首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of 14C into glycogen in rat brain has been measured under the same conditions that exist during the measurement of local cerebral glucose utilization by the autoradiographic 2-[14C]deoxyglucose method. The results demonstrate that approximately 2% of the total 14C in brain 45 min after the pulse of 2-[14C]deoxyglucose is contained in the glycogen portion, and, in fact, incorporated into alpha-1-4 and alpha-1-6 deoxyglucosyl linkages. When the brain is removed by dissection, as is routinely done in the course of the procedure of the 2-[14C]deoxyglucose method to preserve the structure of the brain for autoradiography, the portion of total brain 14C contained in glycogen falls to less than 1%, presumably because of postmortem glycogenolysis which restores much of the label to deoxyglucose-phosphates. In any case, the incorporation of the 14C into glycogen is of no consequence to the validity of the autoradiographic deoxyglucose method, not because of its small magnitude, but because 2-[14C]deoxyglucose is incorporated into glycogen via [14C]deoxyglucose-6-phosphate, and the label in glycogen represents, therefore, an additional "trapped" product of deoxyglucose phosphorylation by hexokinase. With the autoradiographic 2-[14C]deoxyglucose method, in which only total 14C concentration in the brain tissue is measured by quantitative autoradiography, it is essential that all the labeled products derived directly or indirectly from [14C]deoxyglucose phosphorylation by hexokinase be retained in the tissue; their chemical identity is of no significance.  相似文献   

2.
[2-14C] leucine, [1-14C] alanine, [1-14C] glucose, [1-14C] lactate and [1-14C] pyruvate utilization in the protein synthesis has been studied in vivo at early stages of postnatal development of piglets. It has been established, that during the first 24 hours after birth the protein synthesis intensity, judging by [2-14C] leucine incorporation, in liver, skeletal muscle, duodenal wall and subcutaneous tissue of piglets increases 5, 7, 6.5 and 2.1 times respectively. At the age of 1-2 h the radioactive carbon incorporation from [1-14C] glucose into the brain proteins is more pronounced than into the proteins of liver and skeletal muscle. During the first days of life the intensity of the label incorporation from [1-14C] glucose into liver and skeletal muscle proteins of piglets is enhanced, whereas in brain it remains at the same level. The degree of 14C carbon incorporation from [1-14C]-alanine, [1-14C] pyruvate and [1-14C] lactate into the liver and skeletal muscle proteins of 5-days-old piglets is approximately the same, 14C substrates of protein synthesis in brain and subcutaneous adipose tissue having some peculiarities.  相似文献   

3.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

4.
It has long been known that the carbons of pyruvate are converted to CO2 at different points in the metabolic process. This report deals with the observation that insulin affects the oxidation of carbons 2 and 3 primarily and has little effect on the oxidation of the carboxyl carbon. Oxidation of different carbons of pyruvate and their incorporation into various metabolic components was studied in isolated rat hepatocytes. Insulin stimulated the 14CO2 production from [2-14C]- and [3-14C]pyruvate and from [U-14C]alanine. However, it had little or no effect on the activity of the pyruvate dehydrogenase complex as measured by the evolution of 14CO2 from [1-14C]pyruvate or [1-14C] alanine. Insulin also stimulated the incorporation of carbons 2 and 3 of pyruvate into protein but had no effect on the incorporation of carbon 1. Incorporation of [1-14C]- and [U-14C]alanine into protein was differentially enhanced by insulin in a manner similar to that of the pyruvate carbons. The fact that insulin stimulates the incorporation of [1-14C]alanine into protein but not [1-14C]pyruvate suggests the possibility of a compartmentation of pyruvate metabolism in the isolated hepatocytes. These studies show that the stimulation of [2-14C]- and [3-14C]pyruvate incorporation into protein involves the stimulatory effect of insulin on the activity of the Krebs cycle which is evident from the fact that insulin did not stimulate the pyruvate carbons to enter protein via alanine but the incorporation via glutamate was increased by about 40%.  相似文献   

