首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limiting microbial threats, maintenance and re-establishment of the mucosal barrier are vital for intestinal homeostasis. Antimicrobial peptides have been recognized as essential defence molecules and decreased expression of these peptides has been attributed to chronic inflammation of the human intestinal mucosa. Recently, pluripotent properties, including stimulation of proliferation and migration have been suggested for a number of antimicrobial peptides. However, it is currently unknown, whether the human beta-defensin 2 (hBD-2) in addition to its known antimicrobial properties has further effects on healing and protection of the intestinal epithelial barrier. Caco-2 and HT-29 cells were stimulated with 0.1-10 microg/ml hBD-2 for 6-72 h. Effects on cell viability and apoptosis were monitored and proliferation was quantified by bromo-deoxyuridine incorporation. Migration was quantified in wounding assays and characterized by immunohistochemistry. Expression of mucins was determined by quantitative PCR and slot-blot analysis. Furthermore, anti-apoptotic capacities of hBD-2 were studied. Over a broad range of concentrations and stimulation periods, hBD-2 was well tolerated by IECs and did not induce apoptosis. hBD-2 significantly increased migration but not proliferation of intestinal epithelial cells. Furthermore, hBD-2 induced cell line specific the expression of mucins 2 and 3 and ameliorated TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. In addition to its known antimicrobial properties, hBD-2 might have further protective effects on the intestinal epithelium. Results of this in vitro study suggest, that hBD-2 expression may play a dual role in vivo, i.e. in impaired intestinal barrier function observed in patients with inflammatory bowel disease.  相似文献   

2.
Public health of human beings is threatened by superbugs. Novel human beta‐defensins, which contribute to host defense against pathogen invasion and innate immune protection, might be a potent natural candidate pool for new antibiotic lead screening. In the present work, we successfully expressed and purified a novel human beta‐defensin, DEFB120, using the IMPACT‐TWIN system in Escherichia coli and identified the purified homogeneous proteins using MALDI‐TOF mass spectrometry. Then, we performed the fundamental studies on the structure and biological functions for the DEFB120 peptide. The recombinant DEFB120 peptide showed wide antimicrobial effects against E. coli, Staphylococcus aureus and Candida albicans strains without significant hemolytic activity. Furthermore, the high lipopolysaccharide (LPS)‐binding affinity in vitro indicated that DEFB120 might be associated with the inhibition of LPS‐induced inflammatory response. These results may pave a way for exploiting the essential physiological functions of DEFB120 and also for the development of natural antibiotic pools. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
喙尾琵琶甲Blaps rynchopetera Fairmaire是云南彝族长期广泛使用的昆虫药物,其虫体和防御液均具有很高的药用价值。为明确药用昆虫喙尾琵琶甲刺激性防御液的组成、组分含量及抗菌活性的季节性变化,本研究通过常规饲养喙尾琵琶甲成虫,每月初对该昆虫尾部采用直接刺激法收集防御液,观察其状态特征,应用GC-MS分析其组成及组分含量变化,并选择具有季节特征月份的防御液测定其对金黄色葡萄球菌、大肠埃希菌、白色假丝酵母菌的最低抑菌浓度(MIC)。结果表明,防御液月采集率为0.06%~0.40%,年均采集率0.22%,月间分泌量差异较大。不同月份采集的防御液的状态及抑菌效果亦有所差异,在气温较低月份采集的防御液不分层,颜色为红棕色,采集的量相对偏低,对金黄色葡萄球菌、大肠埃希菌和白色假丝酵母菌的MIC等于或大于512μg/mL;气温较高的月份所得防御液,分层情况良好,液体呈现黄棕色,采集的量相对偏高,对金黄色葡萄球菌的MIC为64μg/mL,大肠埃希菌的MIC为256μg/mL,白色假丝酵母菌的MIC为512μg/mL。通过GC-MS分析鉴定出喙尾琵琶甲防御液中的6个主要组分:对苯醌,...  相似文献   

