首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome shuffling can improve complex phenotypes; however, there are several obstacles towards its broader applicability due to increased complexity of eukaryotic cells. Here, we describe novel, efficient and reliable methods for genome shuffling to increase ethanol production of Saccharomyces cerevisiae. Using yeast sexual and asexual reproduction by itself, mutant diploid cells were shuffled through highly efficient sporulation and adequate cross among the haploid cells, followed by selection on the special plates. The selected strain obtained after three round genome shuffling not only distinctly improved the resistance to ethanol, but also, increased ethanol yield by up to 13% compared with the control.  相似文献   

2.
Genome shuffling is a powerful strategy for rapid engineering of microbial strains for desirable industrial phenotypes. Here we improved the thermotolerance and ethanol tolerance of an industrial yeast strain SM-3 by genome shuffling while simultaneously enhancing the ethanol productivity. The starting population was generated by protoplast ultraviolet irradiation and then subjected for the recursive protoplast fusion. The positive colonies from the library, created by fusing the inactivated protoplasts were screened for growth at 35, 40, 45, 50 and 55°C on YPD-agar plates containing different concentrations of ethanol. Characterization of all mutants and wild-type strain in the shake-flask indicated the compatibility of three phenotypes of thermotolerance, ethanol tolerance and ethanol yields enhancement. After three rounds of genome shuffling, the best performing strain, F34, which could grow on plate cultures up to 55°C, was obtained. It was found capable of completely utilizing 20% (w/v) glucose at 45–48°C, producing 9.95% (w/v) ethanol, and tolerating 25% (v/v) ethanol stress.  相似文献   

3.
The tropical plants Garcinia cambogia and Hibiscus subdariffa produce hydroxycitric acid (HCA), of which the absolute configurations are (2S,3S) and (2S,3R), respectively. (2S,3S)-HCA is an inhibitor of ATP-citrate lyase, which is involved in fatty acid synthesis. (2S,3R)-HCA inhibits pancreatic α-amylase and intestinal α-glucosidase, leading to a reduction in carbohydrate metabolism. In this study, we review current knowledge on the structure, biological occurrence, and physiological properties of HCA. The availability of HCA is limited by the restricted habitat of its source plants and the difficulty of stereoselective organic synthesis. Hence, in our recent study, thousands of microbial strains were screened and finally two bacterial strains were, for the first time, found to produce trace amounts of HCA. The HCA variants produced were the Hibiscus-type (2S,3R) enantiomer. Subsequent genome shuffling rapidly generated a mutant population with improved HCA yield relative to the parent strain of bacteria. These bacteria are a potential alternative source of natural HCA.  相似文献   

4.
The gene for phospholipase D (PLD) of Streptomyces sp. YU100 was cloned from λ phage library and hetero-logously expressed in Escherichia coli. Using an amplified gene fragment based on the consensus sequences of streptomycetes PLDs, λ phage library of Streptomyces sp. YU100 chromosomal DNA was screened. The sequencing result of BamHI-digested 3.8 kb fragment in a positive phage clone revealed the presence of an open reading frame of a full sequence of PLD gene encoding a 540-amino acid protein including 33-amino acid signal peptide. The deduced amino acid sequence showed a high homology with other Streptomyces PLDs, having the highly conserved ‘HKD’ motifs. The PLD gene excluding signal peptide sequence was amplified and subcloned into a pET-32b(+) expression vector in E. coli BL21(DE3). The recombinant PLD was purified by nickel affinity chromatography and compared the enzyme activity with wild-type PLD. The results imply that the recombinant PLD produced by E. coli had the nearly same enzyme activity as PLD from Streptomyces sp. YU100.  相似文献   