5.
The effect of hypoglycemia on the uptake of [1-14C]arachidonate and [1-14C]oleate into a synaptosomal and microsomal glycerophospholipids was investigated. In the presence of ATP, Mg2+ and CoA, rat brain synaptosomes and micorsomes catalyze the transfer of arachidonate and oleatc into glycerophospholipids. Arachidonate was mainly incorporated into phosphatidylinositol (PI) and phosphatidylcholine (PC), whereas oleate was incorporated into phosphatidylcholine and phosphatidylethanolamine (PE).Hypoglycemia was produced by intraperitoneal injection of 10 or 100 units of crystalline insulin per kg body weight. Two hours after injection the blood glucose level decreased to 10–20 mg%. The content of brain phospholipids was slightly decreased but the change was not statistically significant. The level of free fatty acids (FFA) was increased. More pronounced and reproducible changes were found when hypoglycemia was produced by injection of 100 units of insulin per/kg body weight. Changes in brain cortex were similar to those observed in microsomes and synaptosomes. Hypoglycemia affected the incorporation of arachidonic acid into glycerophospholipids of brain membranes. Uptake of [1-14C]arachidonate was decreased selectively by 50% (into phosphatidic acid /PA/) when hypogiycemia was produced by injection of 10 units of insulin per kg body weight. The Higher dose of insulin 100 units per kg body weight produced a 20% inhibition of arachidonate incorporation into synaptosomal PI and a 13% decrease of incorporation into microsomal phosphatidylcholine. Incorporation of [1-14C]oleate into membrane phospholipids was not changed by hypoglycemic insult. It is proposed that the disturbances in fatty acid level, particularly arachidonate, and decreased uptake of arachidonic acid by synaptosomal glycerophospholipids may be responsible for alteration of membrane function and changes of synaptic processes.  相似文献   

6.
Using isolated rat hepatocytes, we studied the effect of epidermal growth factor (urogastrone) (EGF-URO) on the incorporation of [3-14C]pyruvate into glucose and glycogen, on the incorporation of [U-14C]glucose into glycogen, and on the oxidation of [U-14C]glucose to 14CO2. The effects of EGF-URO were compared with those of glucagon and insulin. EGF-URO, with an EC50 of 0.2 nM, enhanced by 34% (maximal stimulation) the conversion of [3-14C]pyruvate into glucose; no effect was observed on the oxidation of glucose to CO2 and on the incorporation of either pyruvate or glucose into glycogen. The effect of EGF-URO on pyruvate conversion to glucose was observed only when hepatocytes were preincubated with EGF-URO for 40 min prior to the addition of substrate. Glucagon (10 nM) increased the incorporation of [3-14C]pyruvate into glucose (44% above control); however, unlike EGF-URO, glucagon stimulated gluconeogenesis better without than with a preincubation period. Neither insulin nor EGF-URO (both 10 nM) affected the incorporation of [U-14C]glucose into glycogen during a 20-min incubation period. However, at longer time periods of incubation with the substrate (60 instead 20 min), insulin (but not EGF-URO) increased the incorporation of [14C]glucose into glycogen; EGF-URO counteracted this stimulatory effect of insulin. In contrast with previous data, our work indicates that EGF-URO can, under certain conditions, counteract the effects of insulin and, like glucagon, promote gluconeogenesis in isolated rat hepatocytes.  相似文献   

7.
The effects of copper and insulin on lipogenesis and glucose tolerance were studied using diabetic, copper-deficient rats. Diabetes was induced by intraperitoneal injection of 50 mg streptozotocin/kg body weight to rats fed a sucrose-copper deficient diet for 7 weeks. Five days later the rats were injected intraperitoneally with [14C]glucose with either saline, insulin, copper, or copper plus insulin. The disappearance of serum [14C]glucose at 30, 60, and 120 min postinjection and the incorporation of [14C]glucose into lipid of epididymal fat 2 hr after administration were determined. The combined effect of copper and insulin significantly decreased peak blood glucose at 30 min and increased the incorporation of [14C]glucose into lipid in the epididymal fat pad when compared to either copper or insulin alone. The enhancement of glucose utilization may be due to a formation of a more stable complex which will increase insulin binding and/or decrease its degradation.  相似文献   

