首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A calcium-dependent cyclic nucleotide phosphodiesterase from rat cerebrum was, in the absence of activator protein, inhibited by various monovalent cations. The inhibition was rapid, readily reversible, and concentration-dependent, with 100 mM cesium, rubidium, or potassium ion inhibiting essentially all basal enzyme activity, while 100 mM sodium or lithium ions produced only moderate inhibition. The potency of the cations in inhibiting the enzyme was Cs greater than or equal to Rb greater than K greater than Na greater than or equal to Li. Potassium ions increased the apparent Km for cyclic GMP and cyclic AMP by 3- and 5-fold, respectively. At 100 mM, the monovalent cations inhibited enzyme activated by the calcium-dependent activator by only 15 to 30%, while at 55 mM no inhibition pertained. Potassium and sodium ions at 55 mM had no effect on the calcium-independent phosphodiesterase from rat cerebrum. The results indicate that at normal intracellular concentrations of potassium ions the activity of the calcium-dependent phosphodiesterase is virtually completely dependent on the presence of calcium plus activator protein.  相似文献   

2.
The AMP deaminase isoenzymes from trout gill were activated by sodium and potassium, sodium being the most efficient. The optimal concentration for activation was 30-50 mM. The enzyme was sensitive to ionic strength, and imidazole was an inhibitor at concentrations higher than 25 mM. A possible regulation of gill AMP deaminase by intracellular imidazole buffers is discussed. AMP deaminase activity was tested in the presence of physiological concentrations of sodium and potassium. When the concentration of one of these cations was varied around its physiological concentration, the enzyme activity was relatively stable, indicating that the intracellular AMP deaminase activity would be insensitive to changes in the concentrations of monovalent cations. The effects of the sodium salts of different inorganic and organic anions were tested. Except chloride and gluconate, all were inhibitors of gill AMP deaminase.  相似文献   

3.
The peptidase activity of leukotriene A4 hydrolase purified from human leukocytes has been characterized, utilizing synthetic amides as substrates. The enzyme was stimulated by several monovalent anions. Thiocyanate ions were most effective followed by chloride and bromide ions. In phosphate buffer alone the peptidase activity towards alanine-4-nitroanilide was barely detectable and addition of 100 mM NaCl increased the specific activity more than 20-fold. Increasing the concentration of NaCl (or NaSCN) did not significantly affect the apparent Km for the substrate alanine-4-nitroanilide, but resulted in a dose dependent increase of Vmax. The stimulatory effect of these anions on the reaction velocities appeared to obey saturation kinetics and thus indicated the presence of an anion binding site. Apparent affinity constants for chloride and thiocyanate ions were calculated to 100 and 50 mM, respectively. In contrast to the effect on the peptidase activity, no chloride-stimulation could be detected of the epoxide hydrolase activity of this enzyme, i.e., the conversion of leukotriene A4 into leukotriene B4. In conclusion, the results indicate that under physiological conditions, chloride ions may selectively stimulate the peptidase activity of LTA4 hydrolase. Also, the differences in chloride concentrations between cellular compartments suggest that a possible proteolytic function of the enzyme may be limited to the extracellular space.  相似文献   

4.
Human beta-defensin-2 (HBD-2) is a member of the defensin family of antimicrobial peptides. HBD-2 was first isolated from inflamed skin where it is posited to participate in the killing of invasive bacteria and in the recruitment of cells of the adaptive immune response. Static light scattering and two-dimensional proton nuclear magnetic resonance spectroscopy have been used to assess the physical state and structure of HBD-2 in solution. At concentrations of < or = 2.4 mM, HBD-2 is monomeric. The structure is amphiphilic with a nonuniform surface distribution of positive charge and contains several key structural elements, including a triple-stranded, antiparallel beta-sheet with strands 2 and 3 in a beta-hairpin conformation. A beta-bulge in the second strand occurs at Gly28, a position conserved in the entire defensin family. In solution, HBD-2 exhibits an alpha-helical segment near the N-terminus that has not been previously ascribed to solution structures of alpha-defensins or to the beta-defensin BNBD-12. This novel structural element may be a factor contributing to the specific microbicidal or chemokine-like properties of HBD-2.  相似文献   