4.
Aims: To identify the presence of mouse β‐defensin 3 (Mbd3) (the human homologue of β‐defensin 2) in different tissues and to define the antimicrobial properties of recombinant MBD3 (rMBD3) against a panel of human pathogens. Methods and Results: Mbd3 gene expression in different mouse tissues before or after lipopolysaccharide (LPS) injection was compared by semi‐quantitative RT‐PCR. This analysis demonstrated that epithelial and mucosal tissues expressed Mbd3 independent of LPS stimulation. Evaluation of the antimicrobial properties of recombinant rMBD3 was determined by assessing the median inhibition concentration (IC50), minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)/minimal fungicidal concentration (MFC) against various human pathogens. Conclusion: Mbd3 gene expression by epithelial and mucosal tissues suggested that MBD3 likely plays an early defensive role against microbial infections. This activity was most significant against filamentous fungi. Significance and Impact of the Study: The data presented in this report suggested that formulations containing rMBD3 and related molecules could serve to treat fungal and bacterial infections.  相似文献   

5.
防御素是一类富含精氨酸和半胱氨酸的内源性阳离子抗菌肽,是软体动物抵御各种病原微生物侵染的重要免疫因子。太平洋牡蛎防御素(Crassostrea gigas defensin,CgD)近羧基端的43个氨基酸残基构成了其成熟肽区域,决定了CgD的生物学活性。首先通过逆转录PCR和设计特异性引物从太平洋牡蛎外套膜中分离并扩增到3?端添加和不添加6×His标签的两种目的基因CgDH~+和CgDH–;与pPICZαA连接后构建的重组表达载体(pPICZαA-CgDH~+和pPICZαA-CgDH–)电转至毕赤酵母Pichia pastoris X-33中,使用1.0%甲醇诱导表达目的蛋白CgDH~+和CgDH–,最适培养条件为29℃、250 r/min、72 h;通过固化金属离子亲和层析(IMAC)获得分子量为5.78 kDa的纯化的重组蛋白CgDH~+,根据其蛋白质浓度推算表达量为2.32 mg/L。经MALDI-TOF-TOF质谱分析证明纯化产物即为预期的目的蛋白。抑菌试验结果显示分别含重组蛋白CgDH~+和重组蛋白CgDH–的培养液上清对金黄色葡萄球菌Staphylococcus aureus和铜绿假单孢菌Pseudomonas aeruginosa都具有抑菌活性,表明重组蛋白中6×His标签的存在与否并不影响其生物学活性。  相似文献   

6.
Structure-dependent functional properties of human defensin 5   总被引:3,自引:0,他引:3  
de Leeuw E  Burks SR  Li X  Kao JP  Lu W 《FEBS letters》2007,581(3):515-520
The mucosal epithelium secretes a variety of antimicrobial peptides that act as part of the innate immune system to protect against invading microbes. Here, we describe the functional properties of human defensin (HD) 5, the major antimicrobial peptide produced by Paneth cells in the ileum, in relation to its structure. The antimicrobial activity of HD-5 against Escherichia coli proved to be independent of its structure, whereas the unstructured peptide showed greatly reduced antimicrobial activity against Staphylococcus aureus. We find that HD-5 binds to the cell membrane of intestinal epithelial cells and induced secretion of the chemokine interleukin (IL)-8 in a concentration- and structure-dependent fashion. Incubation of HD-5 in the presence of tumor necrosis factor alpha further increased IL-8 secretion synergistically, suggesting that HD-5 may act as a regulator of the intestinal inflammatory response.  相似文献   