8.
L J Schiff  S J Moore 《In vitro》1980,16(10):893-906
A system for maintaining adult rat colonic mucosa in organ culture for up to 28 days is described. Distal colonic mucosa physically separated from the muscle layers was cultured at 37 degrees C on a substrate of human fibrin foam in HEPES- and bicarbonate-buffered Waymouth's MB 752/1 medium supplemented with 10% fetal bovine serum, L-glutamine, bovine albumin, ascorbic acid, hydrocortisone, insulin, and ferrous sulfate; the optimal atmostphere for culture was 95% O2 and 5% CO2. Viability of explants was demonstrated by tissue morphology with light microscopy, incorporation of [3H]thymidine and [3H]leucine into DNA and protein, [14C]glucosamine and [3H]fucose incorporation, and glycoprotein synthesis. Two days after initiation of culture, degeneration of surface and crypt cells was observed. Secreted mucosubstances covered the explants. Explants maintained in 95% O2 retained a variable number of glandular crypts with normal columnar epithelium for 14 to 21 days in culture. At 28 days, explants contained a single layer of cuboidal surface epithelium and a rare cryptlike gland.  相似文献   

9.
We have recently demonstrated that internalization of insulin is essential for insulin's action upon intracellular proteolysis (Draznin and Trowbridge 1982). In this study we have investigated the quantitative relationship between the rate of insulin internalization and its ability to inhibit intracellular proteolysis. We have used the acidification technique to separate surface bound 125I-insulin (sur) from internalized ligand (In). The In/Sur ratio plotted as a function of time permits the calculation of the rate of insulin internalization (K-e) (Draznin, Trowbridge and Ferguson 1984). Insulin in a dose dependent manner increased the rate of C14-glucose incorporation into glycogen and inhibited the rate of degradation of intracellular proteins prelabelled in vivo with C14-valine. When insulin internalization was blocked by phenylarsine oxide (10(-5) M), the amount of surface bound ligand and its effect on glucose incorporation into glycogen were unaffected whereas insulin's effect on intracellular proteolysis was markedly diminished. There was a direct and significant correlation between K-e and insulin induced inhibition of intracellular proteolysis (r = .72, P less than .05). The correlation between the amount of internalized insulin and intracellular proteolysis was also significant (r = .84, P less than .01).  相似文献   

10.
—The oxidation to CO2 and the incorporation of [U-14C]glucose and [U-14C]acetate into lipids by cortex slices from rat brain during the postnatal period were investigated. The oxidation of [U-14C]glucose was low in 2-day-old rat brain, and increased by about two-fold during the 2nd and 3rd postnatal weeks. The oxidation of [U-14C]acetate was increased markedly in the second postnatal week, but decreased to rates observed in 2-day-old rat brain at the time of weaning. Both labeled substrates were readily incorporated into non-saponifiable lipids and fatty acids by brain slices from 2-day-old rat. Their rates of incorporation and the days on which maximum rates occurred were different, however, maximum incorporation of [U-14C]glucose and [U-14]acetate into lipid fractions being observed on about the 7th and 12th postanatal days, respectively. The metabolic compartmentation in the utilization of these substrates for lipogenesis is suggested. The activities of glucose-6-phosphate dehydrogenase, cytosolic NADP-malate dehydrogenase, cytosolic NADP-isocitrate dehydrogenase, ATP-citrate lyase and acetyl CoA carboxylase were measured in rat brain during the postnatal period. All enzymes followed somewhat different courses of development; the activity of acetyl CoA carboxylase was, however, the lowest among other key enzymes in the biosynthetic pathway, and its developmental pattern paralleled closely the fatty acid synthesis from [U-14C]glucose. It is suggested that acetyl CoA carboxylase is a rate-limiting step in the synthesis de novo of fatty acids in developing rat brain.  相似文献   

11.
1. When rat isolated fat-cells were incubated with fructose and palmitate, insulin significantly stimulated glyceride synthesis as measured by either [14C]fructose incorporation into the glycerol moiety or of [3H]palmitate incorporation into the acyl moiety of tissue glycerides. Under certain conditions the effect of insulin on glyceride synthesis was greater than the effect of insulin on fructose uptake. 2. In the presence of palmitate, insulin slightly stimulated (a) [14C]pyruvate incorporation into glyceride glycerol of fat-cells and (b) 3H2O incorporation into glyceride glycerol of incubated fat-pads. 3. At low extracellular total concentrations of fatty acids (in the presence of albumin), insulin stimulated [14C]fructose, [14C]pyruvate and 3H2O incorporation into fat-cell fatty acids. Increasing the extracellular fatty acid concentration greatly inhibited fatty acid synthesis from these precursors and also greatly decreased the extent of apparent stimulation of fatty acid synthesis by insulin. 4. These results are discussed in relation to the suggestion [A.P. Halestrap & R.M.Denton (1974) Biochem. J. 142, 365-377] that the tissue may contain a specific acyl-binding protein which is subject to regulation. It is suggested that an insulin-sensitive enzyme component of the glyceride-synthesis process may play such a role.  相似文献   

