首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were used to design both general and specific hybridization probes. Fluorescent versions of these probes were used in combination with fluorescence microscopy to visualize specific sulfate-reducing bacterial populations within developing and established biofilms.  相似文献   

2.
Complete 23S and almost complete 16S rRNA gene sequences were determined for the type strains of the validly described Enterococcus species, Melissococcus pluton and Tetragenococcus halophilus. A comprehensive set of rRNA targeted specific oligonucleotide hybridization probes was designed according to the multiple probe concept. In silico probe design and evaluation was performed using the respective tools of the ARB program package in combination with the ARB databases comprising the currently available 16S as well as 23S rRNA primary structures. The probes were optimized with respect to their application for reverse hybridization in microplate format. The target comprising 16S and 23S rDNA was amplified and labeled by PCR (polymerase chain reaction) using general primers targeting a wide spectrum of bacteria. Alternatively, amplification of two adjacent rDNA fragments of enterococci was performed by using specific primers. In vitro evaluation of the probe set was done including all Enterococcus type strains, and a selection of other representatives of the gram-positive bacteria with a low genomic DNA G+C content. The optimized probe set was used to analyze enriched drinking water samples as well as original samples from waste water treatment plants.  相似文献   

3.
We describe the in situ use of rRNA-targeted fluorescent hybridization probes in combination with digital microscopy to quantify the cellular content of ribosomes in relationship to the growth rate of single cells of a specific population of sulfate-reducing bacteria in multispecies anaerobic biofilms. Using this technique, we inferred that this population was growing with an average generation time of 35 h in a young biofilm, whereas the doubling time in an established biofilm was significantly longer. Conventional chemical determinations of the RNA, DNA, and protein contents of this culture at different growth rates were also carried out, and the resulting data were compared with the rRNA fluorescence in situ hybridization data.  相似文献   

4.
The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen penetration, we incubated two 4-mm-thick biofilm samples in darkness or exposed to light at natural intensity. Gradients of O2, H2S, and pH were examined with microelectrodes during incubation. The samples were subsequently frozen with liquid nitrogen and sliced on a cryomicrotome in 20-microns vertical slices. Fluorescent-dye-conjugated oligonucleotides were used as "phylogenetic" probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed in the biofilm, being present in all states from single scattered cells to dense clusters of several thousand cells. To quantify the vertical distribution of SRB, we counted cells along vertical transects through the biofilm. This was done in a blind experiment to ascertain the reliability of the staining. A negative correlation between the vertical distribution of positively stained SRB cells and the measured O2 profiles was found. The distribution differed in light- and dark-incubated samples presumably because of the different extensions of the oxic surface layer. In both cases the SRB were largely restricted to anoxic layers.  相似文献   

5.
AIMS: In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. METHODS AND RESULTS: Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. CONCLUSIONS: Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.  相似文献   

6.
Specific DNA probes based on variable regions V1 and V3 of 16S rRNA of lactic acid bacteria were designed. These probes were used in hybridization experiments with variable regions amplified by using the polymerase chain reaction. In this way, a rapid and sensitive method was developed for the identification and classification of Lactococcus and Leuconostoc species.  相似文献   

7.
Abstract The 16S rRNA gene of the thermophilic sulfate-reducing bacterium Desulfotomaculum thermobenzoicum was amplified by polymerase chain reaction using two eubacterial consensus oligodeoxynucleotide primers flanking the majority of the 16S rRNA gene, cloned, and sequenced. Phylogenetic analysis revealed that D. thermobenzoicum belongs to the Gram-positive (low G + C content) branch and is more related to the thermophilic sulfate-reducing bacterium, D. australicum than the moderate thermophile D. nigrificans , or the mesophiles D. orientis , and D. ruminis . This relationship is further strengthened by the presence of an unusual idiosyncrasy in helix 6 of the 16S rRNA gene of D. thermobenzoicum resembling that of D. australicum but not found in other desulfotomacula species and in any other bacteria sequenced to date.  相似文献   

8.
A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.  相似文献   

9.
Abstract Two oligonucleotide primers were used in a polymerase chain reaction-protocol to amplify a region (approx. 850 bp) of the 16S rRNA gene of Aeromonas schubertii and Aeromonas jandaei . Hybridization of the polymerase chain reaction products to specific internal probes provided a highly specific method for the identification of these two species.  相似文献   

10.
Confocal laser scanning microscopy, using fluorescently labelled oligonucleotide probes targeting the 16S rRNA of different physiological groups of methanogens, was used to identify which methanogenic genera were present and to describe their in situ spatial locations in samples taken at different depths from blanket peat bog cores. Total bacterial DNA was also extracted and purified from the samples and used as template for amplification of 16S rRNA and regions of methyl CoM reductase-encoding genes using the polymerase chain reaction, as well as for oligonucleotide hybridisation experiments. These techniques, used in concert, demonstrated that methanogens of several physiological groups were present in highest numbers in the mid regions of 25 cm deep peat cores. Some discrepancies were apparent in the findings of the microscopic and molecular methods, though these may be partially accounted for by the different sensitivities of the techniques employed. The combined approaches used in this study gave an insight into the diversity and distribution of methanogens in peat environments not possible using molecular ecological methods alone.  相似文献   