5.
Streptomyces sp. 139 generates a novel exopolysaccharide (EPS) designated as Ebosin, which exerts an antagonistic effect on IL-1R in vitro and anti-rheumatic arthritis activity in vivo. A ste gene cluster for Ebosin biosynthesis consisting of 27 ORFs was previously identified in our laboratory. In this paper, ste16 was expressed in Escherichia coli BL21 and the recombinant protein was purified, which has the ability to catalyze the transfer of the methyl group from S-adenosylmethionine (AdoMet) to dTDP-4-keto-6-deoxy-D-glucos, which was thus identified as a methyltransferase. In order to determine the function of ste16 in Ebosin biosynthesis, the gene was disrupted with a double crossover via homologous recombination. The monosaccharide composition of EPS-m generated by the mutant strain Streptomyces sp. 139 (ste16) was found to differ from that of Ebosin. The IL-1R antagonist activity of EPS-m was markedly lower than that of Ebosin. These experimental results have shown that the ste16 gene codes for a methyltransferase which is involved in Ebosin biosynthesis. These authors contributed equally to this work.  相似文献   

6.
Thermostable cellulase was produced by Streptomyces sp. T3-1 grown in a 50-l fermenter. Maximum cellulase activity was attained on the fourth day when agitation speeds and aeration rates were controlled at 300 rpm and 0.75 vvm, respectively. Maximum enzyme activities were: 148 IU CMCase ml–1, 45 IU Avicelase ml–1, and 137 IU -glucosidase ml–1 with productivity of 326 IU l–1 h–1, which were 10--32% higher than the values obtained in shake-flask culturesRevisions requested 12 October 2004/1 November 2004; Received received 1 November 2004/14 December 2004  相似文献   

7.
Gram-positive bacteria, notably Bacillus and Streptomyces, have been used extensively in industry. However, these microorganisms have not yet been exploited for the production of the biodegradable polymers, polyhydroxyalkanoates (PHAs). Although PHAs have many potential applications, the cost of production means that medical applications are currently the main area of use. Gram-negative bacteria, currently the only commercial source of PHAs, have lipopolysaccharides (LPS) which co-purify with the PHAs and cause immunogenic reactions. On the other hand, Gram- positive bacteria lack LPS, a positive feature which justifies intensive investigation into their production of PHAs. This review summarizes currently available knowledge on PHA production by Gram- positive bacteria especially Bacillus and Streptomyces. We hope that this will form the basis of further research into developing either or both as a source of PHAs for medical applications.  相似文献   

8.
During antioxidant screening using 1,1-diphenyl-picrylhydrazyl (DPPH) and a lipid peroxidation assay, a streptomycete strain was found to produce herbimycin A and dihydroherbimycin A as antioxidants in the culture filtrate. These molecules were identified by using spectral analyses, including infrared, ultraviolet, mass spectrum, and nuclear magnetic resonance assays. In the DPPH radical-scavenging assay, dihydroherbimycin A exhibited more potent antioxidant activity (IC50, 1.3 μM) than α-tocopherol (IC50, 2.7 μM) that was used as a reference compound. In the lipid peroxidation assay, both herbimycin A and dihydroherbimycin A demonstrated antioxidant activities of 61% and 72%, respectively, at 100 μg/ml, while α-tocopherol exhibited an activity of 93% at the same concentration. Therefore, dihydroherbimycin A might have the potential to be developed into a new therapeutic agent.  相似文献   

9.
Seventy different actinomycete isolates were evaluated for their ability to produce keratinase using a keratin-salt agar medium containing ball-milled feather as substrate. A novel feather-degrading isolate obtained from marine sediment produced the highest keratinolytic activity when cultured on broth containing whole feather as a primary source of carbon, nitrogen and energy. Based on phenotypic characterization and analysis of 16S rDNA sequencing the isolate was identified as a Streptomyces sp. MS-2. Maximum keratinase activity (11.2 U/mg protein) was achieved when cells were grown on mineral salt liquid medium containing 1% whole chicken feather adjusted to pH 8 and incubated at 35°C for 72 h at 150 rpm. Reduction of disulphide bridges was also detected, increasing with incubation time. Feather degradation led to an increase in free amino acids such as alanine, leucine, valine and isoleucine. Moreover, methionine and phenylalanine were also produced as microbial metabolites.  相似文献   