7.
A novel avian β‐defensin (AvBD), AvBD10, was discovered in the liver and bone marrow tissues from Chinese painted quail (Coturnix chinensis) in the present study. The complete nucleotide sequence of quail AvBD10 contains a 207‐bp open reading frame that encodes 68 amino acids. The quail AvBD10 was expressed widely in all the tissues from quails except the tongue, crop, breast muscle, and thymus and was highly expressed in the bone marrow. In contrast to the expression pattern of AvBD10 in tissues from quail, the chicken AvBD10 was expressed in all 21 tissues from the layer hens investigated, with a high level of expression in the kidney, lung, liver, bone marrow, and Harderian glands. Recombinant glutathione S‐transferase (GST)‐tagged AvBD10s of both quail and chicken were produced and purified by expression of the two cDNAs in Escherichia coli, respectively. In addition, peptide according to the respective AvBD10s sequence was synthesized, named synthetic AvBD10s. As expected, both recombinant GST‐tagged AvBD10s and synthetic AvBD10s of quail and chicken exhibited similar bactericidal properties against most bacteria, including Gram‐positive and Gram‐negative forms. However, no significant bactericidal activity was found for quail recombinant GST‐tagged AvBD10 against Salmonella choleraesuis or for chicken recombinant GST‐tagged AvBD10 against Proteus mirabilis. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Human α‐defensin 6 (HD6), unlike other mammalian defensins, does not exhibit bactericidal activity, particularly against aerobic bacteria. Monomeric HD6 has a tertiary structure similar to other α‐defensins in the crystalline state. However, the physico‐chemical reasons behind the lack of antibacterial activity of HD6 are yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD6 analogs. A linear analog of HD6, in which the distribution of arginine residues was similar to active α‐defensins, shows broad‐spectrum antimicrobial activity, indicating that atypical distribution of arginine residues contributes to the inactivity of HD6. Peptides spanning the N‐terminal cationic segment were active against a wide range of organisms. Antimicrobial potency of these shorter analogs was further enhanced when myristic acid was conjugated at the N‐terminus. Cytoplasmic localization of the analogs without fatty acylation was observed to be necessary for bacterial killing, while they exhibited fungicidal activity by permeabilizing Candida albicans membranes. Myristoylated analogs and the linear full‐length arginine analog exhibited activity by permeabilizing bacterial and fungal membranes. Our study provides insights into the lack of bactericidal activity of HD6 against aerobic bacteria. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
目的:分析抗菌肽人β防御素3(humanβdefensin 3,hBD3)对铜绿假单胞菌PAO-1株的抑制作用。方法:合成抗菌肽hBD3,分别通过最低抑菌浓度(minimal inhibitory concentration,MIC)检测、直接杀菌试验、重要功能基因检测分析其对PAO-1的直接抑制作用;并将其与阿奇霉素、四环素、利福平、氯霉素、链霉素、环丙沙星联合施用,观察对抗生素MIC的影响。结果:HBD3对PAO-1的MIC为32μg/mL;在浓度达到8μg/mL时即有明显杀菌作用。HBD3上调PAO-1株的ahpF基因表达,下调aprA和rhlR基因表达。在联用5μg/mL的hBD3后,四环素、利福平、氯霉素、链霉素、环丙沙星的MIC值均有降低。结论:抗菌肽hBD3对铜绿假单胞菌PAO-1株有显著的抑制作用。  相似文献   

10.
Heavy metal pollutants such as Cd, Hg, Pb, As, and Se are considered as both a global problem and a growing threat to the humanity. Being strongly poisonous to the metal-sensitive enzymes and leading to the growth inhibition and death of organisms, these metals have a toxic impact on the plants and animals. Inducing the metal-binding cysteine-rich peptides such as metallothioneins, phytochelatins, and defensins, higher organisms like plants and animals usually react to the heavy metal stress. In this study, a recombinant defensin protein was expressed in bean and its ability in the cadmium absorption was determined. Experimental studies revealed that this protein was able to absorb cadmium ions in reduced form more than oxide one. Molecular dynamics simulations were carried out in order to evaluation of experimental studies, using a model of Cd2+ or Na+ and Cl ions enclosed in a fully hydrated simulation box with the recombinant defensin. The theoretical results also suggested that the reduced recombinant defensin was more powerful in the absorption of Cd2+ than its oxide form. The present study is the first report of Cd2+ absorption potential of this new reduced recombinant defensin. The results unraveled that this recombinant defensin can be adopted as a molecular switch in the cadmium pollution of the environment and also the important role of sulfur groups in the absorption of cadmium ions.  相似文献   