11.
A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.  相似文献   

12.
For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers.  相似文献   

13.
Marine invertebrates hosting chemosynthetic bacterial symbionts are known from multiple phyla and represent remarkable diversity in form and function. The deep-sea hydrothermal vent limpet Lepetodrilus fucensis from the Juan de Fuca Ridge complex hosts a gill symbiosis of particular interest because it displays a morphology unique among molluscs: filamentous bacteria are found partially embedded in the host's gill epithelium and extend into the fluids circulating across the lamellae. Our objective was to investigate the phylogenetic affiliation of the limpet's primary gill symbionts for comparison with previously characterized bacteria. Comparative 16S rRNA sequence analysis identified one γ- and three ε-Proteobacteria as candidate symbionts. We used fluorescence in situ hybridization (FISH) to test which of these four candidates occur with the limpet's symbiotic gill bacteria. The γ-proteobacterial probes consistently hybridized to the entire area where symbiotic bacteria were found, but fluorescence signal from the ε-proteobacterial probes was generally absent. Amplification of the γ-proteobacterial 16S rRNA gene using a specific forward primer yielded a sequence similar to that of limpets collected from different ridge sections. In total, direct amplification or FISH identified a single γ-proteobacterial lineage from the gills of 23 specimens from vents separated by a distance up to about 200 km and collected over the course of 2 years, suggesting a highly specific and widespread symbiosis. Thus, we report the first filamentous γ-proteobacterial gill symbiont hosted by a mollusc.  相似文献   

14.
A fluorescently labeled version of a population-specific oligonucleotide hybridization probe was used to monitor the enrichment and isolation of a sulfate-reducing bacterium from a multispecies anaerobic bioreactor. The organism was originally identified as a molecular isolate that was phylogenetically related to Desulfovibrio vulgaris by amplification and sequencing of part of its 16S rRNA sequence. The sequence, in turn, was used to design a population-specific probe. The anaerobic medium used for the organism's enrichment and isolation was based on the physiological properties of the its closest relatives as identified by sequence comparisons. Of 30 isolates examined, only 3 hybridized with the probe. Nearly complete 16S rRNA sequences determined for each of these three isolates (i) had no mismatches with the probe target site, (ii) were identical to the amplified partial sequence of about 500 nucleotides and to one another in all other positions, and (iii) were 93.9% similar to that of D. vulgaris. In addition, one isolate chosen for further study (strain PT-2) had a substrate specificity comparable to that of D. vulgaris. These results confirmed that polymerase chain reaction amplification of 16S rRNA sequences from environmental samples can be accurate and can also provide phylogenetic information from which aspects of a population's physiology can be inferred.  相似文献   

15.
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.  相似文献   

16.
Recently, anaerobic ammonium-oxidizing bacteria (AAOB) were identified by comparative 16S rDNA sequence analysis as a novel, deep-branching lineage within the Planctomycetales . This lineage consists currently of only two, not yet culturable bacteria which have been provisionally described as Candidatus 'Brocadia anammoxidans' and Candidatus 'Kuenenia stuttgartiensis'. In this study, a large fragment of the rDNA operon, including the 16S rDNA, the intergenic spacer region (ISR) and approximately 2 000 bases of the 23S rDNA, was polymerase chain reaction (PCR) amplified, cloned and sequenced from both AAOB. The retrieved 16S rDNA sequences of both species contain an insertion at helix 9 with a previously overlooked pronounced secondary structure (new subhelices 9a and 9b). This insertion, which is absent in all other known prokaryotes, is detectable by fluorescence in situ hybridization (FISH) and thus present in the mature 16S rRNA. In contrast with the genera Pirellula , Planctomyces and Gemmata that possess unlinked 16S and 23S rRNA genes, both AAOB have the respective genes linked together by an ISR of approximately 450 bp in length. Phylogenetic analysis of the obtained 23S rRNA-genes confirmed the deep branching of the AAOB within the Planctomycetales and allowed the design of additional specific FISH probes. Remarkably, the ISR of the AAOB also could be successfully detected by FISH via simultaneous application of four monolabelled oligonucleotide probes. Quantitative FISH experiments with cells of Candidatus 'Brocadia anammoxidans' that were inhibited by exposure to oxygen for different time periods demonstrated that the concentration of transcribed ISR reflected the activity of the cells more accurately than the 16S or 23S rRNA concentration. Thus the developed ISR probes might become useful tools for in situ monitoring of the activity of AAOB in their natural environment.  相似文献   