5.
The effects of monovalent ions on endogenous pyruvate dehydrogenase (PDH) kinase activity in purified bovine heart pyruvate dehydrogenase complex were investigated. Activity of PDH kinase was stimulated 1.9-, 1.95-, 1.65-, and 1.4-fold by 10 mM K+, Rb+, NH+4, and Cs+, respectively, whereas Na+ and Li+ had no effect on PDH kinase activity. The crystal radii of stimulatory ions were in the range of 1.33 to 1.69 A while the crystal radii of nonstimulatory ions were in the range of 0.6 to 0.94 A. Stimulation of PDH kinase by monovalent ions was not pH dependent. Protein dilution studies showed that monovalent ion stimulation was measurable within 10 s after protein addition to PDH kinase assays. Furthermore, stimulation occurred at all protein concentrations tested. At ATP concentrations from 12.5 to 25 microM, K+ and NH+4 stimulation was constant from 0 to 110 and 0 to 30 mM, respectively. At higher ATP concentrations, from 50 to 500 microM, K+ and NH+4 stimulation peaked at approximately 30 and 3 mM, respectively, and thereafter declined as the ion concentration increased. Maximal PDH kinase stimulation by K+ or NH+4 also declined as Na+ was increased from 0 to 120 mM, but at a fixed salt concentration of 120 mM, both K+ and NH+4 stimulated PDH kinase activity. Phosphopeptide analysis demonstrated that K+ and NH+4 stimulated phosphorylation at sites 1 and 2, but that site 3 phosphorylation was relatively constant under all conditions. Thiamin pyrophosphate and 5,5'-dithiobis-(2-nitrobenzoate) blocked monovalent ion stimulation half-maximally at 4 and 6 microM, respectively. However, neither thiamin pyrophosphate nor 5,5'-dithiobis-(2-nitrobenzoate) significantly inhibited PDH kinase activity in the absence of monovalent ions. The results indicate that heart PDH kinase stimulation by monovalent ions does not occur by changing the binding equilibrium between PDH and dihydrolipoyl transacetylase core. Instead, monovalent ions bind and exert their regulatory effects at or near the active site of PDH kinase.  相似文献   

6.
The organic mercurial p-chloromercuribenzensulfonic acid (PCMBS) reversibly increases fluxes of sodium and potassium across the human red blood cell membrane. We examined the effect of different monovalent anions on cation fluxes stimulated by PCMBS. A substantial portion of the fluxes of both cations was found to have a specific anion requirement for chloride or bromide, and was not observed when chloride was replaced by nitrate, acetate or methylsulfate. The chloride-dependent component of the cation fluxes was only observed when the cells were exposed to PCMBS concentrations of 0.5 mM or greater. Furosemide (1 mM) did not inhibit the PCMBS-stimulated cation fluxes. The observed anion specificity is directly associated with the transport process rather than PCMBS binding to the membrane. A portion of the potassium transport stimulated by PCMBS appears to involve K+-K+ exchange; however, Na+ + K+ cotransport is not stimulated by this sulfhydryl reagent.  相似文献   

7.
A defined medium of low osmolarity was developed permitting growth of Rhizobium meliloti with generation times of approximately 2.8 h doubling-1. The effects of sodium, potassium, magnesium, ammonium, chloride, sulfate, phosphate, bicarbonate and acetate ions on the growth rate of R. meliloti were determined. Sodium, potassium and ammonium ions had little effect on growth at concentrations of 100 mEq or less; magnesium ion inhibited growth severely at concentrations of 50 mEq (25 mM). Of the anions, chloride and sulfate appeared to have little effect while phosphate, bicarbonate, and acetate inhibited growth at concentrations of as little as 25 mEq. The addition of proline, glutamate, or betaine to cells growing in inhibitory concentrations of NaCl did not relieve the inhibition. When grown in the presence of inhibitory levels of NaCl, the intracellular concentration of glutamate but not of proline or gamma amino butyric acid increased 5-fold.  相似文献   

8.
Potassium ion protects the branched-chain alpha-ketoacid dehydrogenase complex against inactivation by thermal denaturation and protease digestion. Rubidium was effective but sodium and lithium were not, suggesting that the ionic size of the cation is important for stabilization of the enzyme. Thiamine pyrophosphate stabilization of the complex [Danner, D. J., Lemmon, S. K., and Elsas, S. J. (1980) Arch. Biochem. Biophys. 202, 23-28] was found dependent on the presence of potassium ion. Studies with resolved components indicate that the thiamine pyrophosphate-dependent enzyme of the complex, i.e., the 2-oxoisovalerate dehydrogenase (lipoamide) (EC 1.2.4.4), is the component stabilized by potassium ion. Branched-chain alpha-ketoacid dehydrogenase-kinase activity measured by inactivation of the branched-chain alpha-ketoacid dehydrogenase complex was maximized at a potassium ion concentration of 100 mM. Stimulation of kinase activity was also found with rubidium ion but not with lithium and sodium ions. All salts tested increased the efficiency of inactivation by phosphorylation, i.e., decreased the degree of enzyme phosphorylation required to cause inactivation of the complex. The effectiveness and efficacy of alpha-chloroisocaproate as an inhibitor of branched-chain alpha-ketoacid dehydrogenase kinase were enhanced by the presence of monovalent cations, and further increased by inorganic phosphate. These findings suggest that monovalent cations and anions, particularly potassium and phosphate, cause structural changes in the dehydrogenase-kinase complex that alter its susceptibility to phosphorylation and responsiveness to kinase inhibitors.  相似文献   