11.
Gram-positive bacterial bone infections are an important cause of morbidity particularly in immunocompromised patients. Antimicrobial peptides (AP) are effectors of the innate immune system and directly kill microorganisms in the first hours after microbial infection. The aim of the present investigation was to study the expression and regulation of gram-positive specialized human β-defensin-3 (HBD-3) in bone. Samples of healthy and osteomyelitic human bone were assessed for the expression of HBD-3. Using primary and immortalized osteoblasts (SAOS-2 cells), release and regulation of HBD-3 was evaluated after exposure to Staphylococcus aureus supernatant and/or corticosteroids using PCR, immunohistochemistry, Western blot and ELISA. To determine the role of toll-like-receptors-2 and -4 (TLR-2/-4), shRNA was used to downregulate TLRs. An osteomyelitis mouse model was created performed to investigate the release of murine β-defensins using immunohistochemistry and RT-PCR. Cultured osteoblasts and human bone produce HBD-3 under standard conditions. The release increases within hours of bacterial supernatant exposure in cultured osteoblasts. This observation was not made in chronically infected bone samples. The shRNA-technology revealed the necessity of TLR-2 and -4 in HBD-3 induction in osteoblasts. Blocking protein synthesis with cycloheximide showed that the rapid release of HBD-3 is not dependent on a translational de novo synthesis and is not affected by glucocorticoids. The murine osteomyelitis model confirmed the in vivo release uptake of mouse β-defensins-4 (MBD-4) in bone. This report shows the bacterial induction of HBD-3 via TLR-2 and -4 in osteoblasts and suggests a central role of antimicrobial peptides in the prevention of bacterial bone infection. The rapid and effective induction of HBD-3 in osteoblasts incubated with conditioned media from bacteria is more likely a result of a rapid secretion of preformed HBD-3 by osteoblasts rather than a result of enhanced biosynthesis. The increased incidence of gram-positive bacterial bone infection in patients with regular intake of glucocorticoids does not seem to be caused by a deranged HBD-3 release in osteoblasts. The experiments comply with current German law.  相似文献   

12.
Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized α-helical and β-sheet (CSαβ) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wall biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 μM. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.  相似文献   

13.
14.
Naturally occurring cationic antimicrobial peptides (CAPs) are an essential component of the innate immune system of multicellular organisms. At concentrations generally higher than those found in vivo, most CAPs exhibit strong antibacterial properties in vitro, but their activity may be inhibited by body fluids, a fact that could limit their future use as antimicrobial and/or immunomodulatory agents. In the present study, we evaluated the effects of human serum components on bactericidal activity of the human beta-defensin 3 (hBD-3), a CAP considered particularly promising for future therapeutic employment. Human serum diluted to 20% strongly inhibited the bactericidal activity of the peptide against both the Gram-positive species Staphylococcus aureus and the Gram-negative species Acinetobacter baumannii. Such activity was not restored in serum devoid of salts (dialyzed), pre-treated with protease inhibitors, or subjected to both of these treatments. The addition of physiological concentrations of NaCl, CaCl2, and human albumin in the bactericidal assay abolished bactericidal activity of hBD-3 against S. aureus, while it only partially inhibited the activity of the peptide against A. baumannii. Although a proteolytic activity of serum on hBD-3 was demonstrated at the protein level by Western blot, addition of physiological concentrations of trypsin to the bactericidal assay only partially affected the antibacterial properties of the peptide. Altogether, these results demonstrate a major role of mono-divalent cations and serum proteins on inhibition of hBD-3 antibacterial properties and indicate a relative lack in sensitivity of the bactericidal activity of this peptide to trypsin and trypsin-like proteases.  相似文献   

15.
Liqun Zhang 《Proteins》2017,85(4):665-681
Human defensins are a class of antimicrobial peptides that are crucial components of the innate immune system. Both human α defensin type 5 (HD5) and human β defensin type 3 (hBD‐3) have 6 cysteine residues which form 3 pairs of disulfide bonds in oxidizing condition. Disulfide bond linking is important to the protein structure stabilization, and the disulfide bond linking and breaking order have been shown to influence protein function. In this project, microsecond long molecular dynamics simulations were performed to study the structure and dynamics of HD5 and hBD‐3 wildtype and analogs which have all 3 disulfide bonds released in reducing condition. The structure of hBD‐3 was found to be more dynamic and flexible than HD5, based on RMSD, RMSF, and radius of gyration calculations. The disulfide bridge breaking order of HD5 and hBD‐3 in reducing condition was predicted by two kinds of methods, which gave consistent results. It was found that the disulfide bonds breaking pathways for HD5 and hBD‐3 are very different. The breaking of disulfide bonds can influence the dimer interface by making the dimer structure less stable for both kinds of defensin. In order to understand the difference in dynamics and disulfide bond breaking pathway, hydrophilic and hydrophobic accessible surface areas (ASA), buried surface area between cysteine pairs, entropy of cysteine pairs, and internal energy were calculated. Comparing to the wildtype, hBD‐3 analog is more hydrophobic, while HD5 is more hydrophilic. For hBD‐3, the disulfide breaking is mainly entropy driven, while other factors such as the solvation effects may take the major role in controlling HD5 disulfide breaking pathway. Proteins 2017; 85:665–681. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
  1. Download : Download high-res image (95KB)
  2. Download : Download full-size image
  相似文献   