12.
1. A method was devised for the determination of the specific radioactivity of the acetyl moiety of acetylcholine synthesized from various (14)C-labelled substrates. 2. The precursor for the acetyl moiety of acetylcholine was studied in slices of striatum and cerebral cortex from rat and guinea-pig brain. Incorporation of radioactivity into acetylcholine was determined after incubating the slices in the presence of [2-(14)C]acetate, [(14)C]bicarbonate, [1,5-(14)C]citrate, dl-[1- or 5-(14)C]glutamate or [1- or 2-(14)C]pyruvate. 3. After incubation for 1h, acetylcholine was accumulated significantly in both striatum slices (4.1nmol/mg of protein) and cerebral-cortex slices (0.57nmol/mg of protein) from the rat. Final concentrations were about 11 and 5 times respectively the initial values. 4. With slices from rat striatum, rat cerebral cortex and guinea-pig cerebral cortex, the specific radioactivity of acetylcholine derived from [2-(14)C]pyruvate was very high, reaching approx. 30, 20 and 6% respectively of the initial specific radioactivity of added pyruvate in the medium. With the striatum slices this high value was reached after incubation for 15min. Incorporation of radioactivity from [2-(14)C]acetate was only 1.25, 5.3 and 19.7% of that from [2-(14)C]pyruvate in rat striatum, rat cerebral-cortex and guinea-pig cerebral-cortex slices respectively. A small but definite incorporation was found from [5-(14)C]glutamate. No incorporation was found from the other substrates. The findings suggest that pyruvate is the most important precursor for the synthesis of the acetyl moiety of acetylcholine in brain slices. 5. The specific radioactivity of acetylcholine relative to that of citrate when [2-(14)C]pyruvate was used compared with that obtained when [2-(14)C]acetate was used. A marked difference was found in all slices, suggesting metabolic compartmentation of the acetyl-CoA pool.  相似文献   

13.
Rat parenchymal hepatocytes in monolayer culture were used to study the metabolic effects of epidermal growth factor (EGF) and insulin on ketogenesis, gluconeogenesis and glycogen metabolism. EGF, unlike insulin, did not inhibit ketogenesis from palmitate or gluconeogenesis from pyruvate in hepatocyte cultures. It also had no effect on these pathways in the presence of insulin. In contrast, EGF potently counteracted the stimulation of [14C]pyruvate incorporation into glycogen by insulin, and also glycogen deposition from both gluconeogenic precursors and glucose. The EGF concentration causing half-maximal effect was about 0.1 nM. The anti-glycogenic effect of EGF was observed after both long-term (24 h) and short-term (1 h) exposure to EGF, and was more marked in the presence of insulin than in its absence. EGF did not displace bound insulin, suggesting that it neither competes for the insulin receptor nor affects the affinity of the receptor for insulin. EGF did not alter cellular cyclic AMP; and inhibition of cyclic AMP phosphodiesterase activity did not prevent the anti-glycogenic effect of EGF. In liver-derived dividing epithelial cells, Hep-G2 cells and fibroblasts, which have no capacity for gluconeogenesis, EGF did not counteract the stimulatory effect of insulin on [14C]glucose incorporation into glycogen, and in the epithelial cells EGF increased [14C]glucose incorporation into glycogen. The counter-effect of EGF on the glycogenic action of insulin in parenchymal hepatocytes may be due to a direct effect on glycogen metabolism or to an interaction with the post-receptor events in insulin action.  相似文献   

14.
Protein metabolism was studied in astroglial primary cultures, grown for different time periods. Removal of fetal calf-serum for two days led to a morphological differentiation consisting of retraction of cell soma and extension of processes. There was a prominent decrease in total soluble protein and a decrease in [3H]valine incorporation into soluble protein. Dibutyrylcyclic-3-5-adenosine monophosphate (dB-cAMP)-treatment for two days also changed morphology in a similar way, but had no effect on [3H]valine incorporation into protein. After addition of soluble brain extract to the cultures an increased [3H]valine incorporation into soluble protein was seen together with a morphological differentiation, more pronounced in the presence than in the absence of fetal calf-serum. Proteins were secreted from the cells into the incubation medium and studied by electrophoresis. The more prominent protein bands had m.w. in the region of 10,000–100,000 daltons. The amount of newly synthesized proteins released into the medium was unchanged (or decreased slightly in 14 and 16 day old cultures) after addition of dB-cAMP or soluble brain extract, and was much reduced after removal of fetal calf-serum.  相似文献   