9.
Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.  相似文献   

10.
The vegetatively multiplying Acanthamoeba castellanii cells are transformed into cysts under unfavourable feeding conditions. The cyst formation may also be induced by treatment of the cells with DNA-synthesis inhibitors or by placing the cells into special ionic medium containing magnesium and calcium at pH 9, with aeration. During Acanthamoeba encystment the morphology of the cells changes significantly, namely a cellulose-protein cyst wall appears which is easily seen under the light and electron microscope. The process of encystment in Acanthamoeba castellanii is considered as a useful simple model of cytodifferentiation of eukaryotic cells.
This communication describes the effects of monovalent thallium ions on the differentiation and multiplication of Acanthamoeba cells growing in optimal feeding conditions. Thallium ions being potassium analogues are readily accumulated by cells. On the other hand, thallium ions, unlike potassium ions, are able to form complexes with some anions, which results in disturbances of some cellular functions.
Thallium ions, added to the growth medium of 2–3-days old Acanthamoeba culture at a concentration of 0.05–1.0 mM inhibit the population growth inducing the differentiation of cells into cysts. The increase of the thallium ion concentration up to 5 or 10 mM in the growth medium causes the very fast multiplication of Acanthamoeba cells. However, at these thallium ion concentrations no cysts can be observed.
Thus, on the basis of the experimental data it seems likely that thallium ions play some role in increasing the rate of multiplication and in switching on the differentiation process (encystment) in Acanthamoeba cells.  相似文献   

11.
The urease proteins of the jack bean (Canavalia ensiformis) and Helicobacter pylori are similar in molecular mass when separated by non-denaturing gradient polyacrylamide gel electrophoresis, both having three main forms. The molecular mass of their major protein form is within the range 440-480 kDa with the other two lesser forms at 230-260 kDa and 660-740 kDa. These forms are all urease active; however, significant kinetic differences exist between the H. pylori and jack bean ureases. Jack bean urease has a single pH optimum at 7.4, whereas H. pylori urease has two pH optima of 4.6 and 8.2 in barbitone and phosphate buffers that were capable of spanning the pH range 3 to 10. The H. pylori Km was 0.6 mM at pH 4.6 and 1.0 mM at pH 8.2 in barbitone buffer, greater than 10.0 mM, and 1.1 mM respectively in phosphate buffer and also greater than 10.0 mM in Tris.HCl at pH 8.2. By comparison, the jack bean urease had a Km of 1.3 mM in Tris.HCl under our experimental conditions. The findings show that the urease activity of H. pylori was inhibited at the pH optimum of 4.6 in the phosphate buffer, but not in the barbitone buffer. This was shown to be due to competitive inhibition by the sodium and potassium ions in the phosphate buffer, not the phosphate ions as suggested earlier. Jack bean urease activity was similarly inhibited by phosphate buffer but again due to the effect of sodium and potassium ions.  相似文献   

12.
The nitrogenase enzyme complex of Methanosarcina barkeri 227 was found to be more sensitive to NaCl than previously studied molybdenum nitrogenases are, with total inhibition of activity occurring at 190 mM NaCl, compared with >600 mM NaCl for Azotobacter vinelandii and Clostridium pasteurianum nitrogenases. Na+ and K+ had equivalent effects, whereas Mg2+ was more inhibitory than either monovalent cation, even on a per-charge basis. The anion Cl- was more inhibitory than acetate was. Because M. barkeri 227 is a facultative halophile, we examined the effects of external salt on growth and diazotrophy and found that inhibition of growth was not greater with N2 than with NH4+. Cells grown with N2 and cells grown with NH4+ produced equal concentrations of alpha-glutamate at low salt concentrations and equal concentrations of Nepsilon-acetyl-beta-lysine at NaCl concentrations greater than 500 mM. Despite the high energetic cost of fixing nitrogen for these osmolytes, we obtained no evidence that there is a shift towards nonnitrogenous osmolytes during diazotrophic growth. In vitro nitrogenase enzyme assays showed that at a low concentration (approximately 100 mM) potassium glutamate enhanced activity but at higher concentrations this compound inhibited activity; 50% inhibition occurred at a potassium glutamate concentration of approximately 400 mM.  相似文献   