10.
The biotransformation of acrylonitrile was investigated using thermophilic nitrilase produced from a new isolate Streptomyces sp. MTCC 7546 in both the free and immobilized state. Under optimal conditions, the enzyme converts nitriles to acids without the formation of amides. The whole cells of the isolate were immobilized in agar-agar and the beads so formed were evaluated for 25 cycles at 50°C. The enzyme showed a little loss of activity during reuse. Seventy-one per cent of 0.5 M acrylonitrile was converted to acid at 6 h of incubation at a very low density of immobilized cells, while 100% conversion was observed at 3 h by free cells.  相似文献   

11.
Abstact Polar organisms should have mechanisms to survive the extremely cold environment. Four genes encoding cold-shock proteins, which are small, cold-induced bacterial proteins, have been cloned from the Antarctic bacterium Streptomyces sp. AA8321. Since the specific functions of any polar bacterial or Streptomyces cold-shock proteins have not yet been determined, we examined the role of cold-shock protein A from Streptomyces sp. AA8321 (CspASt). Gel filtration chromatography showed that purified CspASt exists as a homodimer under physiological conditions, and gel shift assays showed that it binds to single-stranded, but not double-stranded, DNA. Overexpression of CspASt in Escherichia coli severely impaired the ability of the host cells to form colonies, and the cells developed an elongated morphology. Incorporation of a deoxynucleoside analogue, 5-bromo-2′-deoxyuridine, into newly synthesized DNA was also drastically diminished in CspASt-overexpressing cells. These results suggest that CspASt play a role in inhibition of DNA replication during cold-adaptation.  相似文献   

12.
Growth of Streptococcus zooepidemicus in a 10 l bioreactor with 50 g sucrose/l and 10 g casein hydrolysate/l gave 5–6 g hyaluronic acid/l after 24–28 h. Purification of hyaluronic acid gave a recovery of 65% with the final material having an Mr of ∼4 × 106 Da with less than 0.1% protein.  相似文献   

13.
Streptomyces sp. 139 produces a novel exopolysaccharide (EPS) designated Ebosin which has antagonistic activity for IL-1R in vitro and remarkable anti-rheumatic arthritis activity in vivo. We previously identified a ste (Streptomyces eps) gene cluster consisting of 27 ORFs responsible for Ebosin biosynthesis. The gene product of ste15 shows high homology to known glycosyltransferases (GTFs). To elucidate its function in Ebosin biosynthesis, the ste15 gene was knocked out with a double crossover via homologous recombination. Our analysis of monosaccharide composition for EPS-m produced by the mutant strain Streptomyces sp. 139 (ste15 ) showed that glucose was significantly diminished compared to its natural counterpart Ebosin. This derivative of Ebosin lost the antagonistic activity for IL-1R in vitro and its molecular mass was smaller than Ebosin. These results have demonstrated that the ste15 gene codes for a GTF for glucose, which is functionally involved in Ebosin biosynthesis.  相似文献   

14.
DNA/DNA genome microarray analysis together with genome sequencing suggests that the genome of members of the genus Streptomyces would seem to have a common structure including a linear genomic structure, a core of common syntenous Actinomycete genes, the presence of species specific terminal regions and two intermediate group of syntenous genes that seem to be genus specific. We analyzed Streptomyces species using DNA/DNA microarray comparative genome analysis. Only Streptomyces rimosus failed to give a congruent genome pattern for the genes found in Streptomyces coelicolor. We expanded the analysis to include a number of strains related to the type strain of S. rimosus and obtained a similar divergence from the main body of Streptomyces species. These strains showed very close identity to the original strain with no gene deletion or duplication detected. The 16S rRNA sequences of these S. rimosus strains were confirmed as very similar to the S. rimosus sequences available from the Ribosomal Database Project. When the SSU ribosomal RNA phylogeny of S. rimosus is analyzed, the species is positioned at the edge of the Streptomyces clade. We conclude that S. rimosus represents a distinct evolutionary lineage making the species a worthy possibility for genome sequencing.  相似文献   