15.
—Measurements of the incorporation of [14C]NaHCO3 into orotic acid, uridine nucleotides and RNA in tissue minces establish the occurrence of the complete orotate pathway for the de novo biosynthesis of pyrimidines in rat brain. Selective inhibition of the incorporation of various radiolabelled precursors into orotic acid by uridine demonstrates the operation of a feedback control mechanism in brain minces and indicates carbamoylphosphate synthetase to be the site of inhibition; purine nucleosides were similarly found to inhibit the de novo biosynthesis of pyrimidines. The activity of the orotate pathway, as assessed by the rate of incorporation of [14C]NaHCO3 into orotic acid, was found to be very high in fetal brain and to decline rapidly with neurological development; the mature rat brain exhibits less than 1% of the activity of the fetal brain at 18 days of gestation. Comparative studies on the ability of minces of the brain and several extraneural tissues to utilize [14C]NaHCO3 and [14C]aspartate as precursors of orotic acid lead us to speculate that variations in the ability of tissues to synthesize orotic acid de novo are determined by similar variations in their ability to synthesize carbamoylphosphate.  相似文献   

16.
Pre-type II alveolar cells isolated from the fetal rabbit lung on the 24th gestational day have been maintained in vitro for 14 days in a chemically defined medium supplemented with hormone-stripped serum. These cells replicate in culture. Measurement of the incorporation of [14C]choline into cellular disaturated phospholipid indicated that those cells grown in vitro under standard conditions for 8 days (pre-confluent) incorporate the radioactive precursor at a similar rate to cells maintained for 14 days (post-confluent). Both dexamethasone and serum-free medium conditioned by monolayer cultures of fetal rabbit lung fibroblasts stimulated [14C]choline incorporation into disaturated phosphatidylcholine (PC) by the pre- and post-confluent cultures after 24 or 48 h of exposure: the conditioned medium was more effective than the steroid. These treatments had little effect on choline incorporation into disaturated phosphatidylcholine of preconfluent cells during the first 12 h. A marked response occurred by 24 h after which the labelling of disaturated phosphatidylcholine plateaued. In contrast, with post-confluent cells labelling of disaturated PC increased in a more linear fashion and only plateaued after 72 h. Determination of the ratio of incorporation of [14C]choline into disaturated versus unsaturated phospholipid indicated that serum-free medium conditioned by monolayer cultures of fetal lung fibroblasts specifically increased the level of radioactive precursor in the disaturated phospholipid in both the pre- and post-confluent cell monolayers.  相似文献   

17.
Abstract— A 100,000 g supernatant fraction from rat brain that was passed through a column of Sephadex G-25-40 was able, after addition of some factors, to incorporate [I4C]arginine (apparent Km= 5 μM) and [14C]tyrosine (apparent Km= 20 μM) into its own proteins. The factors required for the incorporation of [14C]arginine were: ATP (optimal concentration = 0-25-2 μM) and Mg2+ (optimal concentration 5 mM). For the incorporation of [I4C]tyrosine the required factors were: ATP (apparent Km= 0-75 μM), Mg2+ (optimalconcentration 8-16 mM) and K+ (apparent Km= 16 mM). Addition of 19 amino acids did not enhance these incorporations. Optimal pHs were: for [14C]arginine and [14C]tyrosine, respectively, 7-4 and 7-0 in phosphate buffer and 7–9 and 7-3-8-1 in tris-HCl buffer. Pancreatic ribonuclease abolished the incorporation of [14C]arginine but had practically no effect in the incorporation of [14C]tyrosine. Furthermore, [14C]arginyl-tRNA was a more effective donor of arginyl groups than [14C]arginine, whereas [14C]tyrosyl-tRNA was considerably less effective than [14C]tyrosine. The incorporations of [14C]arginine and [14C]tyrosine into brain proteins were from 25- to 2000-fold higher than for any other amino acid tested (12 in total). In brain [14C]arginine incorporation was higher than in liver and thyroid but somewhat lower than in kidney. In comparison to brain, the incorporation of [14C]tyrosine was negligible in liver, thyroid or kidney. Kinetic studies showed that the macromolecular factor in the brain preparation was complex. The protein nature of the products was inferred from their insolubilities in hot TCA and from the action of pronase that rendered them soluble. [14C]Arginine was bound so that its a-amino group remained free. Maximal incorporation of [14C]tyrosine in brain of 30-day-old rats was about one-third of that in the 5-day-old rat. The changes with postnatal age in the incorporation of [14C]arginine were not statistically significant.  相似文献   