13.
Studies of renal and other tissues suggest that chronic elevation or reduction of dietary potassium intake could affect vascular smooth muscle sodium pump (Na-pump) activity. To examine this possibility, the effects of 3 weeks of low (LK: 4 mmole KCl/kg chow), normal (NK; 162 mmole/kg), and high (HK; 1350 mmole/kg) dietary potassium intake on Na-pump activity, the Na-pump activity response to changes in extracellular potassium concentration, and Na-pump site density were determined in tail arteries of rats. Plasma potassium concentration was elevated by 21% in HK rats and reduced by 45% in LK rats. When incubated in autologous plasma, compared to arteries from NK rats, Na-pump activity was decreased in the tail arteries from LK rats but not altered in those from HK rats. When arteries from NK and LK rats were incubated in autologous plasma with the potassium concentration increased to equal that of the HK rats, Na-pump activity exceeded that of HK rat arteries: Na-pump activity of arteries incubated in autologous plasma did not differ from that of arteries incubated in Krebs-Henseleit buffer with the potassium concentration adjusted to equal that of the plasma. Tail artery Na-pump activity for all three dietary potassium groups increased as potassium concentration of the incubation medium was increased from 1 to 12 mM; Na-pump activity was similar for the NK and LK rats at all potassium concentrations, but Na-pump activity of HK rat arteries was less than that of NK arteries at high extracellular potassium concentrations. Na-pump site density was not altered by either HK or LK diet. It is concluded that in tail arteries of rats fed the LK diet, chronically decreased extracellular potassium results in chronically decreased Na-pump activity. In contrast, an adaptive change occurs in tail arteries of rats fed HK diet, such that Na-pump activity remains at normal levels despite elevated extracellular potassium; this adaptive response to chronically increased dietary potassium does not appear to be the result of decreased Na-pump site density.  相似文献   

14.
Abstract— The effects of monovalent and divalent anions on the choline acetyltransferase reaction have been determined at high (5.0 mM) and low (0.58 mM) choline. At 0.58 mM-choline, both monovalent and divalent anions activate the enzyme ±9 fold; however, at 5.0mM-choline, monovalent anions activate the enzyme ±25 fold, while divalent anions activate ±9 fold. Both monovalent and divalent anions show uncompetitive activation with respect to choline. When either dimethylaminoethanol, N -(2-hydroxyethyl)- N -methyl piperidinium iodide, or N -(2-hydroxyethyl)- N -propyl pyrrolidinium iodide was substituted for choline, activation by monovalent or divalent anions was only 2.5-4 fold. With AcCoA as substrate the ChA reaction can be increased ±20 fold by increased salts; however, with acetyl dephosphoCoA as substrate, the reaction is insensitive to the salt concentration. Similar salt effects on the ChA reaction, as measured in the direction of acetylcholine synthesis, have been demonstrated in the reverse reaction. In addition, inhibition of the forward reaction by acetylcholine has been measured as a function of sodium chloride concentration. Although the K1 for acetylcholine increases with increasing salt, this change in K 1, parallels the increase in the K m for choline. These results support the hypothesis that both monovalent and divalent anions activate choline acetyltransferase by the same singular mechanism; which is to increase the rate of dissociation of coenzyme A from the enzyme.  相似文献   

15.
Slices of rat aorta were incubated in Krebs-Ringer bicarbonate buffer for measurements of immunoreactive 6-ketoprostaglandin F1 alpha, thromboxane (TX) B2, prostaglandin (PG)E2, and PGF2 alpha, and in Tris buffer (pH 9.3) for determination of prostacyclin (PGI2)-like activity. No significant generation of TXB2, PGE2, or PGF2 alpha by rat aortic tissue could be detected. The time-dependent release of 6-keto-PGF1 alpha Krebs-Ringer bicarbonate buffer closely correlated with PGI2 generation in alkaline Tris buffer. During a 30-min incubation period, 6-keto-PGF1 alpha, release was 79.8 +/- 3.3 pmol/mg at a buffer potassium concentration of 3.9 mmol/liter and significantly increased by 23% to 98.3 +/- 8.5 pmol/mg (P less than 0.025) in the absence of potassium in the incubation medium. A smaller decrease in buffer potassium concentration to 2.1 mmol/liter and an increase to 8.8 mmol/liter did not significantly alter aortic 6-keto-PGF1 alpha release. Changes in the incubation buffer sodium concentration from 144 mmol/liter to either 138 or 150 mmol/liter at a constant potassium concentration of 3.9 mmol/liter did not alter the recovery of 6-keto-PGF1 alpha. Our results support the concept that PGI2 is the predominant product of arachidonic acid metabolism in rat aorta. They further show that PGI2 can be recovered quantitatively as 6-keto-PGF1 alpha under the present in vitro conditions. In addition, this in vitro study points to the potassium ion as a modulator of vascular PGI2 synthesis with a stimulation at low potassium concentrations.  相似文献   