15.
Summary An actinomycete strain (designated Ap1) isolated from the rhizosphere soil of Argania spinosa L. strongly inhibited the growth of two plant pathogens: Fusarium oxysporum f.sp. albedinis and Verticillium dahliae. The spore morphology suggested that the Ap1 strain belonged to the genus Streptomyces. The antifungal compound produced by Ap1 was purified by HPLC and identified as the polyene macrolide, isochainin, by NMR and mass spectroscopy. Ap1 showed normal biosynthesis of isochainin in comparison with S. cellulosae ATTC 12625, in which precursor-directed biosynthesis by feeding ethyl (Z)-16-phenylhexadec-9-enoate to the culture medium is required. In addition, Streptomyces sp. strain Ap1 produces isochainin with a 6.5-fold higher concentration than Streptomyces cellulosae ATTC 12625.  相似文献   

16.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

17.
Lactobacillus delbrueckii subsp. lactis strains were developed having increased activity, by gradually acclimatizing the bacteria to acidic conditions over repeated batch culture. Cells from one batch culture were used as the inoculum for the subsequent batch culture and thereby an adapted strain of Lactobacillus was obtained showing improved lactic acid productivity, cell growth and total glucose utilization. Furthermore, the acclimatized cells used significantly less nitrogen for a given level of lactic acid production, which is significant from an industrial point of view. The developed procedure decreases fermentation time and nutrient use, leading to reduced operation costs, while providing a lactic acid yield superior to previously reported methods.  相似文献   

18.
The investigation aimed to examine the Streptomyces flora of hydrocarbon-contaminated soil and study their capability to grow on diesel fuel as a sole carbon source and their analysis for the presence of the alkane hydroxylase gene (alkB) by PCR. A total of 16 Streptomyces isolates were recovered from hydrocarbon-contaminated soil samples on starch casein nitrate agar medium with the ability of 3 isolates to grow on diesel as evaluated by agar plate diffusion method, enzymatic assay and dry weight measurements. PCR analysis of the isolates for the presence of the alkB gene showed two groups with different band size products; group 1 (G1) (316–334 bp) and group 2 (G2) (460–550 bp). Three isolates (SF.1Ac, SF.2Ba, and SF.3Ad) grew around diesel-containing wells and contained the alkB gene with size band ranged between 320 and 550 bp. However; one isolate (SF.1Aa) did not show any PCR product although it was able to grow on diesel. This implies that the alkB gene is not the only gene that is responsible for the degradation of alkanes. Further, the variation in the G2 fragment size probably indicates different related genes that might be involved in alkane degradation rather than a single gene.  相似文献   

19.
Seol E  Jung Y  Lee J  Cho C  Kim T  Rhee Y  Lee S 《Plant cell reports》2008,27(7):1197-1206
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species.  相似文献   

20.
The phytopathogenic fungus Verticillium dahliae Kleb. causes high yield losses in strawberry production. As effective chemical control of this fungus is no longer available, biological control based on natural antagonists might provide new control strategies. The aim of this study was to assess the impact of the two biological control agents S. plymuthica HRO-C48 and Streptomyces sp. HRO-71 on the rhizosphere community of the Verticillium host plant strawberry in field trials at two different sites in Germany. Therefore, we determined the abundances of culturable bacteria and investigated the community structure of the total rhizosphere microbiota by PCR-single strand conformation polymorphism analysis of the 16S rRNA and fungal ITS1 region. The abundances of culturable rhizobacteria on R2A medium as well as the proportion of in vitro Verticillium antagonists did not differ significantly. Additionally, no treatment specific differences were obtained in the composition of species of the non-target antagonistic bacteria in the rhizospheres. The culture-independent analysis revealed only transient differences between the bacterial communities not due to the treatments rather than to the plant growth stage. Fungal and bacterial community fingerprints showed the development of a microbiota, specific for a field site. However, no sustainable impact of the bacterial treatments on the indigenous microbial communities was found using culture-dependent and -independent methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号