18.
1. Polysomes were isolated from the brain of infant rabbits at 22 days of age. The animals received s.c. injections 3 times weekly of aluminium (Al) maltolate (3 mg Al/kg body wt) or Al lactate (16 mg Al/kg body wt) from 5 days of age. 2. The polysomes were used to direct the incorporation of [14C]leucine into peptides in a brain protein synthesizing system and exhibited a decreased activity when obtained from aluminum exposed infants. 3. The mRNA obtained from the polysomes was used to direct the incorporation of [35S]methionine into peptides in an mRNA dependent rabbit reticulocyte lysate. The translatability of the mRNA derived from aluminum exposed infant brains was significantly lower than that of preparations from control infant rabbits. 4. Al bound to maltolate, a ligand soluble in lipids as well as water, was considerably more detrimental to brain protein synthesis than Al bound to lactate.  相似文献   

19.
Microsomal monoacyglycerol acyltransferase is a developmentally expressed enzyme that catalyzes the synthesis of sn-1,2-diacylglycerol from sn-2-monoacylglycerol and palmitoyl-CoA. The activity is present in liver from fetal and suckling rats but is absent in the adult. In order to obtain a stable permanent cell line that expresses this activity, Fao rat hepatoma cells and hepatocytes from 8-day-old baby rats were hybridized and clones were selected. Two hybrids (HA1 and HA7) expressed monoacylglycerol acyltransferase activity. Like fetal hepatocytes, but unlike hepatocytes from postnatal rats, the HA cells had high rates of [14C]acetate incorporation into glycerolipids, cholesterol, and cholesteryl esters, and they secreted triacylglycerol into the media. Monoacylglycerol acyltransferase specific activity increased 2.5-fold as the cells divided in culture, suggesting growth-dependent regulation. The specific activities of glycerol-P acyltransferase, the committed step of the microsomal pathway of glycerolipid synthesis, and diacylglycerol acyltransferase, the activity unique to triacylglycerol biosynthesis, were comparable to the levels of the corresponding activities in fetal hepatocytes. Addition of insulin or dexamethasone to the media increased the incorporation of [14C]oleate into triacyglycerol about 1.7-fold within 2 h, but had little effect on [14C]oleate incorporation into phospholipid. These hormonally responsive rat-hepatoma/hepatocyte hybrids reflect the fetal stage of hepatocyte development in five major aspects of lipid metabolism: sterol, fatty acid, and triacylglycerol biosynthesis, glycerolipid secretion, and the presence of the developmentally expressed monoacylglycerol pathway.  相似文献   

20.
1. Phosphate-dependent glutaminase activity in the epididymal fat-pad was 15.1 nmol/min per mg of protein. Glutaminase activity demonstrated differences with respect to adipose-tissue sites. Considerable variation was found in different sites of adipose tissue from lean control and Zucker obese animals. 2. Adipocytes incubated in the presence of 2 mM-glutamine utilized glutamine at a rate of 1.8 mumol/h per g dry wt., and glutamate, ammonia, lactate and alanine were produced. Addition of glucose plus insulin increased the rates of glutamine utilization and glutamate, ammonia, lactate and alanine production. Isoprenaline alone or plus glucose further stimulated the rate of glutamine utilization and formation of end products. 3. The rate of incorporation of 14C from glutamine into CO2 was similar to that of glucose, but the rate of incorporation into triacylglycerol was much less. Addition of unlabelled glucose or glucose plus insulin stimulated the rate of incorporation of [14C]glutamine into triacylglycerol, but had no effect on that of 14CO2 formation. Isoprenaline plus glucose increased the rate of incorporation of [14C]glutamine into CO2, but decreased the rate of incorporation into triacylglycerol. 4. In the absence of insulin, the rate of [14C]glutamine incorporation into triacylglycerol was related to the glucose concentration (0-10 mM). However, in the presence of insulin, the rate of incorporation of [14C]glutamine was maximal at 1 mM-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号