17.
The purpose of this study was to examine the effects of structural parameters of peptides on their oxidation by DMSO, including location of cysteine, effect of adjunct group participation, molecular hydrophobicity, steric hindrance or the accessibility of thiol group and peptide conformation, on oxidation rates, dimer formation and associated side products. We designed and synthesized two series of linear cysteine‐containing analogues of human β‐defensin 3 (the C1‐peptides with cysteine at the N‐terminus residue 1, the C29‐peptides with cysteine located at residue 29 in the centre of peptide), which were used for preparation of disulphide‐linked homodimers. HPLC–ESI–MS was used to monitor the oxidation process and to characterize the molecular weights of dimers and side products of high oxidation. The formations of dimers and side products were dependent on the position of cysteines. Hydrophobicity generally rendered the thiol groups less accessible and hence exposed them to slow oxidation to form dimers (or even fail to form dimers during the timescale of observation). Molecular dynamics simulations showed that the exposure of cysteines (and sulphurs) of the C1‐peptides was much larger than for the C29‐peptides. The larger hydrophobic side chains tended to enable clustering of the side chains that sequester cysteine, particularly in the C29‐peptides, which provided a molecular explanation for the observed trends in oxidation rates. Together with molecular modelling, we propose a reaction mechanism to elucidate the oxidation results of these peptides. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
19.
Lin KF  Lee TR  Tsai PH  Hsu MP  Chen CS  Lyu PC 《Proteins》2007,68(2):530-540
The structure of a novel plant defensin isolated from the seeds of the mung bean, Vigna radiate, has been determined by (1)H nuclear magnetic resonance spectroscopy. The three-dimensional structure of VrD2, the V. radiate plant defensin 2 protein, comprises an alpha-helix and one triple-stranded anti-parallel beta-sheet stabilized by four disulfide bonds. This protein exhibits neither insecticidal activity nor alpha-amylase inhibitory activity in spite of showing a similar global fold to that of VrD1, an insecticidal plant defensin that has been suggested to function by inhibiting insect alpha-amylase. Our previous study proposed that loop L3 of plant defensins is important for this inhibition. Structural analyses and surface charge comparisons of VrD1 and VrD2 revealed that the charged residues of L3 correlate with the observed difference in inhibitory activities of these proteins. A VrD2 chimera that was produced by transferring the proposed functional loop of VrD1 onto the structurally equivalent loop of VrD2 supported this hypothesis. The VrD2 chimera, which differs by only five residues compared with VrD2, showed obvious activity against Tenebrio molitor alpha-amylase. These results clarify the mode of alpha-amylase inhibition of plant defensins and also represent a possible approach for engineering novel alpha-amylase inhibitors. Plant defensins are important constituents of the innate immune system of plants, and thus the application of protein engineering to this protein family may provide an efficient method for protecting against crop losses.  相似文献   

20.
The purpose of this study was to assess human β-defensin-2 (hBD-2) gene transfection in human bladder epithelial cells and its therapeutic efficacy in a rat urinary tract infection (UTI) model via liposome mediated gene transfer. A large amount of hBD2 production (36.5 ± 3.2 ng/10(6) cells) was demonstrated in transfected cells' supernatants. In addition, a detectable amount of hBD-2 was identified in rats' urine (4.77 ± 1.4 ng/mL) by ELISA. Expression of the transgene hBD-2 in transfected cells and rats' bladders was also confirmed by RT-PCR and Western blotting. Immunohistochemistry revealed that the transgene hBD-2 expressed in the entire epithelial layer of the transduced bladders. Numbers of bacterial colony-forming units in urine and bladders from hBD2 gene treated UTI rats were significantly lower than those from the UTI rats administered PBS at 24, 36, and 72 hr after infection (P < 0.05). In addition, in vivo expression of hBD-2 reduced mucosal damage, interstitial edema and inflammatory cell infiltration in UTI animals. The results indicate that successful inhibition of UTI progression can be produced by hBD2 gene therapy. The liposome-mediated hBD2 plasmid DNA transfection system appears to be a promising method for antimicrobial gene therapy of UTI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号