16.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The concentrations of the haemolymph monovalent and divalent cations have been determined during the development of Chironomus thummi, a fly. The insect maintains a low and rather constant level of sodium and potassium ion throughout most of the fourth instar period until the time of the larval-pupal ecdysis (LL = 87.6 mM Na; 10.8 mM K; EPP = 77.4 mM Na; 11.2 mM K; LPP = 83 mM Na; 14.6 mM K). During the final period of development, as the pupa apolysis to a pharate adult there is a significant increase in sodium and potassium ion levels (EA = 149.4 mM Na; 49.6 mM K). This sharp change of the haemolymph environment is coincident with the occurrence of many of the dramatic metamorphic changes in the animal, e.g., the breakdown of the salivary gland, and the initiation of vitellogenesis, among others. Artificial media containing the same concentrations of ions as the haemolymph enabled the in vitro maintenance of salivary glands for periods of up to 48 to 72 hr. The importance of the present information in studies of chromosomal puffing and in other cellular activities such as those leading to cell breakdown has been discussed.  相似文献   

18.
Inhibitions of 30?nM rabbit muscle 1-phosphofructokinase (PFK-1) by lithium, potassium, and sodium salts showed inhibition or not depending upon the anion present. Generally, potassium salts were more potent inhibitors than sodium salts; the extent of inhibition by lithium salts also varied with the anion. Li2CO3 was a relatively potent inhibitor of PFK-1 but LiCl and lithium acetate were not. Our results suggest that extents of inhibition by monovalent salts were due to both cations and anions, and the latter needs to be considered before inhibition can be credited to the cation. An explanation for monovalent salt inhibitions is proffered involving interactions of both cations and anions at negative and positive sites of PFK-1 that affect enzyme activity. Our studies suggest that lithium cations per se are not inhibitors: the inhibitors are the lithium salts, and we suggest that in vitro studies involving the effects of monovalent salts on enzymes should involve more than one anion.  相似文献   

19.
Ooplasmic activities of potassium and sodium were measured with ion sensitive microelectrodes before and during the period of maximal water uptake which occurs 3–5 days after oviposition for eggs incubated at 37°C. Potassium activity increased from 84 mM in eggs before fertilization at 118 mM in eggs 1 day after fertilization (d1). Sodium activity increased from 8 mM to 29 mM over the same period. These changes exceeded those predicted from the decrease in water content (8%) during the first day after oviposition. Between d1 and d3, potassium and sodium activities decreased to values predicted on the basis of the 88% increase in egg water content. Although water content increased an additional 46% between d3 and d5, ooplasmic sodium activity remained constant at 11 mM and potassium activity increased from 64 mM to 74 mM during this time. Declines in concentrations of sodium and potassium measured in whole eggs by atomic absorption spectrometry mirrored the increase in egg water content. The results suggest that regulation of ooplasmic sodium and potassium activities is accomplished by release of these ions from internal stores, possibly the york spheres. © 1992 Wiley-Liss, Inc.  相似文献   

20.
Proton-activated rubidium transport catalyzed by the sodium pump   总被引:1,自引:0,他引:1  
Although the sodium pump normally exchanges three sodium for two potassium ions, experiments with inside-out red cell membrane vesicles show that the stoichiometry is reduced when the cytoplasmic sodium concentration is decreased to less than 1 mM. The present study was designed to gain insight into the question whether other monovalent cations, particularly protons, can act as sodium congeners in effecting pump-mediated potassium transport (ATP-dependent rubidium efflux from inside-out vesicles). The results show that at low cytoplasmic sodium concentration, an increase in proton concentration effects a further reduction in sodium:rubidium stoichiometry, to a value less than the minimal expected (1Na+:3Rb+). Furthermore, when vesicles containing 86RbCl are incubated in nominally sodium-free medium. ATP-dependent net rubidium efflux (normal influx) occurs when the pH is reduced from approximately 7.0 to 6.2 or less. This efflux is inhibited by strophanthidin and vanadate. These experiments support the notion that the sodium pump can operate as an ATP-dependent proton-activated rubidium (potassium) pump without obligatory countertransport of sodium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号