17.
Abstract The microorganisms participating in the anaerobic biodegradation of cyanide were characterized using 16S rRNA genes as genetic markers of diversity. Segments of mixed population 16S rRNA genes were amplified using the polymerase chain reaction (PCR) and prokaryote-specific amplification primers. Restriction fragment length polymorphism (RFLPs) and screening with the 926f universal sequencing primer were used to categorized the cloned PCR products. Six unique prokaryote sequence were obtained, including four similar to methanogens and two similar to Gram-positive eubacteria.  相似文献   

18.
To facilitate genus and species level identification of a broad range of bacteria without the requirement of presumptive identification, we have developed a unified set of primers and polymerase chain reaction conditions to amplify spacer regions between the 16S and 23S genes in the prokaryotic rRNA genetic loci. Spacer regions within these loci show a significant level of length and sequence polymorphism across both genus and species lines. A generic pair of priming sequences was selected for the amplification of these polymorphisms from highly conserved sequences in the 16S and 23S genes occurring adjacent to these polymorphic regions. This single set of primers and reaction conditions was used for the amplification of 16S-23S spacer regions for over 300 strains of bacteria belonging to eight genera and 28 species or serotypes, including Listeria, Staphylococcus, and Salmonella species and additional species related to these pathogenic organisms. When the spacer amplification products were resolved by electrophoresis, the resulting patterns could be used to distinguish all of the species of bacteria within the test group. Unique elements in the amplification product patterns generally clustered at the species level, although some genus-specific characteristics were also observed. On the basis of the results obtained with our test group of 300 bacterial strains, amplification of the 16S-23S ribosomal spacer region is a suitable process for generating a data base for use in a polymerase chain reaction-based identification method, which can be comprehensively applied to the bacterial kingdom.  相似文献   

19.
免培养法研究野生川金丝猴肠道内生细菌多样性   总被引:3,自引:0,他引:3  
【目的】了解野生川金丝猴(Rhinopithecus roxellana)肠道内生细菌的组成及其多样性。【方法】提取川金丝猴肠道内生细菌总DNA,选用细菌通用引物799F和1492R对总DNA进行16S rRNA基因特异性扩增,构建川金丝猴肠道内生细菌16S rRNA基因克隆文库,对阳性克隆进行限制性内切酶片段长度多态性(PCR-RFLP)分析,并对HaeⅢ酶切带谱菌株进行测序,构建系统发育树。【结果】根据酶切带谱分析和测序结果,将随机挑取的157个阳性克隆归为27个不同的可操作分类单元(OTUs)。系统发育分析表明这些克隆序列有62.10%属于厚壁菌门(Firmicutes),其中包括梭菌属(Clostridium)、Cellulosilyticum属、Robinsoniella属、Anaerofustis属、Blautia属和Anaerovorax属,有37.90%属于未培养细菌。【结论】川金丝猴肠道内生细菌多样性丰富,并且可能存在新的分类单元。  相似文献   

20.
We developed a software program for the rapid selection of detection probes to be used in nucleic acid-based assays. In comparison to commercially available software packages, our program allows the addition of oligotags as required by nucleic acid sequence-based amplification (NASBA) as well as automatic BLAST searches for all probe/primer pairs. We then demonstrated the usefulness of the program by designing a novel lateral flow biosensor for Streptococcus pyogenes that does not rely on amplification methods such as the polymerase chain reaction (PCR) or NASBA to obtain low limits of detection, but instead uses multiple reporter and capture probes per target sequence and an instantaneous amplification via dye-encapsulating liposomes. These assays will decrease the detection time to just a 20 min hybridization reaction and avoid costly enzymatic gene amplification reactions. The lateral flow assay was developed quantifying the 16S rRNA from S. pyogenes by designing reporter and capture probes that specifically hybridize with the RNA and form a sandwich. DNA reporter probes were tagged with dye-encapsulating liposomes, biotinylated DNA oligonucleotides were used as capture probes. From the initial number of capture and reporter probes chosen, a combination of two capture and three reporter probes were found to provide optimal signal generation and significant enhancement over single capture/reporter probe combinations. The selectivity of the biosensor was proven by analyzing organisms closely related to S. pyogenes, such as other Streptococcus and Enterococcus species. All probes had been selected by the software program within minutes and no iterative optimization and re-design of the oligonucleotides was required which enabled a very rapid biosensor prototyping. While the sensitivity obtained with the biosensor was only 135 ng, future experiments will decrease this significantly by the addition of more reporter and capture probes for either the same rRNA or a different nucleic acid target molecule. This will lead to the possibility of detecting S. pyogenes with a rugged assay that does not require a cell culturing or gene amplification step and will therefore enable rapid, specific and sensitive onsite testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号