout the human body. This review provides a look into the structural and functional features that make this family of proteins unique, as well as the physiological significance of the different anion exchangers.  相似文献   

16.
The role of an anion exchange pathway in modulating intracellular pH (pHi) under steady-state and alkaline load conditions was investigated in confluent monolayers of rat type II alveolar epithelial cells using the pH-sensitive fluorescent probe 2'-7'-biscarboxy-ethyl-5,6-carboxylfluorescein. Under steady-state conditions in the presence of 25 mM HCO3-, 5% CO2 at pHo 7.4, pHi was 7.32 in a Na+-replete medium and 7.33 in the absence of Na+. Steady-state pHi was 7.19 in a nominally HCO3(-)-free medium at pHo 7.4, and 7.52 in a Cl(-)-free medium, with both values significantly different from that obtained in the presence of both HCO3- and Cl-. Monolayers in which pHi was rapidly elevated by removal of HCO3-/CO2 from the bathing medium demonstrated an absolute requirement for Cl- to recover toward base-line pHi. The Km of Cl- for the external site of the exchange pathway was 11 +/- 1 mM. Recovery of pHi from the alkaline load in the presence of Cl- was inhibited 60% by the stilbene derivative 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Removal of Cl- from the medium of cells bathed in HCO3-/CO2 resulted in a rapid increment in pHi which returned to base line when Cl- was reintroduced into the bathing medium. In contrast, pHi was not perturbed by removal or addition of Cl- to monolayers bathed in a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-buffered medium, indicating that HCO3- was the preferred species for transport. Recovery of pHi from an alkaline load was not affected by the presence or absence of Na+. These findings define the transport pathway as Na+-independent Cl-/HCO3- exchange. This pathway contributes importantly to determining resting pHi of pneumocytes and enables the cell to recover from an alkaline load.  相似文献   

17.
The basolateral Cl(-)/HCO(3)(-) exchanger in parietal cells plays an essential role in gastric acid secretion mediated via the apical gastric H(+)-K(+)-ATPase. Here, we report the identification of a new Cl(-)/HCO(3)(-) exchanger, which shows exclusive expression in mouse stomach and kidney, with expression in the stomach limited to the basolateral membrane of gastric parietal cells. Tissue distribution studies by RT-PCR and Northern hybridizations demonstrated the exclusive expression of this transporter, also known as SLC26A7, to stomach and kidney, with the stomach expression significantly more abundant. No expression was detected in the intestine. Cellular distribution studies by RT-PCR and Northern hybridizations demonstrated predominant localization of SLC26A7 in gastric parietal cells. Immunofluorescence labeling localized this exchanger exclusively to the basolateral membrane of gastric parietal cells, and functional studies in oocytes indicated that SLC26A7 is a DIDS-sensitive Cl(-)/HCO(3)(-) exchanger that is active in both acidic and alkaline pH(i). On the basis of its unique expression pattern and function, we propose that SLC26A7 is a basolateral Cl(-)/HCO(3)(-) exchanger in gastric parietal cells and plays a major role in gastric acid secretion.  相似文献   

18.
Osteoclast resorb bone in an acid compartment formed by the bone-attachment site. The low pH of the resorption compartment provides a lysosome-like milieu suitable for acid proteases to degrade collagen. Solubilization of the hydroxyapatite that makes up bone mineral consumes about 2 moles of protons per moles of calcium dissolved, requiring a massive proton flux to maintain a low pH in the resorption compartment. In order to determine how the osteoclast maintains a physiological cytoplasmic pH while secreting massive amounts of acid, we studied the intracellular pH of osteoclasts using esterified fluorescein derivatives while controlling the electrolyte composition of the medium. The principal finding is that osteoclasts have a high capacity for chloride/bicarbonate exchange which enables them to maintain normal intracellular pH in the face of a large loading of base equivalents. Thus, the overall process of proton secretion during bone resorption is similar to the polarized acid elimination by renal epithelia, involving a proton pump on one surface of the cell, and a Cl-/HCO3- exchange to maintain cytoplasmic pH.  相似文献   

19.
Upon stimulation, the gastric parietal cell secretes a large quantity of isotonic HCl across its apical membrane which must be accompanied by the generation of base in the cytosol. The ability of this cell type to regulate cytosolic pH (pHi) was examined as a function of stimulation of acid secretion by histamine or forskolin. The pHi was estimated from the change of fluorescence of the trapped dye, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein-bis-carboxyethylcarbo xy fluorescein in a purified cell suspension of rabbit parietal cells. Stimulation of the cell suspension raised pHi by an average of 0.13 +/- 0.038 pH units. The H+,K+-ATPase inhibitor, SCH28080 (2-methyl-8-[phenyl-methoxy]-imidazo-(1,2)-pyridine-3-acetonitrile) had only a small effect on the increase of pHi, therefore, was largely independent of H+,K+-ATPase activity. In Na+-free medium, where Na+/H+ exchange would be absent, the rise of pHi was only 0.03 pH units. This increase was blocked by SCH28080, showing that this small increment was the result of acid secretion. In Na+-containing medium, 90% of the increase was inhibited by an inhibitor of Na+/H+ exchange, dimethyl amiloride (DMA). This compound also blocked changes in pHi due to changes in extracellular Na+. Accordingly, most of the change in pHi upon stimulation of acid secretion by histamine and forskolin is due to activation of Na+/H+ exchange in the parietal cell basal-lateral membrane. The addition of DMA to stimulated, but not resting cells, gave a rapid acidification that was blocked by inhibition of anion exchange by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), showing that anion exchange was also activated by stimulation. In single cell recording, canalicular and cytosolic pH were monitored simultaneously using 9-amino acridine and dimethyl carboxyfluorescein, respectively. Cytosolic alkalinization correlated with acid accumulation in the secretory canaliculus until a set point was reached. Thereafter, acidification continued without further change in pHi. To determine the role of Na+/H+ and Cl-/HCO3- exchange in acid secretion, Cl(-)-depleted cells were suspended in medium containing 40 mM Cl-. DMA and DIDS each blocked acid secretion by about 40%, but in combination, acid secretion was blocked by more than 90%. Thus, basal-lateral Na+/H+ and Cl-/HCO3- exchange activities are necessary for acid secretion across the apical membrane of the parietal cell.  相似文献   

20.
The Na(+)-driven Cl(-)/HCO(3)(-) exchanger is an important regulator of intracellular pH in various cells, but its molecular basis has not been determined. We show here the primary structure, tissue distribution, and functional characterization of Na(+)-driven chloride/bicarbonate exchanger (designated NCBE) cloned from the insulin-secreting cell line MIN6 cDNA library. The NCBE protein consists of 1088 amino acids having 74, 72, and 55% amino acid identity to the human skeletal muscle, rat smooth muscle, and human kidney sodium bicarbonate cotransporter, respectively. The protein has 10 putative membrane-spanning regions. NCBE mRNA is expressed at high levels in the brain and the mouse insulinoma cell line MIN6 and at low levels in the pituitary, testis, kidney, and ileum. Functional analyses of the NCBE protein expressed in Xenopus laevis oocytes and HEK293 cells demonstrate that it transports extracellular Na(+) and HCO(3)(-) into cells in exchange for intracellular Cl(-) and H(+), thus raising the intracellular pH. Thus, we conclude that NCBE is a Na(+)-driven Cl(-)/HCO(3)(-) exchanger that regulates intracellular pH in native cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号